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A proof of the Simons inequality

EvE Oja

Let S be a set and let £, (S) denote the metric space of all bounded real
functions on S. For a sequence of functions Tn = z,(s), s € §, its convex
hull is denoted by conv{z,}2 |, that is

convizn}ily = {D  AnzaimEN, A 20, YA, =1},
n=1 n=1

The following result of S. Simons [2, Lemma 2] (cf. also [1, p. 49))

is important in real analysis and geometry of Banach spaces (see e.g. [I,
Chapter 3], [2], [3]).

Simons Inequality. Let (x,)%, be a bounded sequence in £, (S). Let
T C S be such that, for every ), > 0 with ZZO=1 An =1, there existst € T'

satisfying
oo (o9}
Z AnZ, (t) = sup Z AnZn(s).
n=1 s€S n=1

Then

inf{sup z(s): z € conv{z,}°,} < suplim sup z, (t).
sES teT n
In this note, we shall give a simple direct proof of the Simons inequality.
In fact, the main formula which will be used in the proof below is

n-~—1
2" =3 "2k 41,
k=0

Received July 13, 1998.

1991 Mathematics Subject Classification. Primary 26A03.

Key words and phrases. Bounded real functions, their convex combinations.
The work was supported by the Estonian Science Foundation Grant 3055.




EVE OJA

Proof of the Simons inequality. Denote o(z) = sup,cgz(s), * € £ (),
and C = {0, MnZnt A 2 0, 02 Ay =1}, k € N Asinf{o(z): 7 €
A} = inf{o(z): « € A} for any set A C £o(S) (where A denotes the closure
of A), it is equivalent to prove that

inf o(z) < suplimsupz,(t) =: or. (1)
zel) teT n

To show (1), it clearly suffices to prove that, for any ¢ > 0, there exist
v € C1, Ym € Cmy1 (for m € N), and t € T so that

o(v) —e < ym(t) YmeN. (2)
[In fact, by (2),

1é1f o(z)—e<o(v)—€e < hmsupym(t) < lim supmn( ) < or,
T

and inequality (1) follows because £ > 0 is arbitrary.]
Let € > 0. Since C} is a bounded set,

1&115' o(z+2) > -0 Vzelsn(S), VkeN.
z€Cy

Choose inductively z; € Cy, z3 € Cy,... so that, for k =0,1,...,
k . k £
(2% + 2k41) < zel(r/‘lf“ o(2%vy + 2) + ey

where vg = 0 and vy = Y5_, 2,/2". Then put v = Y v, z,/2". Since
2k + 2541 = 2k+1vk+1 — 2Fv;, (because vgy; — vk = zk+1/2’°+1) and y; :=
2ky — 2k =370 L2 k20/2" € Cry1, we have, for k=10,1,...

€
o (2F vy, — 2F0;) < o(2%0) + 2k+1 = 2o (v) + SEFT (3)

Since v € C4, there exists t € T satisfying v(t) = o(v). From (3) (note that
m__—ol 2k = 2™ _ 1), we immediately get that, for any m € N,
m—1
2" (t) = Z (2 w1 — 250, (1) < 2™ = 1)o(v) +e = 2™v(t) — o (v) +e.
k=0
This means that (2) holds. O
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