Semi-parallel and parallel symplectic surfaces in the four-dimensional symplectic space

Aivo Parring

Abstract. Parallel and semi-parallel symplectic surfaces in the symplectic space S_{p4} are studied. It is proved that a symplectic surface is semi-parallel if and only if its tangent connection is flat. The parallel symplectic surfaces are characterized and the existence of semi-parallel symplectic surfaces which are not parallel is exhibited. The study is conducted by the method of moving frame.

1. The concept of the symplectic space

Let us consider the four-dimensional symplectic space S_{p4}. This is an affine space whose direction space is a symplectic vector space, which we shall denote by S_{p4}^2. The latter is a vector space with regular skew-symmetric scalar product, i.e. for each $\vec{x}, \vec{y} \in S_{p4}$ there holds the equality $\langle \vec{x}, \vec{y} \rangle = -\langle \vec{y}, \vec{x} \rangle$. As it follows from here that $|\vec{x}|^2 = \langle \vec{x}, \vec{x} \rangle = 0$, all vectors in this space have length zero.

We denote a moving frame in S_{p4} by $\{X; \vec{e}_I\}$, where the indices I, J, \ldots acquire the values 1, 2, 3, 4. Instead of the origin $X \in S_{p4}$ of the frame we often use its position vector $\vec{x} = OX$ relative to an optional fixed point $O \in S_{p4}$. The motion of the frame is described by the differentiation formulae

$$d\vec{x} = \omega^I_L \vec{e}_L, \quad d\vec{e}_I = \omega_I^J \vec{e}_J,$$

(1.1)

where the 1-forms ω^I and ω_I satisfy the conditions of complete integrability (the structure equations)

$$dw^L = \omega^L_K \omega^K_I, \quad dw_I^L = \omega_I^L \omega^K_L.$$

(1.2)

Received June 26, 1999; revised December 14, 2000.

2000 Mathematics Subject Classification. 53D05.

Key words and phrases. Symplectic space, parallel and semi-parallel symplectic surfaces.
The matrix $G = [g_{IK}]$ formed by scalar products $g_{IK} = \langle \vec{e}_I, \vec{e}_K \rangle$ of the basis vectors is regular and skew-symmetric. Differentiation of the scalar products g_{IK} with use of (1.1) gives

$$dg_{IK} = g_{LK}\omega_I^L + g_{IL}\omega_K^L,$$

which is often useful in the matrix notation

$$dG = -(G\omega)^T + G\omega,$$

where $\omega = [\omega_I^L]$. In what follows, for all matrices, the upper index is the row index.

2. The symplectic surface

Let us consider the surfaces with symplectic tangent planes in the symplectic space Sp_4. Any such surface M_2 will be called a symplectic surface. The study of a symplectic surface can be reduced to study of a suitable moving frame $\{X; \vec{e}_i, \vec{e}_a\}$ connected with that symplectic surface. Here and in what follows we take $i, j, \ldots = 1, 2$ and $\alpha, \beta, \ldots = 3, 4$.

We require that the symplectic surface should be described by the origin X of the moving frame $(X \in M_2)$. The basis vectors \vec{e}_i are in the vector space $T^X_0 M_2$ (determined by the tangent plane $T_X M_2$) and the basis vectors \vec{e}_a are in the vector space $\tilde{T}^X_0 M_2$ (determined by the normal plane $T^X_0 M_2$). Accordingly

$$T_X M_2 = X + L(\vec{e}_1, \vec{e}_2), \quad \tilde{T}^X_0 M_2 = X + L(\tilde{\vec{e}}_3, \tilde{\vec{e}}_4).$$

It needs to be pointed out that the symplecticity of the symplectic surface M_2 assures the uniqueness of the orthogonal complement $T^X_0 M_2$ of $T_X M_2$, and

$$T_X M_2 + \tilde{T}^X_0 M_2 = T_X M_2 \oplus \tilde{T}^X_0 M_2 = Sp_4.$$

We shall call the selected frame the adapted frame of the symplectic surface. By this choice of frame the condition $\langle \vec{J}, \vec{J} \rangle = 0$ holds for each $\vec{J} \in T_X M_2$ and $\vec{J} \in \tilde{T}^X_0 M_2$, hence $g_{ia} = \langle \vec{e}_i, \vec{e}_a \rangle = 0$. So, in turn, $dg_{ia} = 0$, and the equations (1.3) become

$$dg_{ik} = g_{sk}\omega_i^s + g_{is}\omega_k^s, \quad dg_{\alpha\beta} = g_{\gamma\alpha}\omega_\beta^\gamma + g_{\alpha\gamma}\omega_\beta^\gamma$$

and

$$\omega_\alpha^\beta = -g^{\beta\gamma}\omega_\alpha^\gamma.$$
\(G = G_1 \oplus G_2. \)

Let us now return to studying the symplectic surface \(M_2 \). For the adapted frame the differential \(d\bar{x} \) of the position vector \(\bar{x} \) of an arbitrary point \(X \) of \(M_2 \) belongs to the subspace \(L(\bar{e}_1, \bar{e}_2) \), in consequence of which the first of the equations (1.1) takes the form \(d\bar{x} = \omega^\alpha \bar{e}_\alpha \), or

\[
\omega^\alpha = 0. \tag{2.2}
\]

The equations (2.2) are called the \textit{differential equations} of the symplectic surface. By double extension of these equations (that is, by exterior differentiation and use of the Cartan lemma) we get

\[
\omega_i^\alpha = h_{i\alpha}^\alpha \omega^\alpha, \quad h_{i\alpha}^\alpha = h_{\alpha i}^\alpha, \tag{2.3}
\]

\[
dh_i^\alpha - h_{ij}^\alpha \omega_j^\alpha - h_{i\alpha}^\alpha \omega_j^\alpha + h_{ij}^\beta \omega_j^\alpha = h_{ij\alpha}^\alpha \omega^\alpha, \quad h_{ij\alpha}^\alpha = h_{ij\alpha}^\alpha. \tag{2.4}
\]

In the equations (2.4) the functions \(h_{ijk}^\alpha \) are symmetric not only with respect to the last pair of lower indices, as required by the Cartan lemma, but also with respect to all the lower indices, as can be checked directly from (2.4).

Let us construct the vectors \(\bar{H}_{ij}^\alpha = h_{ij\alpha}^\alpha \bar{e}_\alpha \), \(\bar{H}_{ij}^\beta \in T_X^1 M_2 \), which determine a subspace \(N_X M_2 \) of the normal plane \(T^1_X M_2 \),

\[
N_X M_2 = X + L(\bar{H}_{11}, \bar{H}_{12}, \bar{H}_{22}).
\]

This is called the \textit{(first) normal plane} of the symplectic surface \(M_2 \) at the point \(X \in M_2 \). Here we took note of the fact that \(\bar{H}_{12} = \bar{H}_{21} \). Because of \(\dim N_X M_2 = \text{rank}\{\bar{H}_{11}, \bar{H}_{12}, \bar{H}_{22}\} \), the dimension of this normal plane is 2, 1 or 0. In the first case \(N_X M_2 = T^1_X M_2 \). It is worth noting that if we have a symplectic space \(Sp_{2n} \) (with higher dimension, instead of \(Sp_4 \), then it is possible to achieve \(\dim N_X M_2 = 3 \).

The basis vectors \(\bar{e}_i^\alpha \) and \(\bar{e}_\alpha \) of the moving frame \(\{X; \bar{e}_i^\alpha, \bar{e}_\alpha\} \) at a point \(X \) of the symplectic surface \(M_2 \) are not unique. It is only known that \(\bar{e}_i^\alpha \in T_X^1 M_2 \) and \(\bar{e}_\alpha \in T^1_X M_2 \). Hence at each point \(X \in M_2 \) it is permissible to effect basis transformations

\[
\bar{e}_i^\alpha = A_i^\alpha \bar{e}_j^\beta, \quad \bar{e}_\alpha = A_\alpha^\beta \bar{e}_\beta, \tag{2.5}
\]

where \(A_1 =|| A_i^\alpha || \) and \(A_2 =|| A_\alpha^\beta || \) are regular matrices. The equations (2.5) describe the arbitrariness of the adapted frame at the point \(X \) of a symplectic surface. The functions \(h_{ij}^\alpha \) are transformed by the equations

\[
'h_{ij}^\alpha = A_\alpha^\beta A_i^\delta h_{st}^\alpha \delta_{\beta}, \tag{2.6}
\]
where \tilde{A}^α_β are the elements of the inverse matrix A^{-1}_2.

By means of the equations (2.2) we get from the structure equations (1.2) of Sp_4 the structure equations of the symplectic surface M_2

$$dw^i = \omega^s \wedge \omega^i, \quad dw^i = \omega^s \wedge \omega^i + \Omega^i_s$$

and the structure equations for the manifold of normal vector spaces $T^\perp M_2 = \bigcup_{x \in M_2} T^\perp_x M_2$

$$d\omega^\alpha_\beta = \omega^\gamma_\alpha \wedge \omega^\beta_\gamma + \Omega^\beta_\alpha.$$ (2.8)

In the equations (2.7) and (2.8) the 2-forms Ω^i_s and Ω^β_α are the curvature forms of the tangential connection ∇ of the symplectic surface M_2 and of the normal connection ∇^\perp, respectively. In particular,

$$\Omega^i_s = R^i_{st} \omega^s \wedge \omega^t, \quad \Omega^\beta_\alpha = R^\beta_{ast} \omega^a \wedge \omega^t,$$

where, taking into account (2.1) and (2.3), the functions R^i_{st} and R^β_{ast} may be expressed as

$$R^i_{st} = g^{jk} h^\alpha_{il} h^\beta_{k[j]l} g_{\alpha \beta}, \quad R^\beta_{ast} = g_{\alpha \tau} h^\gamma_{il} h^\beta_{k[\tau]l} g^{ki}.$$ (2.9)

Here the bracketed indices are alternated except for the indices between the vertical lines $| |$. The functions R^i_{st} and R^β_{ast} are the curvature tensors of the tangential and normal connections, respectively. In order to bring to light a property of these tensors it is useful to define

$$R_{ijst} = g_{iu} R^u_{jst}, \quad R_{\alpha \beta st} = g_{\alpha \tau} R^\tau_{\beta st},$$ (2.10)

which will also be called curvature tensors. They are symmetric with respect to the first pair of indices, i.e.

$$R_{ijst} = R_{jist}, \quad R_{\alpha \beta st} = R_{\beta \alpha st}.$$

The property alluded to follows from the equations

$$R_{ijst} = g_{\alpha \beta} h^\alpha_{il} h^\beta_{j[k]l} g_{\alpha \beta}, \quad R_{\alpha \beta st} = g_{\alpha \tau} g_{\beta \gamma} h^\gamma_{il} h^\beta_{k[\tau]l} g^{ki},$$ (2.11)

which result from (2.10) with the help of the equations (2.9). For the curvature tensors R^i_{st} and R^β_{ast}, or R_{ijst} and $R_{\alpha \beta st}$, only the elements R^i_{12} and R^β_{a12}, or R_{ij12} and $R_{\alpha \beta 12}$, may be non-zero. Henceforth we denote these elements as follows:

$$R^i_{1} = R^i_{12}, \quad R^\beta_a = R^\beta_{a12}, \quad R_{ij} = R_{ij12}, \quad R_{\alpha \beta} = R_{\alpha \beta 12}.$$ (2.12)
As it is well known, the curvature tensors transform under the basis transformation (2.5) in accordance with the tensor law. So, for example, in the case of (2.11)

\[
R'_{i j s t} = A_i^k A_j^l A_s^u A_t^v R_{kluv}, \quad R'_{\alpha \beta s t} = A_\alpha^\gamma A_\beta^\delta A_s^u A_t^v R_{\gamma \delta u v}.
\]

Using these relations we get the transformation equations for \(R_{ij} \) and \(R_{\alpha \beta} \):

\[
R'_{ij} = |A_1| A_i^k A_j^l R_{kl}, \quad R'_{\alpha \beta} = |A_1| A_\alpha^\gamma A_\beta^\delta R_{\gamma \delta}.
\] (2.13)

Here \(|A_1| \) is the determinant of matrix \(A_1 \).

Let us suppose from now on that the adapted frame \(\{ X, \tilde{e}_1, \tilde{e}_2, \tilde{e}_3 \} \) of a symplectic surface is symplectic. This means that the matrix \(G \) has the form

\[
G = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}, \quad I = \begin{vmatrix} 0 & 1 \\ -1 & 0 \end{vmatrix}, \quad 0 = \begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix}.
\]

Now, as \(dG = 0 \), the equation (1.4) leads to \((G \omega)^T = G \omega\), from which it follows that

\[
\omega_2^2 = -\omega_1^1, \quad \omega_4^4 = -\omega_3^3, \quad \omega_3^1 = -\omega_2^4, \quad \omega_2^2 = \omega_1^4, \quad \omega_1^1 = \omega_3^2, \quad \omega_3^3 = -\omega_2^i. (2.14)
\]

The freedom of choice of the adapted symplectic frame for each point \(X \in M_2 \) may be inferred from the equations (2.5). In these equations \(A_1 \) and \(A_2 \) must be such that the matrices \(G_1 = G_2 = I \) would not change under transition from one adapted frame to another at any point \(X \in M_2 \), i.e. \(G_1' = G_1 \) and \(G_2' = G_2 \), or equivalently,

\[
A_1^T I A_1 = I, \quad A_2^T I A_2 = I.
\]

From here we see that the only condition which must hold in the choice of the matrices \(A_1 \) and \(A_2 \) is that \(|A_1| = 1 \) and \(|A_2| = 1 \). Now the equations (2.13) simplify

\[
R'_{ij} = A_i^k A_j^l R_{kl}, \quad R'_{\alpha \beta} = A_\alpha^\gamma A_\beta^\delta R_{\gamma \delta}.
\]

Thus the transformations follow the tensor law. With the help of the equations (2.12) and (2.11) we may express \(R_{ij} \) and \(R_{\alpha \beta} \) in terms of the functions \(h_{ij}^g \):

\[
R_{11} = \begin{vmatrix} h_{11}^3 & h_{12}^3 \\ h_{12}^3 & h_{12}^2 \end{vmatrix}, \quad R_{12} = R_{21} = \frac{1}{2} \begin{vmatrix} h_{11}^3 & h_{12}^3 \\ h_{11}^2 & h_{12}^2 \end{vmatrix}, \quad R_{22} = \begin{vmatrix} h_{12}^3 & h_{12}^3 \\ h_{12}^2 & h_{12}^2 \end{vmatrix} (2.15)
\]

and

\[
R_{33} = \begin{vmatrix} h_{12}^4 & h_{12}^4 \\ h_{12}^4 & h_{12}^2 \end{vmatrix}, \quad R_{44} = \begin{vmatrix} h_{12}^3 & h_{12}^3 \\ h_{12}^2 & h_{12}^2 \end{vmatrix},
\]

\[
R_{34} = R_{43} = \frac{1}{2} (2h_{12}^3 h_{12}^4 - h_{11}^3 h_{12}^3 - h_{11}^3 h_{12}^2). (2.16)
\]
To get analogous expressions for R^2_i and R^α_α we must take into account the equations

\[
R^2_2 = -R^1_1 = R_{12}, \quad R^1_2 = -R_{22}, \quad R^2_1 = R_{11};
\]

\[
R^4_4 = -R^3_3 = R_{34}, \quad R^3_4 = -R_{44}, \quad R^4_3 = R_{33}.
\]

As it is shown in [6], the symplectic surfaces fall into five classes $\mathcal{A}_1, \ldots, \mathcal{A}_5$. Using a suitable symplectic frame the symplectic surfaces in the various classes are characterized as in Table 1.

<table>
<thead>
<tr>
<th>Class of symplectic surfaces</th>
<th>Expression of tensors h^α_{ij}, R^i_j and R^α_α</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{A}_1 \ (\varepsilon = 1)$</td>
<td>$h^3_{22} = \varepsilon h^3_{11}, \ h^4_{12} = -\varepsilon h^3_{11}, \ h^4_{11} = -h^3_{12},$</td>
</tr>
<tr>
<td>$\mathcal{A}_2 \ (\varepsilon = -1)$</td>
<td>$R^1_1 = R^2_2 = R^3_3 = R^4_4 = 0,$</td>
</tr>
<tr>
<td></td>
<td>$R^1_2 = -\varepsilon R^2_1, \ R^3_4 = -\varepsilon R^4_3$</td>
</tr>
<tr>
<td>\mathcal{A}_3</td>
<td>$h^3_{22} = h^3_{12} = 0, \ h^3_{11} \neq 0, \ h^3_{12} \neq 0,$</td>
</tr>
<tr>
<td></td>
<td>$R^2_1 = 2h^3_{11} h^4_{12} \neq 0, \ R^3_4 = 2(h^4_{12})^2 \neq 0,$</td>
</tr>
<tr>
<td></td>
<td>$R^1_1 = R^2_2 = R^3_3 = R^4_4 = R^3_4 = 0$</td>
</tr>
<tr>
<td>\mathcal{A}_4</td>
<td>$h^3_{ij} = 0, \ R^4_j = R^3_3 = R^4_4 = R^3_4 = 0,$</td>
</tr>
<tr>
<td></td>
<td>$R^3_4 = h^4_{11} h^4_{22} - (h^4_{12})^2 \neq 0$</td>
</tr>
<tr>
<td>\mathcal{A}_5</td>
<td>$h^3_{ij} = \lambda h^4_{ij}, \ (h^4_{12})^2 = h^3_{11} h^3_{22}, \ R^4_j = R^3_4 = 0$</td>
</tr>
</tbody>
</table>
3. Parallel and semi-parallel symplectic surfaces

In this section we consider a pair of closely connected classes of symplectic surfaces in the symplectic space Sp_4 – the parallel and semi-parallel symplectic surfaces. Parallel and semi-parallel submanifolds in the Euclidean space and the space with a constant curvature have been studied by several authors (e.g. Deprez [1], Ferus [2], Lumiste [4], Vilm [7]). Parallel and semi-parallel symplectic submanifolds in the symplectic space have been studied in [5].

To present the concepts of such symplectic surfaces, let $\nabla = (\nabla, \nabla^\perp)$ denote the van der Waerden-Bortolotti connection of a symplectic surface. The covariant differentials of the functions h^α_{ij} relative to the connection ∇

$$\nabla h^\alpha_{ij} = dh^\alpha_{ij} - h^\alpha_{sj} \omega^s_i - h^\alpha_{is} \omega^s_j + h^\alpha_{ij} \omega^s,$$

may be expressed as

$$\nabla h^\alpha_{ij} = h^\alpha_{ij} \omega^s, \quad (3.1)$$

where the functions h^α_{ij} are the ones used earlier in the equations (2.4). The covariant differentials of the functions h^α_{ijk}

$$\nabla h^\alpha_{ijk} = dh^\alpha_{ijk} - h^\alpha_{sjk} \omega^s_i - h^\alpha_{isjk} \omega^s_j - h^\alpha_{ijk} \omega^s_k + h^\alpha_{ijk} \omega^s \quad (3.2)$$

may be expressed as

$$\nabla h^\alpha_{ijk} = h^\alpha_{ijk} \omega^s.$$

Definition (see [5]). A symplectic surface in the symplectic space Sp_4 will be called parallel if $\nabla h^\alpha_{ij} = 0$.

From the equations (3.1) we see that the condition of parallelism is equivalent to

$$h^\alpha_{ij} = 0. \quad (3.3)$$

To establish the concept of a semi-parallel symplectic surface we write out the exterior differential for the expression (3.1):

$$\nabla h^\alpha_{ij} \wedge \omega^k = h^\beta_{ij} \Omega^\alpha_{\beta} - h^\gamma_{sj} \Omega^\alpha_{i} - h^\alpha_{is} \Omega^\gamma_j. \quad (3.4)$$

The formulae (2.7) and (2.8) were used here to substitute for $d\omega^s_i$ and $d\omega^s_j$.

Definition (see [5]). A symplectic surface in the symplectic space Sp_4 will be called semi-parallel if

$$h^\beta_{ij} \Omega^\alpha_{\beta} - h^\gamma_{sj} \Omega^\alpha_{i} - h^\alpha_{is} \Omega^\gamma_j = 0. \quad (3.5)$$
It is seen that every parallel symplectic surface is also semi-parallel. Indeed, using (3.3) in (3.2), we get $\nabla h_{ij}^\alpha = 0$, and the use of (3.4) gives (3.5). This indicates that it is useful to study the semi-parallel symplectic surfaces first and only thereafter the parallel symplectic surfaces.

So let us begin with semi-parallel symplectic surfaces. As we have divided the symplectic surfaces in the preceding into five classes A_1, \ldots, A_5, we need to consider the semi-parallel symplectic surfaces likewise in accordance with these classes. First of all we note that the condition (3.5) is by reason of (2.12) equivalent to

$$\begin{align*}
 h_{ij}^\theta R_{i\theta}^\gamma - h_{ij}^\gamma R_{i\theta}^\theta - h_{ij}^\theta R_{i\theta}^\gamma = 0.
\end{align*}$$

(3.6)

When writing this out in detail, we keep in mind that, for all the surface classes A_1, \ldots, A_5, the frame of the symplectic surface is assumed to be canonized so that $R_{1}^1 = R_2^2 = 0$ and $R_3^3 = R_4^4 = 0$ (see Table 1), and the equations (3.6) read

$$\begin{align*}
 h_1^4 R_2^4 - 2h_1^2 R_2^2 &= 0, & h_2^1 R_3^4 - 2h_1^4 R_2^1 &= 0, \\
 h_2^4 R_4^4 - h_2^2 R_2^2 - h_1^1 R_2^1 &= 0, & h_2^3 R_3^4 - h_1^2 R_2^1 - h_1^2 R_2^1 &= 0, \\
 h_2^2 R_3^3 - 2h_1^2 R_2^1 &= 0, & h_2^2 R_3^3 - h_2^2 R_2^1 &= 0.
\end{align*}$$

Using Table 1 we see that classes A_1, A_2 and A_3 do not contain semi-parallel symplectic surfaces, but every symplectic surface in the classes A_4 and A_5 is semi-parallel. To formulate these conclusions into a theorem, we note first that if the symplectic surface belongs to one of the classes A_1, A_2 or A_3, then its tangent connection is not flat, whereas the tangent connection of a symplectic surface of class A_4 or A_5 is flat.

Now we can summarize the above in the following theorem.

Theorem 1. A symplectic surface is semi-parallel if and only if its tangent connection ∇ is flat.

The final part of this section is devoted to a study of parallel symplectic surfaces of the symplectic space Sp_4. As a parallel symplectic surface is also semi-parallel, we may say that the classes A_1, A_2 and A_3 do not contain parallel symplectic surfaces. Parallel surfaces must therefore be sought from the classes A_4 and A_5. Now we must specify the symplectic frame. To this end we write out (2.4) in detail, taking into account the equalities (2.14). We have

$$\begin{align*}
 dh_1^3 - h_1^3 (2\omega_1^1 - \omega_3^3) - 2h_1^3 \omega_2^2 + h_1^4 \omega_4^3 &= h_1^3 \omega_1^1 + h_1^3 \omega_2^2, \\
 dh_1^3 - h_1^3 \omega_2^1 + h_1^3 \omega_3^3 - h_2^3 \omega_2^1 + h_4^3 \omega_4^3 &= h_1^3 \omega_1^1 + h_3^3 \omega_2^2, \\
 dh_2^3 + h_2^3 (2\omega_1^1 + \omega_3^3) - 2h_2^3 \omega_2^2 + h_2^3 \omega_4^3 &= h_1^3 \omega_1^1 + h_3^3 \omega_2^2.
\end{align*}$$

(3.7)
and
\[dh_{11}^4 - h_{11}^4 (2\omega_1^1 + \omega_3^1) - 2h_{12}^4 \omega_1^1 + h_{11}^2 \omega_3^1 = h_{11}^4 \omega_1^1 + h_{11}^2 \omega_3^1, \]
\[dh_{12}^4 - h_{11}^4 \omega_2^1 - h_{12}^4 \omega_3^1 - h_{12}^3 \omega_2^2 + h_{12}^2 \omega_3^2 = h_{11}^4 \omega_1^1 + h_{12}^2 \omega_2^1, \]
\[dh_{22}^4 + h_{12}^4 \omega_3^1 - 2h_{12}^4 \omega_3^2 + h_{22}^3 \omega_3^3 = h_{11}^4 \omega_1^1 + h_{22}^2 \omega_2^1. \]

(3.8)

Let us consider a symplectic surface of class \(\mathcal{A}_4 \). From Table 1 we get
\[h_{ij}^3 = 0, \quad h_{11}^4 h_{22}^4 - (h_{12}^4)^2 \neq 0. \]

(3.9)

Hence \(h_{11}^4 \) and \(h_{12}^4 \) and likewise \(h_{22}^4 \) and \(h_{22}^4 \) are not zero at the same time. With the help of the basis transformations which preserve the conditions (3.9) it is possible to achieve \(h_{11}^4 > 0 \). Indeed, from (2.6) it follows that the basis transformation
\[\overrightarrow{e}_1' = \overrightarrow{e}_2, \quad \overrightarrow{e}_2' = -\overrightarrow{e}_1, \quad \overrightarrow{e}_\alpha' = \overrightarrow{e}_\alpha \]
gives \(h_{11}^4 = h_{22}^4 \), hence we may confine attention to the case where \(h_{11}^4 \) and \(h_{12}^4 \) are not simultaneously zero. Let us suppose \(h_{11}^4 \neq 0 \). If \(h_{12}^4 = 0 \), then \(h_{22}^4 = 0 \) and \(h_{12}^4 \neq 0 \). With the help of the basis transformation
\[\overrightarrow{e}_1' = \overrightarrow{e}_1 + \overrightarrow{e}_2, \quad \overrightarrow{e}_2' = \overrightarrow{e}_2, \quad \overrightarrow{e}_\alpha' = \overrightarrow{e}_\alpha \]
we get from (2.6) that \(h_{11}^4 = 2h_{12}^4 \neq 0 \). To obtain \(h_{11}^4 > 0 \) we make the basis transformation
\[\overrightarrow{e}_i' = \overrightarrow{e}_i, \quad \overrightarrow{e}_\alpha' = -\overrightarrow{e}_\alpha \]
which gives \(h_{11}^4 = -h_{11}^4 \). From the equations (3.8) it now follows that, with the help of the 1-forms \(\omega_1^1 \), \(\omega_2^1 \) and \(\omega_3^1 \), it is possible to get \(h_{11}^4 = 1 \), \(h_{12}^4 = 0 \) and \(h_{22}^4 = \varepsilon \), where \(\varepsilon = \pm 1 \). Thus canonization has led to the following results:
\[h_{ij}^3 = 0, \quad h_{11}^4 = 1, \quad h_{12}^4 = 0, \quad h_{22}^4 = \varepsilon, \quad R_{33} = \varepsilon, \quad \varepsilon = \pm 1. \]

(3.10)

The forms \(\omega_i^2 \) and \(\omega_i^4 \) now appear as
\[\omega_1^2 = 0, \quad \omega_2^2 = 0, \quad \omega_3^4 = \omega_1^1, \quad \omega_4^4 = \varepsilon \omega_2^2, \]
\[\omega_1^4 = 0, \quad \omega_2^4 = 0, \quad \omega_3^4 = \omega_1^1, \quad \omega_4^4 = -\varepsilon \omega_2^2. \]

(3.11)

As to the remaining forms, by means of (3.7) and (3.8) with the use of (3.10), we may say that
\[\omega_1^1 = \frac{1}{2} (h_{11}^4 + \varepsilon h_{12}^4) \omega_1^1 + \frac{1}{2} (h_{11}^4 - \varepsilon h_{12}^4) \omega_2^2, \]
\[\omega_1^4 = -\varepsilon \omega_1^4 - \varepsilon h_{11}^4 \omega_1^1 - \varepsilon h_{12}^4 \omega_2^2, \]
\[\omega_3^3 = \frac{1}{2} (h_{11}^4 + \varepsilon h_{12}^4) \omega_3^3 + \frac{1}{2} (h_{11}^4 - \varepsilon h_{12}^4) \omega_2^2, \]
\[\omega_4^4 = 0. \]

(3.12)
The forms ω^1 and ω^2 are arbitrary. In addition we have $h_{111}^3 = h_{112}^3 = h_{122}^3 = h_{222}^3 = 0$.

Let us consider a symplectic surface of class A_3. From Table 1 we get

$$h_{ij}^4 = \lambda h_{ij}^3,$$ \hspace{1cm} (3.13)

and the conditions $R_{ij} = 0$ and $R_{\alpha\beta} = 0$ must also hold. From (2.15) it follows that the condition $R_{ij} = 0$ is an identity and thus does not restrict the functions h_{ij}^α. From the condition $R_{\alpha\beta} = 0$ we get for the functions h_{ij}^α the equation

$$R_{44} = 0 \iff \begin{vmatrix} h_{11}^3 & h_{12}^3 \\ h_{12}^3 & h_{22}^3 \end{vmatrix} = 0,$$ \hspace{1cm} (3.14)

because, with the help of (2.16), we see that

$$R_{33} = \lambda^2 R_{44}, \quad R_{34} = R_{43} = \lambda R_{44}.$$

If $\dim N \cdot M_2 = 1$, then we may assume, without loss of generality, that $h_{11}^3 \neq 0$. Here is the explanation. If $h_{11}^3 = 0$, but $h_{22}^3 \neq 0$, we select the basis transformation $\tilde{e}_1' = \tilde{e}_2$ and $\tilde{e}_2' = -\tilde{e}_1$. In this case, by reason of (2.6), $'h_{11}^\alpha = h_{12}^\alpha$, $'h_{22}^\alpha = h_{11}^\alpha$ and $'h_{12}^\alpha = -h_{22}^\alpha$, whence $'h_{11}^3 = h_{22}^3 \neq 0$. If $h_{11}^3 = 0$ and $h_{22}^3 = 0$, then $h_{12}^3 \neq 0$. Now we make a change of basis $\tilde{e}_1' = \tilde{e}_1 + \tilde{e}_2$ and $\tilde{e}_2' = \tilde{e}_1$. The equations (2.6) then give

$$'h_{11}^\alpha = h_{11}^\alpha + 2h_{12}^\alpha + h_{22}^\alpha, \quad 'h_{12}^\alpha = h_{12}^\alpha + h_{22}^\alpha, \quad 'h_{22}^\alpha = h_{22}^\alpha.$$

Hence, when $\alpha = 3$, we get $'h_{11}^3 = 2h_{12}^3 \neq 0$.

On account of this, (3.14) becomes

$$h_{12}^3 = \mu h_{11}^3, \quad h_{22}^3 = \mu h_{12}^3 = \mu^2 h_{11}^3,$$ \hspace{1cm} (3.15)

and due to the latter result the relation (3.13) now appears as

$$h_{11}^4 = \lambda h_{11}^3, \quad h_{12}^4 = \mu h_{11}^3, \quad h_{22}^4 = \lambda \mu h_{11}^3.$$ \hspace{1cm} (3.16)

It turns out that it is possible to choose such an adapted symplectic frame for which $\mu = 0$. Here is an explanation of the details. If $\mu \neq 0$ we transform the basis by $\tilde{e}_1' = -\tilde{e}_2$ and $\tilde{e}_2' = -\mu \tilde{e}_1 + \tilde{e}_2$. Then

$$'h_{11}^\alpha = h_{11}^\alpha, \quad 'h_{12}^\alpha = -\mu h_{11}^\alpha + h_{12}^\alpha, \quad 'h_{22}^\alpha = \mu^2 h_{11}^\alpha - 2\mu h_{12}^\alpha + h_{22}^\alpha,$$

and as $'h_{11}^3 = h_{11}^3$, the condition $'h_{11}^3 \neq 0$ remains intact. In addition we get from these equations

$$'h_{22}^3 = 0, \quad 'h_{12}^3 = 0, \quad 'h_{22}^3 = 0$$
as a result of which (3.15) and (3.16) show that \(\mu \) has become zero. Thus we have
\[
h_{11}^3 \neq 0, \quad h_{12}^3 = 0, \quad h_{22}^3 = 0, \quad h_{11}^4 = \lambda h_{11}^3, \quad h_{12}^4 = 0, \quad h_{22}^4 = 0. \tag{3.17}
\]

To complete the canonization we recall the differential equations (3.7) and (3.8). We obtain
\[
dh_{11}^3 + h_{11}^3(-2w_1^3 + \omega_3^3) + \lambda h_{11}^3\omega_4^3 = h_{111}^3\omega^1 + h_{112}^3\omega^2,
\]
\[
-h_{11}^3\omega_1^3 = h_{112}^3\omega^1 + h_{112}^3\omega^2,
\]
\[
0 = h_{122}^3\omega^1 + h_{222}^3\omega^2,
\]
\[
h_{11}^3d\lambda + \lambda dh_{11}^3 - \lambda h_{11}^3(2w_1^3 + \omega_3^3) + h_{11}^3\omega_4^3 = h_{111}^3\omega^1 + h_{112}^3\omega^2,
\]
\[
-\lambda h_{11}^3\omega_1^3 = h_{112}^3\omega^1 + h_{112}^3\omega^2,
\]
\[
0 = h_{122}^3\omega^1 + h_{222}^3\omega^2. \tag{3.18}
\]

From the first of these it is seen that, depending on the sign of \(h_{11}^3 \), we may replace \(h_{11}^3 \) by \(+1\) or \(-1\). Therefore \(h_{11}^3 = \varepsilon \), where \(\varepsilon = \pm 1 \). Furthermore, the fourth equation of the system (3.18) allows, with the help of the form \(\omega_4^3 \), to replace \(\lambda \) by zero.

In summary, we have obtained the following.

If \(\dim N_X M_2 = 1 \), then from (3.17)
\[
h_{11}^3 = \varepsilon, \quad h_{12}^3 = 0, \quad h_{22}^3 = 0, \quad h_{1j}^3 = 0.
\]

The forms \(\omega_i^\alpha \) and \(\omega_\alpha^i \) are given by
\[
\omega_1^3 = \varepsilon \omega^1, \quad \omega_2^3 = 0, \quad \omega_4^3 = 0, \quad \omega_2^4 = 0,
\]
\[
\omega_2^3 = -\varepsilon \omega^1, \quad \omega_4^3 = 0, \quad \omega_2^3 = 0, \quad \omega_3^3 = 0. \tag{3.19}
\]

The relations (3.18) give
\[
-2w_1^3 + \omega_3^3 = \varepsilon h_{111}^3\omega^1 + \varepsilon h_{112}^3\omega^2, \quad \omega_2^1 = -\varepsilon h_{112}^3\omega^1, \quad \omega_3^4 = \varepsilon h_{111}^3\omega^1. \tag{3.20}
\]

If \(\dim N_X M_2 = 0 \), then \(h_{ij}^\alpha = 0 \).

Let us find the differential equations of a parallel symplectic surface of class \(\mathcal{A}_4 \). These equations are given by the formulae of infinitesimal displacement of an adapted frame \(\{X; e_i^1, e_\alpha^j\} \) of the particular surface which must be reduced on account of the condition \(h_{ijk}^\alpha = 0 \). From the equations (3.12) we therefore obtain
\[
\omega_1^1 = 0, \quad \omega_2^2 = -\varepsilon \omega_3^3, \quad \omega_3^3 = 0, \quad \omega_4^3 = 0.
\]
Taking also into account (3.11), we find that the differential equations of a parallel symplectic surface are

$$\begin{align*}
d\vec{x} &= \omega^1 \vec{e}_1 + \omega^2 \vec{e}_2, \\
d\vec{e}_1 &= -\varepsilon \omega^2 \vec{e}_2 - \omega^3 \vec{e}_4, \\
d\vec{e}_2 &= \omega^2 \vec{e}_1 + \varepsilon \omega^3 \vec{e}_4, \\
d\vec{e}_3 &= -\varepsilon \omega^1 \vec{e}_1 + \omega^1 \vec{e}_2 + \omega^4 \vec{e}_4, \\
d\vec{e}_4 &= \vec{0}.
\end{align*}$$

It is seen that a parallel symplectic surface is located in a three-dimensional subspace of the symplectic space \(Sp_4\) whose direction space is the linear cover \(L(\vec{e}_1, \vec{e}_2, \vec{e}_4)\). Since \(d\vec{e}_4 = \vec{0}\), the subspace \(L(\vec{e}_1, \vec{e}_2, \vec{e}_4)\), in turn, contains the one-dimensional fixed subspace \(L(\vec{e}_4)\). So the differential equations of a parallel symplectic surface become

$$\begin{align*}
d\vec{x} &= \omega^1 \vec{e}_1 + \omega^2 \vec{e}_2, \\
d\vec{e}_1 &= -\varepsilon \omega^2 \vec{e}_2 + \omega^4 \vec{e}_4, \\
d\vec{e}_2 &= \omega^2 \vec{e}_1 + \varepsilon \omega^4 \vec{e}_4, \\
d\vec{e}_4 &= \vec{0},
\end{align*}$$

where we have used the relation \(\omega_1^2 + \varepsilon \omega_2^1 = 0\). The presence of the form \(\omega_1^2\) shows that, on the tangent plane \(X + L(\vec{e}_1, \vec{e}_2)\), it is permissible to effect a basis transformation \(\{\vec{e}_1\} \rightarrow \{\vec{e}_1'\}\) given by the equations

$$\begin{align*}
\vec{e}_1' &= (\cos \phi) \vec{e}_1 + (\sin \phi) \vec{e}_2, \\
\vec{e}_2' &= (\cos \phi) \vec{e}_1 + (\sin \phi) \vec{e}_2 \quad (\varepsilon = 1), \\
\vec{e}_1' &= (\cosh \phi) \vec{e}_1 + (\sinh \phi) \vec{e}_2, \\
\vec{e}_2' &= (\sinh \phi) \vec{e}_1 + (\cosh \phi) \vec{e}_2 \quad (\varepsilon = -1).
\end{align*}$$

(3.22)

Let us fix the position of the basis vectors \(\{\vec{e}_1\}\) at the point \(X\) of the symplectic surface. As in such case \(\omega_1^2 = \omega_1^1 = 0\), we get from the equations (3.21)

$$\begin{align*}
d\vec{x} &= \omega^1 \vec{e}_1 + \omega^2 \vec{e}_2, \\
\vec{e}_1 &= \omega^4 \vec{e}_4, \\
\vec{e}_2 &= \varepsilon \omega^4 \vec{e}_4, \\
\vec{e}_4 &= \vec{0}.
\end{align*}$$

(3.23)

These formulae retain their form for each position of the basis vectors \(\{\vec{e}_1\}\) which is admissible by the equations (3.22). Consequently the sections of the parallel symplectic surface with the planes \(x_4 = \text{const}\) are "circles" for \(\varepsilon = 1\) and "hyperbolae" for \(\varepsilon = -1\).

Now we may describe the structure of the parallel symplectic surface with the help of the coordinate lines \(\omega^3 = 0\) and \(\omega^1 = 0\) on it.

For the coordinate line \(\omega^2 = 0\) we have \(d\omega^1 = 0\) whence \(\omega^1\) is the total differential, i.e. \(\omega^1 = dt\). From the formulae (3.23) the differential equations of this coordinate line are

$$\begin{align*}
\frac{d\vec{x}}{dt} &= \vec{e}_1, \\
\frac{d\vec{e}_1}{dt} &= \vec{e}_4, \\
\frac{d\vec{e}_2}{dt} &= \varepsilon \omega^4 \vec{e}_4, \\
\frac{d\vec{e}_4}{dt} &= \vec{0},
\end{align*}$$

from which we get

$$\begin{align*}
\vec{e}_4 &= \vec{e}_4^{(0)}, \\
\vec{e}_1 &= t \vec{e}_4^{(0)} + \vec{e}_1^{(0)}, \\
\vec{x} &= \frac{1}{2} t^2 \vec{e}_4^{(0)} + t \vec{e}_1^{(0)}.
\end{align*}$$
We see that the coordinate line is a parabola with axis \(X_0 + L(\vec{e}_4^{(0)}) \), where \(X = X_0 \) is the point on the parallel symplectic surface from which we begin drawing the coordinate line (parabola) \(\omega^2 = 0 \), and \(\vec{e}_1^{(0)}, \vec{e}_4^{(0)} \) are the basis vectors \(\vec{e}_1, \vec{e}_4 \) fixed at the point \(X_0 \). Here, of course, the vector \(\vec{e}_4 \) is invariant at all points of the symplectic surface, seeing that \(d\vec{e}_4 = 0 \).

For the coordinate line \(\omega^1 = 0 \) we have \(d\omega^2 = 0 \), i.e. \(\omega^2 = dt \). From the formulae (3.23) the differential equations of this coordinate line are

\[
\frac{d\vec{x}}{dt} = \vec{e}_2, \quad \frac{d\vec{e}_2}{dt} = \varepsilon \vec{e}_4, \quad \frac{d\vec{e}_4}{dt} = \vec{0},
\]

from which we get

\[
\vec{e}_4 = \vec{e}_4^{(0)}, \quad \vec{e}_2 = \varepsilon t \vec{e}_4^{(0)} + \vec{e}_2^{(0)}, \quad \vec{x} = 2^{-1} \varepsilon t^2 \vec{e}_4^{(0)} + t \vec{e}_2^{(0)}.
\]

We see that the coordinate line is a parabola with axis \(X_0 + L(\vec{e}_4^{(0)}) \). Summing up, we may say that the parallel symplectic surface is an elliptic paraboloid for \(\varepsilon = 1 \) and a hyperbolic paraboloid for \(\varepsilon = -1 \).

Let us next find the differential equations for a parallel symplectic surface of class \(A_5 \). As the canization of the frame in this class leads to two distinct cases, we must consider both of them.

In the first case we must reduce the formulae (3.20) in view of the condition \(h^i_{jk} = 0 \). We get \(\omega^2 = 2\omega^1 \), \(\omega^1 = 0 \) and \(\omega^3 = 0 \). Taking also into account (3.19), we find the differential equations of the parallel symplectic surface to be

\[
\frac{d\vec{x}}{dt} = \omega^1 \vec{e}_1 + \omega^2 \vec{e}_2, \quad \frac{d\vec{e}_1}{dt} = \omega^1 \vec{e}_1 + \omega^2 \vec{e}_2 + \varepsilon \omega^3 \vec{e}_3, \quad \frac{d\vec{e}_2}{dt} = -\omega^1 \vec{e}_2, \quad \frac{d\vec{e}_3}{dt} = 2\omega^1 \vec{e}_3.
\]

The equation \(d\vec{e}_4 = -\varepsilon \omega^1 \vec{e}_1 + \omega^2 \vec{e}_2 - 2\omega^1 \vec{e}_3 \) is superfluous because the symplectic surface is located in a three-dimensional subspace of \(Sp_4 \), as can be seen from the equations (3.24). Its direction space is \(L(\vec{e}_1, \vec{e}_2, \vec{e}_3) \). In this subspace there are two one-dimensional fixed subspaces \(L(\vec{e}_2) \) and \(L(\vec{e}_3) \). Consequently at each point \(X \) of the parallel symplectic surface there are determined a pair of straight lines \(X + L(\vec{e}_3) \) and \(X + L(\vec{e}_2) \). If the point \(X \) is now allowed to vary on the parallel symplectic surface, we get two families \(\{ X + L(\vec{e}_3) \} \cap M_2 \} \text{ and } \{ X + L(\vec{e}_2) \} \cap M_2 \} \) of parallel straight lines. Every straight line \(X + L(\vec{e}_2) \) belongs to the tangent plane \(T_X(M_2) \) and, furthermore, also to the symplectic surface for every \(X \in M_2 \). Hence a parallel symplectic surface is in this case a cylindrical symplectic surface the direction of whose generators is determined by the vector \(\vec{e}_2 \). The expression for \(d\vec{e}_2 \) shows that the cylinder is parabolic.
In the second case we have the condition \(h_{ij}^\alpha = 0 \). The equations (3.1) then give \(h_{ij}^\alpha = 0 \). So there exist parallel symplectic surfaces. The differential equations of symplectic surfaces

\[
d^\alpha = \omega^\alpha, \quad d\epsilon^i _i = \omega^i _i
\]

show that that each symplectic surface is a plane.

We sum up these results in the following theorem.

Theorem 2. A parallel symplectic surface \(M_2 \) in the symplectic space \(S_4 \) is an elliptic paraboloid, a hyperbolic paraboloid or a parabolic cylinder of a three-dimensional space or else a symplectic plane.

Finally it is natural to investigate whether the classes \(A_4 \) and \(A_5 \) of semi-parallel symplectic surfaces include some non-parallel symplectic surfaces.

A semi-parallel symplectic surface is not parallel if in the equations (3.12) the functions \(h_{111}, h_{112}, h_{122} \) and \(h_{222} \) are not simultaneously zero. It will be demonstrated that this is possible and hence a non-parallel symplectic surface exists. For this purpose we use the notation and methods presented in book [3].

We have to find the Cartan number \(Q \), which is expressed in terms of "characters" as

\[
Q = s_1 + 2s_2 + \ldots + ns_n,
\]

where \(n \) is the dimension of the manifold sought for; in our case it equals two. Thus

\[
Q = s_1 + 2s_2.
\]

As the characters satisfy the inequality \(s_n < s_{n-1} < \ldots < s_1 \), we have \(s_2 < s_1 \). It is known that \(q = s_1 + s_2 \), where \(q \) is the number of independent exterior differentials \(d\omega^\alpha \) of the left sides of the equations \(\omega^\alpha = 0 \) of a symplectic surface \(M_2 \),

\[
d\omega^\alpha \leftrightarrow \omega^i _i \leftrightarrow \omega^3 _i \leftrightarrow \omega^3 _3 \leftrightarrow \omega^4 _3 \leftrightarrow \omega^4 _3 \leftrightarrow \omega^1 _3 \leftrightarrow \omega^1 _3 \leftrightarrow \omega^2 _3 \leftrightarrow \omega^2 _3.
\]

We see that \(q = 2 \), and so \(s_1 + s_2 = 2 \). The character \(s_1 \) is the rank of the new system of forms \(\{ \omega_3 ^3, \omega_3 ^4, \omega_4 ^4, \omega_4 ^2 \} \) in equation (3.25); consequently (3.12) yields \(s_1 = 2 \), \(s_2 = 0 \) and the Cartan number \(Q = 2 \).

In the end, we need the number of nonzero coefficients \(N \) in the expressions of the forms \(\{ \omega_3 ^3, \omega_3 ^4, \omega_4 ^4, \omega_4 ^2 \} \). From the equations (3.12) we conclude that these coefficients are 1 and \(\varepsilon \), hence \(N = 2 \). In the case where \(N = Q = 2 \), a semi-parallel symplectic surface exists for arbitrary choice of any pair of the functions \(h_{111}, h_{112}, h_{122} \) and \(h_{222} \). Hence in the case of symplectic surface \(M_2 \in A_4 \) a semi-parallel symplectic surface exists which is not parallel.
Let us consider the analogous problem of a semi-parallel symplectic surface $M_2 \in \mathcal{A}_5$. This surface may be non-parallel if $\dim N_X(M_2) = 1$. Again the existence of a symplectic surface does not depend on the choice of the functions h_{11}^3 and h_{12}^3 in the equations (3.20). As here also $n = 2$, we have two characters s_1 and s_2. The relations (3.25) contain only a single significant equation ($q = 1$), seeing that for this class $h_{12}^4 = 0$, that is $\omega_1^4 = 0$ and $\omega_2^4 = 0$. From the equations (3.10) we get $s_1 = 1$, consequently $s_2 = 0$. In this case $N = Q = 1$ and semi-parallel symplectic surfaces exist. Therefore a semi-parallel symplectic surface exists which is not parallel.

Theorem 3. In the symplectic space Sp_4 semi-parallel symplectic surfaces exist which are not parallel.

Acknowledgement

The author is grateful to the referee for useful remarks.

References

Institute of Pure Mathematics, University of Tartu, 50090 Tartu, Estonia

E-mail address: sparring@math.ut.ee