Õpilaste kaasamine STEM-haridusse

Joseph Krajcik, İbrahim Delen

Abstract


Artiklis käsitletakse STEM-õpikeskkonna arendamise võimalusi ning STEMi rakendamist põhi- ja keskkooliastmes, keskendudes järgmisele küsimusele: kuidas aidata õpilastel omandada põhjalikke ja integreeritud STEM-valdkonna teadmisi, et neil oleks praktilised teadmised ja probleemilahendusoskused, mis aitaks neil maailmas hakkama saada ja seda paremaks muuta? Lisaks tutvustatakse STEMõppeks sobiva keskkonna hindamise kriteeriume ning käsitletakse probleeme, millega õpetajatel tuleb STEM-ainete õpetamisel kokku puutuda. Meie määratluse järgi on STEM loodusteaduste, tehnoloogia, inseneriteaduse ja matemaatika ühendamine eesmärgiga lahendada pakilisi isiklikke ja ühiskondlikke probleeme. Õpilaste kaasamine STEM-valdkonda tähendab nende kaasamist disainiprotsessi. STEM-maailmas on disain õpilaste mõttemaailma lahutamatu osa. Disainiprotsess on mittelineaarne ja oma olemuselt korduv, kuid nõuab disainiprobleemi kindlaksmääramist ja selget sõnastamist, probleemi kohta juba teada oleva teabe uurimist, võimalike lahenduste pakkumist, prototüüpide (tehisesemete) väljatöötamist, et lahendusi demonstreerida, ning tagasiside jagamist ja saamist. Disainile keskenduva STEM-hariduse kaudu on võimalik toetada õpilasi suurte loodus- ja inseneriteaduslike ideede ning oluliste praktiliste loodus- ja inseneriteaduslike teadmiste omandamisel. Samuti võimaldab STEM-haridus motiveerida õpilasi, et neil tekiks omanikutunne ning vajadus oma ideid tutvustada ja tulemuslikult tegutseda. Enamgi veel, STEM-õpikeskkonda kaasatud õpilased saavad arendada selliseid 21. sajandil vajalikke oskusi nagu probleemilahendus- ja suhtlemisoskus ning koostöövõime.

 Full text


Keywords


STEM-haridus, disainipõhine haridus, õpikeskkond, integreeritud teadmised, praktilised loodus- ja inseneriteaduslikud oskused, suured loodus- ja inseneriteaduslikud ideed

Full Text:

PDF

References


American Association for the Advancement of Science (1989). Science for all Americans. Washington. Retrieved from http://www.project2061.org/publications/sfaa/online/sfaatoc.htm.

Carey, B. (2016, April). Chip, implanted in brain, helps paralyzed man regain control of hand. The New York Times. Retrieved from http://www.nytimes.com/2016/04/14/health/paralysis-limb-reanimation-brain-chip.html?_r=0.

Corcoran, T. B., Mosher, F. A., & Rogat, A. (2009). Learning progressions in science: An evidence-based approach to reform (CPRE Report). New York: Columbia University.

Damelin, D., Krajcik, J., McIntyre, C., & Bielik, T. (2017). Students making system models: An accessible approach. Science Scope, 40(5), 78–82. https://doi.org/10.2505/4/ss17_040_05_78

Delen, I., & Krajcik, J. (2016). Using mobile devices to connect teachers and museum educators. Research in Science Education, 1–24. https://doi.org/10.1007/s11165-015-9512-8

Duncan, R., Krajcik, J., & Ravit, A. (2016). Disciplinary core ideas: Reshaping teaching and learning. Arlington: National Science Teachers Association Press.

Fortus, D., Dershimer, C. R., Krajcik, J., Marx, R. W, & Mamlok-Naaman, R. (2004). Design-based science and student learning. Journal of Research in Science Teaching, 41(10), 1081–1110. https://doi.org/10.1002/tea.20040

Fortus, D., & Krajcik, J. (2015). Engineering in IQWST. In C. Sneider (Ed.), The go-to guide for engineering curricula grades 6-8: Choosing and using the best instructional materials for your student. Thousand Oaks: Corwin Press.

Greeno, J. G., & Engestrom, Y. (2014). Learning in activity. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (2nd ed., pp. 128–147). New York: Cambridge University Press.

Hurriyet Daily News (2017). Puppy stuck in well rescued after 10 days in Istanbul. Retrieved from http://www.hurriyetdailynews.com/puppy-stuck-in-well-rescued-after-10-days-in-istanbul.aspx?pageID=238&nID=109770&NewsCatID=378.

Kesidou, S., & Roseman, J. E. (2002). How well do middle school science programs measure up? Findings from Project 2061’s curriculum review. Journal of Research in Science Teaching, 39(6), 522‒549. https://doi.org/10.1002/tea.10035

Klager, C., Schneider, B., Krajcik, J. S., Lavonen, J., & Salmela-Aro, K. (2017). Creativity in a project-based physics and chemistry intervention. Paper presented at the annual meeting of NARST, April, 2017, San Antonio, Texas.

Krajcik, J. S., & Czerniak, C. (2013). Teaching science in elementary and middle school classrooms: A project-based approach (4th ed.). London: Routledge.

Krajcik, J., & Delen, I. (2017). How to support students in developing usable and lasting knowledge of STEM. International Journal of Education in Mathematics, Science and Technology, 5(1), 21–28. https://doi.org/10.18404/ijemst.16863

Krajcik, J. S., & Shin, N. (2014). Project-based learning. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (2nd ed., pp. 275–297). New York: Cambridge University Press.

National Research Council (2007). Taking science to school: Learning and teaching science in grades K-8. Washington: The National Academies Press.

National Research Council (2011a). Successful K-12 STEM Education: Identifying Effective Approaches in Science, Technology, Engineering, and Mathematics. Washington: The National Academies Press.

National Research Council (2011b). Learning science through computer games and simulations. Washington: The National Academies Press.

National Research Council (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington: The National Academies Press.

National Research Council (2013). Monitoring progress toward successful K-12 STEM education: A nation advancing? Washington: The National Academies Press.

National Research Council (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. Washington: The National Academies Press.

National Science Foundation (2016, December). NSF awards $61 million in new projects to enhance understanding of STEM education and workforce development. Retrieved from https://www.nsf.gov/news/news_summ.jsp?cntn_id=190509.

Novak, A., & Krajcik, J. S. (2005). Using learning technologies to support inquiry in middle school science. In L. B. Flick & N. G. Lederman (Eds.), Scientific inquiry and nature of science: Implications for teaching, learning, and teacher education. Dordrecht: Kluwer Academic Publishers.

Osborne, J. F., & Dillon, J. (2008). Science education in Europe: Critical reflections. A Report to the Nuffield Foundation. Retrieved from http://www.nuffieldfoundation.org/sites/default/files/Sci_Ed_in_Europe_Report_Final.pdf.

Roseman, J. E., Stern, L., & Koppal, M. (2010). A method of analyzing the coherence of high school biology textbooks. Journal of Research in Science Teaching, 47(1), 47–70. https://doi.org/10.1002/tea.20305

Sadler, P. M., Coyle, H. P., & Schwartz, M. (2000). Engineering competitions in the middle school classroom: Key elements in developing effective design challenges. The Journal of the Learning Sciences, 9(3), 299–327. https://doi.org/10.1207/S15327809JLS0903_3

Sanders, M. (2009). STEM, STEM education, STEM mania. The Technology Teacher, 68(4), 20–26.

Sawyer, R. K. (Ed.) (2014). The Cambridge handbook of the learning sciences (2nd ed.). New York: Cambridge University Press.

Schwarz, C., Passmore, C., & Reiser, B. J. (Eds.) (2016). Helping students make sense of the world using next generation science and engineering practices. Arlington: National Science Teachers Association Press.

Songer, N. B. (2007). Digital resources or cognitive tools: A discussion of learning science with technology. In S. Abell & N. Lederman (Eds.), Handbook of research on science education (pp. 471–491). Mahwah: Erlbaum.

Stevens, S., Sutherland, L., & Krajcik, J. S. (2009). The big ideas of nanoscale science and engineering: A guidebook for secondary teachers. Arlington: National Science Teachers Association Press.

U.S. Department of Education Office for Civil Rights (2014). Civil rights data collection. Data snapshot: College and career readiness. Retrieved from https://www2.ed.gov/about/offices/list/ocr/docs/crdc-college-and-career-readiness-snapshot.pdf.

Vedder-Weiss, D., & Fortus, D. (2012). Adolescents’ declining motivation to learn science: A follow-up study. Journal of Research in Science Teaching, 49(9), 1057–1095. https://doi.org/10.1002/tea.21049




DOI: https://doi.org/10.12697/eha.2017.5.1.02a

Refbacks

  • There are currently no refbacks.




ISSN: 2346-562X

Journal DOI: http://dx.doi.org/10.12697/issn2346-562X

http://www.eha.ut.ee