10. ja 11. klassi õpilaste bioloogia-alase kirjaoskuse kognitiivsete komponentide hindamine

Aveliis Post, Helin Semilarski, Anne Laius

Abstract


Eesti põhikooli õpilaste loodusainete tulemused on PISA 2015 andmetel maailmas tipptasemel, kuid need ei kajastu gümnaasiumilõpetajatest kõrgkooli sisseastujate tasemes. Samas on ühiskonnas vajadus noorte järele, kes kasutavad loodusteaduslikke teadmisi probleemide lahendamiseks ning igapäevaeluliste otsuste tegemiseks ja põhjendamiseks. Uurimuse eesmärk on mõõta interdistsiplinaarse kontekstipõhise instrumendi abil 10. ja 11. klassi õpilaste bioloogia-alast kirjaoskust, võttes aluseks neli uuringuks välja valitud kognitiivset komponenti, et saada ülevaade gümnaasiumiõpilaste bioloogia-alase kirjaoskuse tähtsaimate kognitiivsete komponentide hetkeolukorrast. Tulemused näitavad, et kolm mõõdetud kognitiivset komponenti (probleemide lahendamise oskus, otsuse tegemise ja põhjendamise oskus ning loodusteadusliku loova mõtlemise voolavus) on keskmisel või madalal saavutustasemel ning üks komponent (bioloogia-alaste teadmiste reprodutseerimine) kõrgel saavutustasemel. Uuringu tulemusena selgub, et õpilaste bioloogiaalase kirjaoskuse kognitiivsetes komponentides esineb soolisi erinevusi nii 10. kui ka 11. klassi õpilastel, kuid tüdrukute natuke paremad tulemused kõikide ülesannete lahendamisel ei ole statistiliselt ega ka sisuliselt olulised. Uuring näitab, et gümnaasiumiõpilastel on bioloogiahariduses vaja rohkem tähelepanu pöörata probleemide lahendamise, otsuste tegemise ja põhjendamise oskuste ning loovuse arendamisele.

 Summary


Keywords


bioloogia-alane kirjaoskus, kontekstipõhine hindamine, gümnaasiumiõpilased

Full Text:

PDF

References


Basadur, M., Gelade, G., & Basadur, T. (2014). Creative problem-solving process styles, cognitive work demands, and organizational adaptability. The Journal of Applied Behavioral Science, 50(1), 80–115. https://doi.org/10.1177/0021886313508433

Batey, M., Chamorro-Premuzic, T., & Furnham, A. (2009). Intelligence and personality as predictors of divergent thinking: The role of general, fluid and crystallised intelligence. Thinking Skills and Creativity, 4(1), 60–69. https://doi.org/10.1016/j.tsc.2009.01.002

Beier, Y. (2014). The collaborative advantage. The rewards of a collaborative culture are significant, but so is the effort to get there. Communication World, 33(1), 22–25.

Brown, B. A., Reveles, J. M., & Kelly, G. J. (2005). Scientific literacy and discursive identity: A theoretical framework for understanding science learning. Science Education, 89(5), 779–802. https://doi.org/10.1002/sce.20069

Bybee, R. W., & Fuchs, B. (2006). Preparing the 21st century workforce: A new reform in science and technology education. Journal of Research in Science Teaching, 43(4), 349–352. https://doi.org/10.1002/tea.20147

Cliff, W. H., & Curtin, L. N. (2000). The directed case method: Teaching concept and process in a content-rich course. Journal of College Science Teaching, 30(1), 64–66.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Lawrence Erlbaum Associates.

Csikszentmihalyi, M. (1996). Creativity: Flow and the psychology of discovery and invention. New York: Harper Collins.

Demastes, S., & Wandersee, J. H. (1992). Biological literacy in a college biology classroom. BioScience, 42(1), 63–65. https://doi.org/10.2307/1311631

Demir, S., & Şahin, F. (2014). Assessment of open-ended questions directed to prospective science teachers in terms of scientific creativity. Procedia – Social and Behavioral Sciences, 152, 692–697. https://doi.org/10.1016/j.sbspro.2014.09.264

Eastwood, J. L., Sadler, T. D., Sherwood, R. D., & Schlegel, W. M. (2013). Students’ participation in an interdisciplinary, socio-scientific issues based undergraduate human biology major and their understanding of scientific inquiry. Research in Science Education, 43(3), 1051–1078. https://doi.org/10.1007/s11165-012-9298-x

European Commission (2010). Special Eurobarometer 340: Science and technology. Retrieved from http://ec.europa.eu/public_opinion/archives/ebs/ebs_340_en.pdf.

Fensham, P. J. (2004). Increasing the relevance of science and technology education for all students in the 21st century. Science Education International, 15(1), 7–26.

Furnham, A., Batey, M., Booth, T. W., Patel, V., & Lozinskaya, D. (2011). Individual difference predictors of creativity in Art and Science. Thinking Skills and Creativity, 6(2), 114–121. https://doi.org/10.1016/j.tsc.2011.01.006

Greiff, S., & Neubert, J. C. (2014). On the relation of complex problem solving, personality, fluid intelligence, and academic achievement. Learning and Individual Differences, 36, 37–48. https://doi.org/10.1016/j.lindif.2014.08.003

Griffin, P., McGaw, B., & Care, E. (Eds.) (2012). Assessment and teaching of 21st century skills. Dordrecht: Springer.

Gümnaasiumi riiklik õppekava (2011). Riigi Teataja I, 29.08.2014, 21. Külastatud aadressil https://www.riigiteataja.ee/akt/129082014021.

Gürses, A., Açıkyıldız, M., Doğar, Ç., & Sözbilir, M. (2007). An investigation into the effectiveness of problem-based learning at physical chemistry laboratory. Research in Science & Technological Education, 25(1), 99–113. https://doi.org/10.1080/02635140601053641

Happonen, P., Holopainen, M., Sariola, H., Sotkas, P., Tenhunen, A., Tihtarinen-Ulmanen, M., … & Sepp, T. (2013). Bioloogia õpik gümnaasiumile, IV kursus. Evolutsioon. Ökoloogia. Keskkonnakaitse. Tallinn: Avita.

Heller, K. A. (2007). Scientific ability and creativity. High Ability Studies, 18(2), 209–234. https://doi.org/10.1080/13598130701709541

Holbrook, J. (2014). A context-based approach to science teaching. Journal of Baltic Science Education, 13(2), 152–154.

Ida-Tallinna Keskhaigla (2009). Laktoositalumatus. Külastatud aadressil http://www.itk.ee/upload/files/Patsiendi-infomaterjal/ITK528_Laktoositalumatus.pdf.

Johnson, B., & Christensen, L. (2000). Educational research: Quantitative and qualitative approaches. Boston: Allyn & Bacon.

Kahan, D. M., Peters, E., Wittlin, M., Slovic, P., Ouellette, L. L., Braman, D., & Mandel, G. (2012). The polarizing impact of science literacy and numeracy on perceived climate change risks. Nature Climate Change, 2, 732–735. https://doi.org/10.1038/nclimate1547

Kim, M. K., Roh, I. S., & Cho, M. K. (2016). Creativity of gifted students in an integrated math-science instruction. Thinking Skills and Creativity, 19, 38–48. https://doi.org/10.1016/j.tsc.2015.07.004

Kokassaar, U., Martin, M., & Relve, K. (2013). Bioloogia õpik 9. klassile, II osa. Tallinn: Avita.

Kokassaar, U., & Relve, K. (2013). Bioloogia õpik 9. klassile, I osa. Tallinn: Avita.

Kübarsepp, J. (2006). Üldhariduskool kõrgkooli pilguga. Haridus, 9–10, 33–36.

Laius, A., Post, A., & Rannikmäe, M. (2015a). Identifying Estonian stakeholder views as the bases for designing science teachers’ in-service course which support promotion of competence based curriculum goals. Science Education International, 26(1), 62–71.

Laius, A., Post, A., & Rannikmäe, M. (2016). Determining support of Estonian stakeholders for a new competence-based science education curriculum. International Journal of Education and Information Technologies, 10, 14–24.

Laius, A., Valdmann, A., & Rannikmäe, M. (2015b). A comparison of transferable skills development in Estonian school biology at gymnasium level. Procedia – Social and Behavioral Sciences, 177, 320–324. https://doi.org/10.1016/j.sbspro.2015.02.349

Lavonen, J., Gedrovics, J., Byman, R., Meisalo, V., Juuti, K., & Uitto, A. (2008). Students’ motivational orientations and career choice in science and technology: A comparative investigation in Finland and Latvia. Journal of Baltic Science Education, 7(2), 86–102.

Lember, M., Torniainen, S., Kull, M., Saadla, P., Rajasalu, T., Lepiksoo, M., & Järvelä, I. (2007). Pärilik primaarne hüpolaktaasia – genotüübid ja nende seos piimatalumatusega. Eesti Arst, 86(6), 383–386.

Lile, R., & Bran, C. (2014). The assessment of learning outcomes. Procedia – Social and Behavioral Sciences, 163, 125–131. https://doi.org/10.1016/j.sbspro.2014.12.297

Loewenthal, K. M. (2004). An introduction to psychological tests and scales (2nd ed.). Hove: Psychology Press.

Majandus- ja Kommunikatsiooniministeerium (2013). Eesti ettevõtluse kasvustrateegia 2014–2020. Külastatud aadressil http://kasvustrateegia.mkm.ee/.

Martin, M., Toom, M., & Kokassaar, U. (2002). Bioloogia põhikoolile II. Tallinn: Avita.

Mumford, M. D., Hester, K. S., & Robledo, I. C. (2010). Scientific creativity: Idealism versus pragmatism. Gifted and Talented International, 25(1), 59–64. https://doi.org/10.1080/15332276.2010.11673550

OECD (2014). PISA 2012 results: Creative problem solving: Student’s skills in tackling real-life problems (Vol. 5). Paris: OECD.

OECD (2016). PISA 2015 results: Excellence and equity in education (Vol. 1). Paris: OECD Publishing.

Papadouris, N., & Constantinou, C. P. (2010). Approaches employed by sixth-graders to compare rival solutions in socio-scientific decision-making tasks. Learning and Instruction, 20(3), 225–238. https://doi.org/10.1016/j.learninstruc.2009.02.022

PISA 2006 Eesti tulemused (2008). Tartu: Haridus- ja Teadusministeerium. Külastatud aadressil https://www.hm.ee/sites/default/files/pisa_2006_esti_tulemused.pdf.

PISA 2015 Eesti tulemused: Eesti 15-aastaste õpilaste teadmised ja oskused matemaatikas, funktsionaalses lugemises ja loodusteadustes (2016). Tallinn: Innove. Külastatud aadressil https://www.hm.ee/sites/default/files/pisa_2015_final_veebivaatamiseks_0.pdf.

Post, A., Rannikmäe, M., & Holbrook, J. (2011). Stakeholder views on attributes of scientific literacy important for future citizens and employees – a Delphi study. Science Education International, 22(3), 202–217.

Quinn, H., Schweingruber, H., & Keller, T. (Eds.) (2011). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington: Committee on Conceptual Framework for the New K-12 Science Education Standards; National Research Council.

Ravenscroft, A., Lindstaedt, S., Kloos, C. D., & Hernández-Leo, D. (Eds.) (2012). 21st century learning for 21st century skills. 7th European Conference on Technology Enhanced Learning, EC-TEL2012 Saarbrücken, Germany, September 2012, Proceedings. https://doi.org/10.1007/978-3-642-33263-0

Relve, K., Kirk, A., Tuvikene, A., Pappel, P., Hain, E., Mägi, E., … & Kollist, Ü. (2011). Bioloogia 7. klassile. Tallinn: Avita.

Relve, K., Kokassaar, U., Martin, M., Vanatoa, A., Rammul, Ü., Rammul, I., … & Kollist, Ü. (2012). Bioloogia õpik 8. klassile, II osa. Tallinn: Avita.

Sadler, T. D., & Zeidler, D. L. (2005). The significance of content knowledge for informal reasoning regarding socioscientific issues: Applying genetics knowledge to genetic engineering issues. Science Education, 89(1), 71–93. https://doi.org/10.1002/sce.20023

Sarapuu, T. (2003). Bioloogia gümnaasiumile. I osa. Tartu: Eesti Loodusfoto.

Sarapuu, T., Viikmaa, M., & Puura, I. (2006). Bioloogia gümnaasiumile. II osa 4. kursus. Tartu: Eesti Loodusfoto.

Schleicher, A. (2014). A plan for education. OECD Forum. Retrieved from http://www.oecd.org/education/a-plan-for-education.htm.

Şenocak, E., Taşkesenligil, Y., & Sözbilir, M. (2007). A study on teaching gases to prospective primary science teachers through problem-based learning. Research in Science Education, 37(3), 279–290. https://doi.org/10.1007/s11165-006-9026-5

Soobard, R., & Rannikmäe, M. (2014). Upper secondary students’ self-perceptions of both their competence in problem solving, decision making and reasoning within science subjects and their future careers. Journal of Baltic Science Education, 13(4), 544–558.

Steffen, B., & Hößle, C. (2016). Assessing students’ performances in decision-making: Coping strategies of biology teachers. Journal of Biological Education, 51(1), 44–51. https://doi.org/10.1080/00219266.2016.1156012

Sternberg, R. J., Kaufman, J. C., & Pretz, J. E. (2002). The creativity conundrum: A propulsion model of kinds of creative contributions. New York: Psychology Press.

Tehnunen, A., Hain, E., Venäläinen, J., Tihtarinen-Ulmanen, M., Holopainen, M., Sotkas, P., … & Tsaro, K. (2012). Bioloogia gümnaasiumile, II. Tallinn: Avita.

Teichmann, M., & Kübarsepp, J. (2008). Students’ preparation for, and coping with, tertiary level science and engineering education. In J. Holbrook, M. Rannikmäe, P. Reiska, & P. Ilsley (Eds.), The need for a paradigm shift in science education for post-Soviet societies (pp. 184–198). Frankfurt am Main: Peter Lang.

Tenson, T., Kaldalu, N., Tehnunen, A., Hain, E., Venäläinen, J., Tihtarinen-Ulmanen, M., … & Happonen, P. (2013). Bioloogia gümnaasiumile, III. Tallinn: Avita.

Tervise Arengu Instituut (2016). Laktoositalumatus. Külastatud aadressil http://toitumine.ee/toitumine-ja-haigused/toidutalumatus/laktoositalumatus.

Toom, M., Tedersoo, L., & Relve, K. (2012). Bioloogia 8. klassile. 1. osa. Tallinn: Avita.

Tsakanikos, E., & Claridge, G. (2005). Less words, more words: Psychometric schizotypy and verbal fluency. Personality and Individual Differences, 39(4), 705–713. https://doi.org/10.1016/j.paid.2005.02.019

Uno, G. E., & Bybee, R. W. (1994). Understanding the dimensions of biological literacy. BioScience, 44(8), 553–557. https://doi.org/10.2307/1312283

Usta, E., & Akkanat, Ç. (2015). Investigating scientific creativity level of seventh grade students. Procedia – Social and Behavioral Sciences, 191, 1408–1415. https://doi.org/10.1016/j.sbspro.2015.04.643

Venäläinen, J., Tenhunen, A., Hain, E., Tihtarinen-Ulmanen, M., Sotkas, P., Happonen, P., & Holopainen, M. (2012). Bioloogia õpik gümnaasiumile, 1. kursus. Bioloogia kui teadus. Organismid. Rakuõpetus. Tallinn: Avita.




DOI: https://doi.org/10.12697/eha.2017.5.1.07

Refbacks

  • There are currently no refbacks.




ISSN: 2346-562X

Journal DOI: http://dx.doi.org/10.12697/issn2346-562X

http://www.eha.ut.ee