Diversity of lichens and allied fungi on Norway spruce (*Picea abies*) in the middle boreal forests of Republic of Karelia (Russia)

Vera I. Androsova¹, Viktoria N. Tarasova¹ & Vadim V. Gorshkov²,³

¹Department of Botany and Plant Physiology, Petrozavodsk State University, 33 Lenin St., 185910 Petrozavodsk, Russia. E-mails: vera.androsova28@gmail.com, tarasova1873@gmail.com
²Komarov Botanical Institute RAS, 2 Popov St., 197376 St. Petersburg, Russia. E-mail: vadim-v-gorshkov@ya.ru
³Department of General Ecology, Anatomy and Physiology of Plants, St. Petersburg State Forest Technical University, Institutsky per. 5, 194021, St. Petersburg, Russia

Abstract: A detailed study of lichen diversity and estimation of epiphytic lichen cover characteristics on spruce as a key ecosystem component was performed in boreal forests of Karelia (NW Russia). The aims of the present paper are: (1) to study lichen diversity on Norway spruce in the middle boreal forests of southern Karelia (NW Russia), and (2) to estimate the main characteristics of epiphytic lichen cover on spruce trunks and branches. In total, 158 species of lichens and allied fungi were found on spruce, including 108 species on trunks, 78 on branches and 55 on snags. Seventeen species are listed in the Red Data Book of Republic of Karelia. Ten species are new for the biogeographical province *Karelia transonegensis* and two for the province *Karelia onegensis*. Twenty-two species are considered old-growth forest indicators. The total epiphytic lichen cover on spruce trees averaged 59% at the trunk base, 12% at a height of 1.3 m above ground level and 61% on branches. Predominantly, only 12 species contributed to the lichen cover of trunk and branches. Despite the predominance of crustose lichens colonising spruce trees, the main epiphytic lichen cover both on trunks and branches was provided largely by foliose species (57% of the total cover). Due to a variety of morphological features, spruce provides diverse microhabitats, which leads to high lichen species richness with different ecological requirements. Spruce trees play a significant role in maintaining the diversity and conservation of rare species.

Keywords: epiphytic lichens, epiphytic lichen cover, European boreal forests, middle boreal subzone, *Picea abies*

INTRODUCTION

Protected old-growth forests (terminal stages of forest recovery after disturbance) in the boreal zone of Russia are represented mainly by spruce communities (Kazimirov, 1971; Dyrenkov, 1984). On the territory of Karelia, Norway spruce (*Picea abies* (L.) Karst., hereafter “spruce”) dominated forests are located, mainly, in the south. In the absence of forest disturbance, pine (*Pinus sylvestris* L.), as well as deciduous tree species, are replaced by spruce in all middle boreal forest habitats except for bogs, drained sands and rocks (Gromtsev, 2008; Volkov, 2008). In Karelia, spruce forests occupy an area of 15810 km², representing 39% of the total territory covered by forests (Volkov, 2008).

Epiphytic lichens, as a species-rich group in boreal forests, play an important role for diversity and productivity of forest communities (Ellis, 2012). It is known that tree species is among the most important drivers of epiphytic community composition (Odor et al., 2013). In the boreal zone, high lichen richness is mainly related to spruce forests (Pystina, 2003). In fact, spruce is the main stand-forming tree species and edificator of the forest physical environment. Under the spruce forest canopy, specific microclimatic conditions are created by the transformation of solar radiation, heat radiation, evaporation, precipitation capture, as well as its influence on turbulence (Protopopov, 1975). The strong environmental influence of spruce mainly relates to its crown features. Its dense, low-attached crown with descending branches contributes to a varied niche structure for epiphytes. Spruce crown has a maximum water holding capacity exceeding that of pine, cedar and fir (Gorbatenko, 1987). For 60 years old spruce, it was established that stemflow on trunk began after 2.4–5 mm rainfall and reached 2.3% on average (Kittredge, 1951). Moistening of trunk sites beneath the spruce crowns is also affected by precipitation force and volume. In the spruce forest, with precipitation up to 15 mm, the under-crown trunk sites receive from 4 to 6 times less moisture than within the inter-crown space. At the same time, in pine forests,
the under-crown trunk sites of pine receive only 1.1–1.3 times less moisture than inter-crown spaces (Nikonov & Lukina, 2000). On spruce branches, light availability and humidity differ compared with the trunk under-crown sites. The level of branch position within the crown is the key variable determining niche variability and, consequently, species composition and epiphyte cover on spruce branches (Gorshkov et al., 2002). Furthermore, spruce stemflow is characterized by its higher acidity (pH ~3.8) as compared with the inter-crown space (pH ~5.0) (Nikonov et al., 2002). In natural conditions the pH of spruce bark is acidic, ranging from 2.8 to 4.5 (e.g. Barkman, 1958; Kuusinen, 1996a; Stepanova et al., 2001).

Lichen diversity on spruce has been intensively studied in spruce forests in different regions. The maximum number of lichen species (198) for spruce was recorded by A. Koskinen (1955) in Finland. However, this list included a large number of subspecific taxa, and a different taxonomic understanding of certain taxa. The majority of studies report fewer lichen species for spruce, generally ranging from 20 to 90. For example, 122 species were recorded for *Picea abies* in Norway (Holien, 1997), 83 in southern Finland (Kuusinen & Siitonen, 1998), 53 in Sweden (Bäcklund et al., 2016) and 86 in southern Estonia (Marmor et al., 2013). In the East of European Russia, in Komi Republic, 152 lichen species were recorded on *Picea spp.* (including *Picea abies* and *P. obovata*) (Pystina, 2003). Furthermore, several ecological studies emphasize factors controlling epiphytic lichen diversity and distribution on trunks and branches of spruce trees (e.g. Hilmo, 1994; Nascimbene et al., 2009, 2010; Bäcklund et al., 2016). However, information on lichen species richness on spruce is still deficient for the territory of Karelia. So far, lichens on spruce have been studied only in the Kivach Strict Nature Reserve and Vodlozero National Park where 92 species were found (Stepanova, 2004). Over the period 2014–2017, an inventory of lichen diversity on spruce in these territories was continued and new study areas included: the Kizhi Sanctuary, Petrozavodsk City and the territory of Vodlinsky Forest.

Quantitative data of epiphytic lichen cover on spruce are very scattered, (Sõmermaa, 1972; Lõhmus & Lõhmus, 2001; Kuusinen, 1996b). Most often, the authors estimate only the frequency of lichen species occurrence (Kruys & Jonsson, 1997, Holien; 1998, Marmor et al., 2013). However, this variable could not provide an objective evaluation of epiphytic lichen cover, since the occurrence of lichen species can often be high while their coverage is low. Moreover, different scales are also used for lichen cover assessment (Halonen et al., 1991; Holien, 1997), instead of using a special framework that might significantly reduce subjectivity in the study.

Studies on patterns of spruce epiphytic lichen cover are sparse over the whole territory of Russia. Quantitative data on its main characteristics are still lacking. The aims of the present paper are: (1) to study lichen diversity of Norway spruce in the middle boreal forests of Republic of Karelia, and (2) to estimate the main characteristics of epiphytic lichen cover on trunks and branches of spruce.

MATERIALS AND METHODS

Study area

Field studies were carried out in pine, spruce, mixed aspen-spruce forest communities in the middle boreal subzone of Republic of Karelia (Northwest Russia). Sample plots were located in the Karelian part of the Vodlozero National Park (62°13’N, 36°46’E; 130,600 ha), Kivach Strict Nature Reserve (62°17’N, 34°00’E; 10,880 ha), Kizhi Sanctuary (62°06’N, 35°09’E; 50,000 ha) and Petrozavodsk City (61°50’N, 34°20’E; 13,500 ha). The location of these study areas was mapped and their climatic characteristics presented in a previous paper (Tarasova et al., 2017). Vodlinsky forest (62°06’N, 37°44’E; 142,630 ha) is located in the Pudozh district, bordering to the north and east with Arkhangelsk region, and to the west, with Vodlozero National Park. Forest management and clear-cutting have been applied within this territory since the 1950s, and at the present time forests are represented by recovering secondary deciduous and mixed deciduous-coniferous forests.

Data collection

Sampling design was based on permanently established sample plots in the tree stands. A total of 68 sample plots of 25×30 m (40) and 100×100 m (28) were set up in different types of spruce and
mixed (spruce-pine, aspen-spruce, birch-spruce) forests. A detailed geobotanical description of the studied community was performed for each sample plot including trees (height, age, basal area, crown density etc.) and the ground cover characteristics (shrub and herb cover, mosses and lichen cover) (Table 1) (Jarmishko & Ljangelguzova, 2002). Time-since-disturbance of the studied forest communities was established as stages of succession ranging from 20 to 450 years in drained sites and 290–350 years for waterlogged sites.

Lichen diversity was described in each sample plot on 10–20 selected spruce trees. Measurements of the characteristics of epiphytic lichen cover on trunks were performed by using a frame measuring 10×20 cm positioned at the trunk base and breast height (1.3 m above ground level) on four sides (north, west, south, east).

Epiphytic lichen cover on spruce branches was studied in Vodlozero National Park within a windthrow area (~100 ha) in Vaccinium myrtillus-type spruce forest (175 years since-disturbance). Epiphytic lichen linear cover was recorded using a measuring tape (Bruteig, 1994) from the base to tip on 217 living branches of 20 fallen undamaged spruce trees aged from 120–260 years. In total, 30 branches with an average length 215 ± 20 cm and average age 80 ± 20 years, were selected from the total investigated in order to

Table 1. Main characteristics of studied forest communities in the middle taiga of the Republic of Karelia. Study areas: I – Vodlozero National Park, II – Kivach Strict Nature Reserve, III – Kizhi Sanctuary, IV – Petrozavodsk City, V – Vodlinsky Forest; type of forests: Spr c m – spruce forest Calamagrostis arundinacea–green mosses type, Spr v m – spruce forest Vaccinium myrtillus–green mosses type, Spr v s – spruce forest Vaccinium myrtillus–Sphagnum mosses type, Spr e s – spruce forest Equisetum sylvaticum–Sphagnum mosses type, Spr herb – spruce forest herb-rich type, Asp c – middle-aged aspen forest Vaccinium myrtillus–Calamagrostis arundinacea type, Spr-Asp v m – mixed aspen-spruce forest Calamagrostis arundinacea–Vaccinium myrtillus type, Pn v m – pine forest Vaccinium myrtillus–green mosses type; tree stand composition (% from basal area): S – spruce, P – pine, B – birch, As – aspen, Al – alder, Sr – rowan.

<table>
<thead>
<tr>
<th>Study area</th>
<th>Number of sample plots</th>
<th>Type of forest</th>
<th>Time-since-disturbance, years</th>
<th>Basal area, m²/ha</th>
<th>Tree stand</th>
<th>Age of spruce trees, years</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>10</td>
<td>Spr v m</td>
<td>175–450</td>
<td>19–29</td>
<td>82S10P4B4As</td>
<td>24–270</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Spr v s</td>
<td>247–350</td>
<td>21–35</td>
<td>86S8P3As3B</td>
<td>125–300</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Spr e s</td>
<td>250–380</td>
<td>21–25</td>
<td>81S16B2P1As1Sr</td>
<td>109–301</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Spr herb</td>
<td>255</td>
<td>20</td>
<td>88S5P2B5As</td>
<td>99–195</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Spr-Asp v m</td>
<td>160–180</td>
<td>27–31</td>
<td>59S19B18As2P2Sr</td>
<td>28–143</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Asp c</td>
<td>80–100</td>
<td>29–30</td>
<td>46As30B18S3Sr2Al</td>
<td>25–95</td>
</tr>
<tr>
<td>II</td>
<td>6</td>
<td>Spr v m</td>
<td>170–260</td>
<td>21–42</td>
<td>74S12B10As4P</td>
<td>21–211</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Spr v s</td>
<td>256</td>
<td>37</td>
<td>72S4P24B</td>
<td>125–206</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Spr e s</td>
<td>167–170</td>
<td>25–35</td>
<td>81S8As7B3P1Al</td>
<td>82–157</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Spr c m</td>
<td>188–295</td>
<td>28–31</td>
<td>82S12B4P2As1Al</td>
<td>85–245</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Spr-Asp v m</td>
<td>86–190</td>
<td>30–45</td>
<td>68S20B10As2P</td>
<td>11–170</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Asp c</td>
<td>160–190</td>
<td>34–37</td>
<td>49S31As12B8P</td>
<td>28–143</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Spr v m</td>
<td>80</td>
<td>39</td>
<td>68As30S1B1P</td>
<td>31–72</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Pn v m</td>
<td>60–90</td>
<td>22–31</td>
<td>65P24S7As4B</td>
<td>11–149</td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>Spr v m</td>
<td>240–260</td>
<td>22–28</td>
<td>77S13As5B5P</td>
<td>22–192</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Spr-Asp v m</td>
<td>150–160</td>
<td>31</td>
<td>47S32As1P3B8</td>
<td>42–126</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Asp c</td>
<td>85–100</td>
<td>19–24</td>
<td>64As15B11S5P3S2Al</td>
<td>36–75</td>
</tr>
<tr>
<td>IV</td>
<td>1</td>
<td>Spr v m</td>
<td>210</td>
<td>28</td>
<td>59S22As9B9P1Sr</td>
<td>84–168</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Spr-Asp v m</td>
<td>160</td>
<td>32</td>
<td>44S43As9B2P1Al1Sr</td>
<td>38–150</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Asp c</td>
<td>110</td>
<td>25</td>
<td>38As32S16B10P1Sr</td>
<td>19–78</td>
</tr>
<tr>
<td>V</td>
<td>4</td>
<td>Asp c</td>
<td>20–59</td>
<td>22–36</td>
<td>81As13B6S</td>
<td>25–122</td>
</tr>
</tbody>
</table>
study epiphytic lichen cover of the main branch axis at different distances from the tree trunk. Each branch was divided into 10 cm long segments in which the average cover of each species was determined. The total amount of classes (segments) was 24. Lichen cover was recorded as a linear distance occupied by each thallus according to methods described by I. Bruteig (1993). The cm-measures were transformed to percentage cover for data analysis. The percentage cover of lichen taxon \(C_i \) on main branch axis was calculated as a proportion of lichen taxon length (in cm) to branch length:

\[
C_i = 100\% \times \frac{\sum_{j=1}^{n} l_j}{L}
\]

where: \(C_i \) – cover of \(i \) lichen taxon, %; \(l_j \) – length of \(j \) thallus of \(i \) lichen taxon on branch, cm; \(L \) – length of branch, cm.

Total lichen cover \(C \) on a branch was defined as the sum of all species covers:

\[
C = \sum_i C_i
\]

where: \(C \) – total lichen cover on the branch, %; \(C_i \) – cover of \(i \) lichen taxon, %; \(n \) – number of recorded lichen species.

The frequency \(F_i \) of lichen taxon was calculated according to following formula:

\[
F_i = 100\% \times \frac{N_i}{N_p}
\]

where: \(F_i \) – frequency of \(i \) lichen taxon, %; \(N_i \) – number of branches where the lichen has been recorded; \(N_p \) – total (217) numbers of investigated branches.

Proportion in total cover of a lichen taxon \(R_i \) was defined as proportion of the lichen taxon cover to total lichen cover:

\[
R_i = 100\% \times \frac{C_i}{C}
\]

where: \(R_i \) – proportion in total lichen cover of \(i \) lichen taxon, %; \(C_i \) – cover of \(i \) lichen taxon; \(C \) – total lichen cover.

A total of 1995 collected lichen specimens were identified using standard microscopic techniques and spot tests. Sampled specimens belonging to the genus Cladonia and sterile crustose lichen species were identified by standard thin-layer chromatography (TLC) in the Laboratory of Experimental Botany of Petrozavodsk State University, Petrozavodsk, using solvent systems A, B, C and G (Orange et al., 2001).

Specimens are deposited in the herbarium of Petrozavodsk State University (PZV).

Data analyses

Lichen cover on trunks of trees aged from 107–270 years (mean = 177 years) at different heights \(n = 6700 \) was compared and statistically analyzed by an analysis of variance (one-way ANOVA, Microsoft Excel, 2007) and the \(p \)-value to evaluate the significance of observed differences (Ivanter & Korosov, 2010). Data on general characteristics of lichen cover on spruce trunks were presented for trees within the same age range (107–270 years). Data on studied forests with low time-since-disturbance (< 100 years) and trees with age < 100 years were only used for an assessment of total lichen diversity on spruce.

For lichen cover relevés (each measuring 10×20 cm) on studied trunk sites, the Shannon’s information diversity index \(H \) was calculated according to the following equation:

\[
H = -\sum_{i=1}^{n} S_i \times \ln S_i
\]

where \(S_i \) – share of \(i \)-species in percentage of total cover (relative cover); \(N \) – total species number on analyzed area \(0.02 \text{ m}^2 \). Pielou’s evenness index \(E \) (Pielu, 1969) is a measure of biodiversity which quantifies how equal the community is numerically and is calculated according to:

\[
E = \frac{H}{H_{\text{max}}} = \frac{H}{\ln N}
\]

where \(H \) – Shannon diversity index, \(N \) – total species number on analyzed area \(0.02 \text{ m}^2 \) (Magurran, 1988). Its maximum value (1) is registered in cases where lichen cover in relevés on trunk sites have equal values and minimum (0) is observed when species have a significantly different cover.

Regression analysis (Microsoft Excel, 2007) was performed for lichen cover measurements at different distance from tree trunk, on main axis of 30 spruce branches from the lower part of the canopy. Some dependencies were described using one or two regression.

LIST OF SPECIES

Taxa are arranged in alphabetical order; nomenclature of lichens, lichenicolous and non-lichenized fungi follows mainly Nordin et al.
For each species the substrates and locality numbers (see above) are listed.

Acolium kArelicum (Vain.) M. Prieto & Wedin – on trunks. VNP: 1. RK.

Acolium inquinAns (Sm.) A. Massal – on trunks, branches and snags. KvR: 3.

ArthoniA spAdiceA Leight. – on young trunks. VF: 7. VF! Kton!

ArthoniA vinosA Leight. – on snags. VNP: 6. VNP! RK.

CanBiAtorA vernAlis (L.) Fr. – on mosses at trunk base. VNP: 1, 2.

CanBryoria nADVORNIKA (Gyeln.) Brodo & D. Hawksw. – on trunks, branches and snags. KvR: 1, 2, 6, 7, KzR: 1, 6, Ptz: 6–7, VNP: 1, 6, 7. RK. Conf. L. Myllys.

CanCaliCium virIdE Pers. – on trunks. KvR: 1, KzR: 1, VNP: 1, 6, 7–6.

CanCatillaria erysiboiDeS (Nyl.) Th. Fr. – on trunks. VF: 7. VF! Kton!

CanChaenotheca lAEVIGA TA Nádv. – on lignum. VNP: 1.

CanChaenotheca subrosiCida (Eitner) Zahlbr. – on trunks, on lignum. KvR: 1–3, KzR: 1, VNP: 1, 6–7, VF: 7. RK.

CanChaenotheca trichAlis (Ach.) Th. Fr. – on trunks. KvR: 1, 6–7, KzR: 1, 6, VNP: 1, 6–7.

Chaenothecopsis epithallina Tibell – on thalli of *Chaenotheca trichialis*. KvR: 1, VNP: 1.

Chaenothecopsis nana Tibell – on trunk. KvR: 1.

Chaenothecopsis fennica (Laurila) Tibell – on trunks, on lignum. KzR: 5, VNP: 1, 3.

Chaenothecopsis savonica (Räsänen) Tibell – on snags. VNP: 1–3.

Chaenothecopsis viridiflua (Kremp.) A. F. W. Schmidt – on trunks. KvR: 2–3, VNP: 1. RK.

Chrysothrix candelaris (L.) J. R. Laundon – on branches and snags. KvR: 1.

Cladonia chlorophaeae (Flörke ex Sommerf.) Spreng. – at the trunk base. KvR: 1, 5. The specimen contained fumarprotocetraric acid.

Cladonia coniocraea (Flörke) Spreng. – at trunk base, on branches. KvR: 1–7, KzR: 1, 6, Ptz: 1, 6–7, VNP: 1–4, 6–7.

Cladonia crispata (Ach.) Flot. – at trunk base. KvR: 1, 5, VNP: 1.

Cladonia cyanipes (Sommerf.) Nyl. – at trunk base. KvR: 1. KvR! The specimen contained usnic, barbatic, 4-0 dimethylbarbatic acids.

Cladonia digitata (L.) Hoffm. – at trunk base, on branches. KvR: 1–7, KzR: 1, 6, Ptz: 1, 6–7, VNP: 1–4, 6–7.

Cladonia merochlorophaeae Asahina – at trunk base. KvR: 4. The specimen contained merochlorophaeic, 4-0 methylcryptochlorophaeic and fumarprotocetraric acid.

Cladonia parasitica (Hoffm.) Hoffm. – at trunk base. KvR: 2.

Cladonia squamosa (Scop.) Hoffm. – at trunk base. KvR: 1–5, VNP: 1–4.

Clostomum leprosum (Räsänen) Holien & Tønsberg – on trunk. KzR: 1. KzR!

Evernia divaricata (L.) Ach. – on branches. KvR: 3, KzR: 1. RK.

Frutidella furfuracea (Anzi) M. Westb. & M. Svensson – on snags. VF: 7. VF!

Fuscidea pusilla Tønsberg – on branches. KvR: 1, 6, KzR: 1, 6, Ptz: 7, VNP: 6, VF: 7. VF! The specimen contains divaricatic acid.

Hypogymnia physodes (L.) Nyl. – on trunks, branches and snags. KvR: 1–8, KzR: 1, 6 – 7, Ptz: 1, 6, VNP: 1–4, 6–7, VF: 7. VF!

Hypogymnia tubulosa (Shaer.) Hav. – on branches and snags. KvR: 1–8, KzR: 1, Ptz: 1, 6–7, VNP: 1–4, 6–7, VF: 7. VF!

Lecanactis abietina (Ehrh. ex Ach.) Körb. – on trunks. KvR: 1. RK.

Lecanorina circumborealis Brodo & Vitik. – on trunks. VNP: 1.

Lecanora symmicta (Ach.) Ach. – on trunks, branches. KvR: 7–8, KzR: 6, Ptz: 6, VNP: 1, 6, VF: 7. VF!

Lecidea albofuscescens Nyl. – on trunks, snags. VNP: 2–3, VF: 7. VF! RK.

Lecidea nylanderi (Anzi) Th. Fr. – on trunks, branch and snags. KvR: 1, 5–7, KzR: 1, 6, VNP, VF: 7. VNP! Klon!

Lecidea turgidula Fr. – on trunks, branches and snags. KvR: 5–8, KzR, VNP: 1, 6, VF: 7. VNP! VF!

Loberia pulmonaria (L.) Hoffm. – on lower branches of young trees growing near large aspens with *L. pulmonaria*. KvR: 1, 6, VNP: 1. RK, RR.

Micarea denigrata (Fr.) Hedl. – on branches and snags. KvR, KzR: 1, 6.

Micarea iselaea (Nyl.) Hedl. – on branches and snags. KzR: 1, Ptz: 6.

Microcalicium ahlneri Tibell – on trunk. VNP: 1.

Mycoblastus affinis (Shaer.) T. Shauer – on branches and snags. VNP: 1–3.

Nephroma bellum (Spreng.) Tuck. – on mosses at trunk base. KvR: 6. RK.

Ochrolechia arborea (Kreyer) Almb. – on trunks. Ptz: 1. The specimens contain lichexanthone, gyrophoric and lecanoric acids.

Ochrolechia pallescens (L.) A. Massal. – on trunks. VNP: 1.

Opegrapha vulgata (Ach.) Ach. – on trunks. VNP: 1, 6. VNP! Klon!

Peltigera polydactylon (Neck.) Hoffm. – on mosses at trunk base. VNP: 1.

Pertusaria coccodes (Ach.) Nyl. – on branches and snags. KzR: 6, VNP: 2.

Pertusaria pupillaris (Nyl.) Th. Fr. – on branches and snags. KvR: 1, VNP: 2.
PLHYCTIS ARGENA (Ach.) Flot. – on trunks and branches. KvR, VNP: 6, VF: 7. VF!

PHYSICA STELLARIS (L.) Nyl. – on branches. VNP: 7. VNP!

PSEUDEVERNIA FURFERACEA (L.) Zopf. – on trunks, on branches and snags. KvR: 1, 6, Ptz: 6.

RAMALINA THRUSTA (Ach.) Nyl. – on branches. KvR, VNP: 1, 6. RK.

RSTANIA OCTULTATA (Bagl.) Otálora, P.M. Jørg. & Wedin – on branch. KvR: 6. RK.

SAREA DIFFORMIS (Fr.) Fr. – on resin. KvR: 6, KzR: 1, VNP: 1, 6, Ptz: 6. KvR! KzR! VNP! Kton!

SAREA RIESINAE (Fr.: Fr.) Kuntze – on resin. KvR, KzR: 1, VNP: 1, 6, VNP! Kton!

SCOLICIOSPORUM CHLOROCOCCUM (Graewe ex Stenh.) Vězda – on trunks and branches. KvR: 1, 5, KzR: 1, 6, VNP: 1, VF: 7. VF!

STRANGOSPORA MIRRORFORMIS (Ach.) Stein – on trunks. VF: 7. VF!

USNEA GLABRENSIS (Nyl. ex Vain.) Vain. ex Räsänen – on trunks, on branches and snags. KvR: 2, 6, KzR: 6, VNP: 1–3, 6.

USNEA LAPPONICA Vain. – on branches and snags. KvR: 1, 6.

USNEA SUBFLORENSA Stirt. – on trunks, on branches and snags. KvR: 1–8, KzR, Ptz: 1, 6–7, VNP: 1–4, 5–7, VF: 7. VF!

VIOLELLA FUCATA (Stirt.) T. Sprib. – on trunks. KvR: 6, VNP: 1, 6, KzR: 1, VF: 7. The specimens contain atranorin and fumarprotocetraric acid. KzR! VNP! VF! Kton!

XYLOGRAPHIA PALLENS (Nyl.) Malmgren – on lignum and trunks. VNP: 6. VNP! Kton!

XYLOPSORA CARADOCENSIS (Leight. ex Nyl.) Bendiksby & Timdal – on snags. KzR: 1. KzR!

XYLOPSORA FRIESII (Ach.) Bendiksby & Timdal – on trunks. KvR: 1, 6, KzR: 1, VNP: 1, 4.

RESULTS AND DISCUSSION

Lichen diversity

Lichen diversity was analyzed on 980 spruce trees within 68 sample plots in 31 ha total study area. Recorded lichen diversity on spruce in southern Karelia is represented by 158 species (147 lichen species, 4 lichenicolous and 7 non-lichenized saprotrophic fungi). Crustose lichens contributed mainly to species richness. Fruticose and foliose species were represented in lower proportions, 23% (34 species) and 16% (23 species), respectively.

Amongst recorded lichens on spruce, *Lobaria pulmonaria* and *Bryoria fremontii* are included in the Red Data Book of Russian Federation (Red..., 2008). Seventeen species are regionally protected in Republic of Karelia (Red..., 2007): *Acolium karelicum*, *Arthonia vinosa*, *Bryoria fremontii*, *Bryoria nadvornikiana*, *Chaenotheca stemonea*, *Chaenotheca subroscida*, *Chaeonotheopsis viridiaiba*, *Evernia divaricata*, *Lecanactis abietina*, *Lecidea albofuscescens*, *Lobaria pulmonaria*, *Melanelixia subaurifera*, *Nephroma bellum*, *Ramalina dilacerata*, *Ramalina thrausta*, *Rostania occultata*, *Usnea barbata*. Two species are new for the biogeographical province *Karelia onegensis* and 10 – for *Karelia transonegensis*. Some lichen species were found in the studied

The maximum number of lichen species (110) was found in spruce forests of the Vaccinium myrtillus–green mosses type, the minimum (17) in the pine forest, Vaccinium myrtillus–green mosses type with young spruce trees. However, in this study, it is difficult to compare meaningfully the lichen species composition in these different forest and community types because of the different size and number of the study areas. Lichen species diversity is closely associated with such parameters as the size and number of the study area and tree number. Our data include 158 lichens and allied fungi recorded on about 1000 spruce trees within an area of 0.31 km². Similar number of species (152) was recorded in the entire Komi Republic territory, 172,200 km² in extent (Pystina, 2003). Holien (1997) found 122 lichens on 400 spruce trees within 1.62 km² in Norway. The 242 lichens were recorded on spruce in the whole Leningrad region (84,500 km²) during over more than 200 years of studies (data by D. Himelbrant, E. Kuznetsova & I. Stepanchikova; Stepanchikova: personal communication, 2017). Thus, it could be inferred that the regional species pool of lichens on spruce in Karelia lying within the middle boreal subzone amounts to about 200 species.

Moreover, the number of lichen species is affected not only by the size of study area and microhabitat diversity, but also by the time-since-disturbance of forest communities. The relatively high lichen species diversity recorded on spruce in this study might be explained by the heterogeneity of conditions revealed by sampling from different forest types with different time-since-disturbance, from spruce trees with different ages as well as due to investigating various microhabitats within individual trees. Various studies have reported increasing lichen diversity on spruce with increasing time-since-disturbance (e.g. Hilmo, 1994; Nascimbene et al., 2009, 2010; Marmor et al., 2011). In forest communities, within a single tree species, such as spruce, the number of microhabitats available for epiphytic lichen colonization increases with increasing time-since-disturbance. These microhabitats comprise, for example, spruce trees of different ages, including old, aged over 200 years, extended trunk base located near the soil, dead lower branches of large diameter, lignum in some sites of the trunk and branches, barkless branches (snags), stable bark, trunk sites with different angle of inclination of the surface, numerous microcracks, old resin, etc. (e.g. Holien, 1997, 1998; Hilmo et al., 2009).

In fact, spruce forests at the final stage of development play a key role in the conservation of many rare species including protected lichens, many of which occur only in such forests and could be “indicators of habitat continuity”. Twenty two indicator species of old-growth boreal forests were recorded (Andersson et al., 2009) – Acolium karelicum, A. inquinans, Alectoria sarmentosa, Arthonia vinosa, Bryoria fremontii, Chaenotheca laevigata, C. stemonea, C. subroscida, Chaenothecopsis fennica, Chaenothecopsis viridialba, Cladonia parasitica, Evernia divaricata, Hypogymnia vittata, Lecanactis abietina, Leptogium saturninum, Lobaria pulmonaria, Microcalicium disseminatum, Nephroma bellum, N. parile, N. resupinatum, Pertusaria coccodes and Ramalina thrausta.

Development of a complex of different microhabitats within a single tree determining species diversity is a particular characteristic of spruce. The species composition of lichens occurring in the lower part of the trunk and on branches varied significantly: 108 species were recorded on trunks, 78 on branches and 55 on snags. Analysis of substrate specificity of lichens within spruce trees established that 52% of species were associated only with trunks, 27% with branches and 18% with snags (Table 2). Thus, the proportion of specific species was higher on trunks, while for 71 (45%) lichens, no strong substrate preferences within spruce trees were registered.

Many studies have demonstrated a higher number of lichen species on spruce in boreal forests compared with other tree species (e.g. Koskinen, 1955; Sömermaa, 1972; Holien, 1997). However, for biodiversity of boreal forest, aspen is supposed to be a hotspot in both Eurasia and North America (Lundström et al., 2013). In our previous lichen inventory of forest communities in middle boreal subzone of Karelia (Tarasova et al., 2017), 178 species were found on aspen trees. The 83 lichens were common on both as-
pen and spruce according to a comprehensive analysis of species composition on both trees. These results support the importance of spruce and aspen in maintaining boreal forest biodiversity (e.g. Koskinen, 1955; Pystina, 2003; Pykälä et al., 2006).

Species composition specificity on spruce has been documented by several researchers. For example, 26 species were found only on spruce in the old-growth forests of the Komi Republic (Pystina, 2003). Several studies have emphasized the characteristics of spruce lichen diversity, such as predominance of crustose species (e.g. Hyvärinen et al., 1992; Tønsberg, 1992) as well as the high diversity of species belonging to Caliciales (e.g Holien, 1996; Kruys & Jonsson, 1997; Lõhmus & Lõhmus, 2001), and the characteristically low diversity of Cladonia species (Pystina, 2003).

Characteristics of epiphytic lichen cover on trunks

Assessment of epiphytic lichen cover characteristics was carried out on 700 trunks within 40 sample plots. Total epiphytic lichen cover on spruce trees averaged 59% at the trunk base (0–20 cm) and 12% at a height of 130–150 cm above ground level (Table 3). Lichen cover percentage differed significantly between the trunk base and trunk sites at a height of 130–150 cm \((p = 0.001)\) reaching 3 at the trunk base and 1.4 at a height of 1.3 m above ground level. The occurrence of trunk sites without lichens at the base of the trunk was 2%, 30% at 1.3 m above ground level (Table 3). A 2-fold lower species diversity of lichens at 1.3 m in comparison with the trunk base is reflected in the values of the Shannon’s information diversity index, 0.37 and 0.57, respectively. Values of Pielou’s evenness index also differed significantly at different heights on the trunk: an average of 0.58 at the trunk base, 0.68 at a height of 1.3 m above ground level \((p = 0.001)\). Thus, epiphytic lichen cover at 1.3 m above ground level is more uniform than at the base of the trunk, where the dominance of particular species was more clearly observed.

The majority of total epiphytic lichen cover on spruce trunks was accounted for by 12 species exceeding 1% in cover (Table 3). Both at the trunk base and at 1.3 m above ground level, the proportion of these species accounted for 95%

Table 2. Substrate preferences of lichens and allied fungi within spruce trees

<table>
<thead>
<tr>
<th>Habits</th>
<th>Lower part of trunks (0–2 m)</th>
<th>Branches</th>
<th>Snags</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of species</td>
<td>108</td>
<td>78</td>
<td>55</td>
</tr>
<tr>
<td>Number of species</td>
<td>68</td>
<td>49</td>
<td>35</td>
</tr>
<tr>
<td>Proportion in total species number, %</td>
<td>68</td>
<td>49</td>
<td>35</td>
</tr>
<tr>
<td>Specific species</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of species</td>
<td>56</td>
<td>21</td>
<td>10</td>
</tr>
<tr>
<td>Proportion in total species number in this habitat, %</td>
<td>52</td>
<td>27</td>
<td>18</td>
</tr>
</tbody>
</table>

![Fig. 1. Number of relevés with different values of lichen percentage cover at trunk base (white column) and at height of 130–150 cm above the ground level (bold column).](image-url)
of the total lichen cover in total. Thus, lichen cover on spruce is mainly due to only 8% of the total listed species which play an important role in ecosystems as well as in maintenance of the general lichens biomass in the spruce forests of the middle boreal subzone.

The spruce trunk base was dominated by species belonging to the genera *Cladonia* and *Lepraria* which together accounted for about 75% of the total cover. The percentage cover of the species *Hypogymnia physodes*, *Parmeliopsis ambigua* and *P. hyperopta* at the trunk base was significantly lower, but their occurrence was sufficiently high and comparable to the dominant species (Table 3).

At height of 1.3 m above the ground level, the dominant species were *H. physodes*, *P. ambigua* and *Chaenotheca chrysocephala* (Table 3). The cover percentage of these dominant species reached 73% of the total lichen cover on spruce.
trunk at breast height. Cover and frequency of occurrence of other lichens were much lower. Thus, according to the results of this study, foliose species play the main role in epiphytic lichen cover of spruce trunks at the two studied height levels. Moreover, despite the predominance of crustose lichens in the list of species, foliose species play the main role in the formation of epiphytic lichen cover (57% of total cover) on spruce.

The trunk base of spruce and at 1.3 m above ground level represent different habitats for lichens due to significant differences of humidity and light availability. The trunk base is characterized by more favorable habitat conditions for lichens resulting in high lichen cover values. However, a limitation in species lichen diversity relates to the competitive ability of Cladonia species which strongly restrict colonization of other species at the trunk base. At 1.3 m above ground level on spruce trunks less favorable conditions for lichens result in both lower species diversity, as well as a lower level of competition between species in this habitat.

Some studies demonstrated differences between the values of the cover and number of lichen species on spruce trees at different heights from the ground as higher values of lichen cover on the trunk base compared with breast height have been reported. In a study by Sõmermaa (1972) in Estonian forests, lichen cover at spruce trunk bases and at 1.3 m about ground level ranged from 21–64.5% and 9–52%, respectively. Other studies reported 58% average lichen cover at a trunk height of 0.8 m on spruce in Estonia (Lõhmus & Lõhmus, 2001) and 21% in Finland (Kuusinen, 1996b). For Picea obovata in forests of the Middle Urals, the following values of lichen cover at trunk base and breast height were obtained, 18–38% and 0–10% respectively (Mikhailova, 1996). The composition of dominant lichen species in the middle boreal forests of Karelia corresponds to known data on boreal forests of other European territories.

Characteristics of epiphytic lichen cover on branches

In total, 75 lichen species were found on Picea abies branches. However, only 15 species form the main part of lichen cover on spruce branches (Table 4). The total percentage of lichen cover on branches ranged from 0 to 100% with a mean value of 61%.

Table 4. Epiphytic lichen cover on main axis of Picea abies branches

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Average cover, %</th>
<th>Frequency of occurrence, %</th>
<th>Proportion of total cover, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypogymnia physodes</td>
<td>46</td>
<td>96</td>
<td>75</td>
</tr>
<tr>
<td>Platismatia glauca</td>
<td>9</td>
<td>76</td>
<td>14</td>
</tr>
<tr>
<td>Parmeliopsis ambigua</td>
<td>4</td>
<td>48</td>
<td>7</td>
</tr>
<tr>
<td>Mycoblastus sanguinarius</td>
<td>1</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>Pertusaria spp.</td>
<td>0.6</td>
<td>19</td>
<td>0.9</td>
</tr>
<tr>
<td>Ochrolechia spp.</td>
<td>0.4</td>
<td>11</td>
<td>0.6</td>
</tr>
<tr>
<td>Parmelia sulcata</td>
<td>0.2</td>
<td>10</td>
<td>0.3</td>
</tr>
<tr>
<td>Tuckermanopsis chlorophylla</td>
<td>0.2</td>
<td>20</td>
<td>0.3</td>
</tr>
<tr>
<td>Hypogymnia tubulosa</td>
<td>0.1</td>
<td>8</td>
<td>0.2</td>
</tr>
<tr>
<td>Bryoria spp.</td>
<td>0.1</td>
<td>7</td>
<td>0.1</td>
</tr>
<tr>
<td>Bryoria capillaris</td>
<td><0.1</td>
<td>3</td>
<td>0.1</td>
</tr>
<tr>
<td>Usnea spp.</td>
<td>0.1</td>
<td>13</td>
<td>0.1</td>
</tr>
<tr>
<td>Alectoria sarmentosa</td>
<td>0.1</td>
<td>4</td>
<td>0.1</td>
</tr>
<tr>
<td>Vulpicida pinastri</td>
<td>0.1</td>
<td>5</td>
<td>0.1</td>
</tr>
<tr>
<td>Imbagnia aleurites</td>
<td>0.1</td>
<td>5</td>
<td>0.1</td>
</tr>
<tr>
<td>Foliose species</td>
<td>59</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>Crustose species</td>
<td>2</td>
<td>29</td>
<td>3</td>
</tr>
<tr>
<td>Fruticose species</td>
<td>0.2</td>
<td>20</td>
<td>0.3</td>
</tr>
<tr>
<td>Total</td>
<td>61</td>
<td>96</td>
<td>100</td>
</tr>
</tbody>
</table>

Note. Rare taxa with a frequency of occurrence less than 1% are not included in the Table.
Foliose lichens were more abundant on spruce branches than fruticose and crustose species. Their occurrence and proportion in total lichen cover accounted for 96% (Table 4). Crustose and fruticose species on analysed branches had a lower frequency of occurrence (29%, 30%) and cover (3%, 0.3%, respectively) values (Table 4).

H. physodes was the dominant species on analysed branches, contributing to 75% of total lichen cover. All other species were represented by significantly lower cover values, e.g. P. glauca 14%, P. ambigua 7% and other species < 2% (Table 4).

The low cover of pendulous lichens Usnea, Bryoria and Alectoria can be explained by their vertical growth and small area of attachment point to branches. Therefore, cover of these species on main axis tended to be low. The number of lichen species per branch varied from 0 to 10 with an average number of 3.5 species.

A high diversity of lichens on branches is characteristic of spruce species richness. More than half of the total species recorded was found on branches, including 21 which occur only here. Ecological studies of lichens on spruce branches, with an emphasis on lichen distribution and succession in relation to measurable environmental variables using quantitative methods, have only been carried out by Bruteig (1994) and Hilmo (1994). Differences in lichen distribution on trunk and branches of trees have mostly been interpreted to be a result of different microclimatic conditions and substrate properties.

Distribution of lichen species along 10 cm long segments of main branch axis of spruce from tree trunk to top was studied. The average number of species per branch 10 cm long segment decreased rapidly from 2.6 to 1.7 along the distance from the tree trunk to the branch tip (Fig. 2, Table 5). Total lichen cover remained relatively stable with value 65% along the inner 170 cm on branches, followed by a rapid decrease to 0% near the branch tip.

There were significant differences in the coverage of some lichen species and in the localization of thalli along branches. For most species on branches, a decrease in cover with increasing distance from the trunk was recorded (P. ambiguа, total cover of crustose species) (Fig. 2d, 2f). However, cover of P. glauca started to decrease at a greater distance from the tree trunk (Fig. 2e). No changes of the P. glauca cover, from 0–130 cm from tree trunk, and only then it decreases. Moreover, cover of H. physodes, had maximum cover closer to the branch tips (Fig. 2e). Thus, according to the obtained results, there is clear differentiation of microhabitats within the spruce branches, which is reflected in the distribution patterns of lichen species cover along the branch.

On the peripheral sections of large branches located in the middle and lower parts of the tree crowns, the habitat conditions for epiphytic lichens are similar to those on the young branches in the upper crown. They are characterized by high precipitation availability, similar characteristics of the substrate, due to the young age of shoots and the presence of needles. In addition, the edges of large branches, as well as the upper branches, are affected by intense mechanical vibrations under the influence of wind (Alekseev, 1975; Protopopov, 1975; Galenko, 1983). Top branches also had the lowest lichens diversity with an average number of only 2 species. These branches were dominated by H. physodes, a species with high growth rate and ability to successfully colonize sites between needles (e.g. McCune, 1990, 1993; Hilmo, 1994; Esseen et al., 1996; Hyvärinen et al., 1999). Base of branches represents a habitat with reduced light intensity and humidity, rough bark and absence of needles. From branch tip to base light intensity falls 3 times, from 14–20% to 5–7% (compared with an open situation) and precipitation decreases from 100% to 17–40% (Protopopov, 1975). In habitat conditions, typical for the segments of large branches located inside the crown (lower light availability and humidity, greater thickness and fracture of the bark, lack of needles), the growth rate and competitive ability of H. physodes decreased and other lichen species (P. glauca, P. ambiguа, Mycoblastus sanguinarius, Pertusaria spp., Ochrolechia spp.) with different environmental characteristics colonized these branch sites. The maximum number of taxa per one branch was recorded at their base and in the middle part of older than 100-year-old trees.

Thus, the trunks and branches of spruce trees are significantly different habitats of epiphytic lichens, and this is related to the development of the substrate, such as the tree bark, its texture, chemical and physical properties (Hilmo, 1994;
Fig. 2. Average total number of species, average total lichen cover, cover of different species and the group of crustose lichens on 10 cm-long segments of spruce branches at different distances (in cm) from tree trunk. Vertical lines represent standard error of mean values. Regression lines are drawn according to regression equations (Table 5).
Holien, 1997; Hilmo et al., 2009). It has been shown, for example, that trunks and branches with a smooth surface were unfavorable substrate for colonization by lichens (Romagni & Gries, 2000).

ACKNOWLEDGEMENTS

The study was supported by the Ministry of Education and Science of the Russian Federation (project No 5.8740.2017/k). We would like to thank Roman Ignatenko, Roman Obabko & Oksana Denisyk (Petrozavodsk State University, Russia) for assistance in the fieldwork, and Irina Stepanchikova (Komarov Botanical Institute, Saint-Petersburg, Russia) for help in identification of some sterile crustose lichens. We are grateful to reviewers for valuable corrections and recommendations, which has improved the quality of our work. We also would like to thank William Purvis for linguistic help and valuable improvements.

REFERENCES

Bäcklund, S., Jönsson, M., Stenbom, J., Frisch, A. & Thor, G. 2016. A pine is a pine and a spruce is a spruce – the effect of tree species and stand age on epiphytic lichen communities. *PLoS ONE*
11(1): e0147004. https://doi.org/10.1371/journal.pone.0147004

Ivanter, E. V & Korosov, A. V. 2010. Elementary biometrics. Petrozavodsk, Petrozavodsk State University. 104 pp. [In Russian].

Kazimirov, N. I. 1971. Spruce forests of Karelia. Leningrad. 139 pp. [In Russian].

Kittredge, D. 1951. Influence of forest on climate, soils and water regime. Moscow. 456 pp. [In Russian].

