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In recent years, computational sciences such as computational hydrodynamics or
computational �eld theory have supplemented theoretical and experimental inves-
tigations in many scienti�c �elds. O�en, there is a seemingly fruitful overlap be-
tween theory, experiment, and numerics. �e computational sciences are highly
dynamic and seem a fairly successful endeavor—at least if success is measured in
terms of publications or engineering applications. However, for theories, success
in application and correctness are two very di�erent things; and just the same may
hold for “methodologies” like computer simulations. A lively debate on the epis-
temic status of computer simulations has thus emerged within the philosophy of
science.�is paper discusses possible problemswhen computer simulation and lab-
oratory experiment are intertwined. In present experiments, stochastic methods in
the form of Monte Carlo simulations are o�en involved in generating experimen-
tal data. It is questioned as to how far a realistic stance can be maintained when
such stochastic elements are involved. Taking experiments in high energy physics
as a study case, this paper contends that using these types of entangledmaterial and
numerical experiments as a source of new phenomena or for theory testing must
presuppose a certain understanding of causality and thus binds us at least to a weak
form of realism.
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1. Introduction
In recent years, computational sciences are understood as the development,
exploration and numerical implementation of computational models sup-
plemented theoretical and experimental investigations in many scienti�c
�elds. Particularly in the physical sciences like computational hydrodynam-
ics or computational quantum �eld theory there is o�en a seemingly fruit-
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ful overlap between theory, experiment, and numerics. �e computational
sciences are highly dynamic and seem a very successful endeavor—at least
when success is measured in terms of publications or engineering applica-
tions (cf. Hillerbrand 2012). We know, however, that for theories, success
in application and correctness are two very di�erent things; and just the
same for “methodologies” like computer simulations. A lively debate on
the epistemic status of computer simulations has emerged within the phi-
losophy of science.1 While some see computer simulations as epistemically
on a par with real, i.e. laboratory experiments (e.g. Parker 2009, Morrison
2009), others deny that the empirical �avor that goes along with numerical
programming results in an epistemic similarity between material and nu-
merical “experimenting” and thus view computer simulations as means of
theoretical inquiry (e.g. Oreskes et al. 1994).

As characteristic for philosophy of science a�er the practice turn (cf.
Rouse 2002, Soler et al. 2012), the debate on the epistemic status of com-
puter simulations is commonly developed by means of case studies. How-
ever, one must be aware of hasty inferences from case studies to statements
on the epistemic payo� of computer simulations generally: computer simu-
lations are powerful because versatile instruments and any analysis of their
epistemic payo� must be sensitive to the various purposes for which they
are used in the sciences. I want to distinguish three types of simulations as
regards their epistemic content or aim.

Type-I simulations refer to simulations that aim at information about ab-
stract, most o�en mathematical systems. An example for this type of simu-
lation is the “proof ” of the four color theorem, 2 however, most of the time,
the systems under investigation are di�erential equations that cannot or can-
not yet be solved analytically. �e search for �nite-time singularities in the
three-dimensional incompressible Euler equations provides an excellent ex-
ample where the numerical investigation of an abstract system, i.e. the Euler
di�erential equation, is of practical importance for research in the empir-
ical sciences, in this case �uid dynamics (e.g. Grauer et al. 1998). In this
�rst sense, simulations yield a (possibly preliminary) alternative for a lack of
theoretic understanding.

Type-II simulations provide information on systems that cannot or can-
not yet be accessed experimentally or are simply very hard to access in real
laboratory or �eld experiments. Examples here are very diverse. (a) Physi-
cists may use this type of simulation for analyzing turbulent �ows on scales

1 See, fore example, (Humphreys 1991, 2004, 2009, Hartmann 1996, Hughes 1999, Morgan
2003b,a, Frigg and Reiss 2009, Winsberg 2009, Parker 2009, Morrison 2009, Giere 2009).

2 (Appel and Haken 1977). Note that this proof is not accepted as such uniformly amongst
mathematicians.
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too small to access in laboratory experiments, but information on the be-
havior on these small scales is very important for re�ning or testing existing
theories. (b) In numerical experiments, certain e�ects can be singled out
that cannot be detangled in material experimenting. When analyzing iner-
tial particles in any sort of �ow, for example, the numerical simulation has
the advantage that onemay focus on the particles’ inertia only while neglect-
ing e�ects like gravitational interaction or the particles’ �nite size. �ese ef-
fects cannot be decoupled in real experiments. Moreover (c) the analysis of
some real, i.e. material experimental data may rely on simulations, usually
on the form of Monte Carlo simulations. In this sense, simulations may be
seen as a (possibly preliminary) replacement of experiments.

Type-III simulationsmay be seen as a kind of instrument for prognoses
or forecasting. Here, simulations are used for predicting the behavior of
real, usually complex systems for which (a) no accepted analytic descrip-
tion exists, or for which we are (b) certain that the theoretical description
implemented numerically is correct (within the desired precision). Typical
examples for the former arise in the engineering sciences, in weather and
climate predictions while the latter type is o�en studied in astrophysics (cp.
Morrison 2009) or engineering sciences.

Note that o�en scientists use the very same simulation for various pur-
poses. Practically in applied sciences or engineering applications type-I and
type-II simulations seem to mix fairly commonly. Moreover, one may ar-
gue that all simulations give information onmathematical systems as in one
way or the other it is an abstract mathematical model that is numerically
implemented. Here, a distinction made, for example, by S. Hartmann with
the terms ‘discrete’ and ‘continuos’ simulation models seems of importance.
While for the latter the corresponding dynamic model is conveniently for-
mulated in the language of di�erential equations (Rohrlich 1991), discrete
simulations are based on a discrete space-time structure right from the be-
ginning (Wolfram 1994). A prominent example of a discrete model is the
game of life simulation, di Paolo and Bedau call these types of discrete mod-
els “simulation models”.

�ough in scienti�c practice, all three types of simulations may appear
jointly, distinguishing these three epistemic aims is of use when discussing
epistemic issues related to computer simulations. In particular it may help
to judge the applicability of extreme positions. For example Oreskes et al.
(1994) claim that computer simulations lack any empirical content—which,
if at all, can make sense only for type-I simulations, the same is true for
claims that see computer simulationsmainly as thought experiments, a claim
not applicable, at least not in a straightforward way, to type-II simulations.
Moreover it may seem that claims on the epistemic status of computer sim-
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ulations per se seem unjusti�ed as while some computer simulations may
indeed be epistemically on a par with material experiments, other may be
very close to theoretical investigation (Hillerbrand 2012). A large part of the
philosophical discussion on the epistemic status of computer simulations
thereby focuses on the demarcation of material and numerical experiments.
So far , little attention has been paid to data-generationwhere computer sim-
ulations and material experimenting are inevitably intertwined (type-II (c)
simulations above). Not only are these types of simulations fairly common in
today’s experimental sciences, examples range fromdata-processing in fMRI
scans (Amaro and Barker 2006) to experiments in high-energy physics, but
also the study of whether and in case how, the involvement of computer
simulations alters the epistemic status of the gathered data may shed some
light on the question as to whether simulations are rather means of theo-
retical or of experimental inquiry. �e question to be addressed in this pa-
per is therefore whether the involvement of simulations in the process of
material-experimental data-generation alters the epistemic status of the data
or whether it is nothing but a possibly severe case of theory-ladeness of ob-
servation. As the involvement of computer simulations occurs already at a
very early stage of data generation, this question is of high relevance for a
practical realist account of how science works. In this paper, experiments
in high-energy physics are used as a study case as here a fairly profound un-
derstanding of the involvement ofMonte-Carlo simulations and a somewhat
elaborate mathematical background theory exists.

In particular, I want to study the so-calledHERMES e�ect (Ackersta� et
al. 2000), a prominent and allegedly new experimental observation that
turned out to be a numerical artefact some years a�er its �rst publication
(Airapetian et al. 2003). �e erratum showed convincingly for everybody in
the particle physics community that what became known as the HERMES
e�ect merely resulted from an error in the Monte-Carlo simulation used
in processing the data. Before discussing how the involvement of stochas-
tic processes changes the nature of data generation in section 4, let us be-
gin with a brief philosophical account of experiments in section 3. Here I
want to draw on Duhem’s account of experiments and, in particular, Hei-
delberger’s adaption of Duhem’s account. In their words, the involvement
of Monte-Carlo methods may spoil the “causal level” of experimenting. A
detailed analysis of the HERMES experiment however reveals that though
the involvement of computer simulations provides a severe case of theory
ladenness, the problems leading to the observation of an allegedly new phe-
nomena had nothing to do with the simulation per se (section 5). In the �nal
section it is asked as to how far a realistic stance can be maintained when
such stochastic elements are involved. Taking experiments in high energy
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physics as a study case, I will contend that using these types of experiments
as a source of new phenomena or for theory testing must presuppose a cer-
tain understanding of causality and thus binds us at least to a weak form of
realism. Before I want to dilate a little the usage of the term computer simu-
lation in section 2 as this topic has recently attracted much attention among
philosophers of science.

2. Computer Simulations and Monte Carlo
Computers may be used simply as calculators, but o�er far more potential.
To distinguish simple number crunching frommore sophisticated numerics,
S. Hartmann (1996) and others use the term simulation to denote the imita-
tion “of one process by another” (Hartmann 1996, 83; cp. Parker 2009). Here,
‘process’ refers to some temporal sequence of states of a system, thereby
stressing the dynamic aspects of (not only computer) simulations. By con-
trast, P. Humphreys (1991) adopts a broader notion of computer simulations:

A computer simulation is any computer-implementedmethod for ex-
ploring the properties of mathematical models where analytic meth-
ods are unavailable.

But computer simulations may be of great value even where analytic so-
lutions are known, for example via computer aided visualizations. I thus
want to broaden Humphrey’s notion and use the term ‘numerical experi-
ment’ to refer to any computer-implemented method that is non-analytic. It
is these numerical experiments that are at the core of this paper. Note that
not all numerical investigations aim at simulations and as such at dynami-
cal aspects. Most and the most interesting computer experiments, however,
are simulations in the sense that they mimic a dynamic sequence of states.
Following the common parlance in the sciences and in philosophy, I will
thus sometimes use the terms computer simulation and numerical experi-
ment synonymously though strictly speaking they are not interchangeable.3
Note particularly that most scienti�c investigations seem to be concerned
with dynamic processes. Even when explaining such stationary phenomena
like rock formation, for example, one o�en falls back on dynamic explana-
tions and thus simulations in Hartman’s sense. As the term ‘material experi-
ment’ is commonly not restrained to simulations in this paper, just the same
computer-aided investigations are not reduced to simulations in this paper,

3 Note in particularly that, as has been noted in the literature, both terms are problematic.
While ‘numerical experiment’ seems to presuppose that numerics is epistemically on a par
with material experimenting, the term ‘computer simulation’ seems too narrow as it raises
the connotation of the modeling of a dynamic process, see main body of the text.
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though simulations in the narrow sense may indeed be by far the largest and
most interesting class amongst numerical experiments.

Note in particular that Monte-Carlo methods as a class of computa-
tional algorithms, which rely on repeated random sampling to compute their
results, are simulations in the sense of any of the de�nitions introduced
above. �ese Monte-Carlo simulations are used in data-generation when
the experimentally detected data itself is more or less meaningless to the
experimenter—scientists use the terms ‘uninterpreted’ or ‘raw data’.4. �e
additional information needed to interpret the data may involve computer
simulations, particularly simulations like Monte-Carlo methods that entail
genuine stochastic, i.e. random processes.

Such types of experiments are fairly common in today’s sciences. Exam-
ples range from data detection in particle physics to imaging techniques as
they are used in fMRI scans, for example (Ward 2000, Amaro and Barker
2006). Commonly stochastic methods are employed via Monte Carlo simu-
lations. �e catch phrase “order out of chaos” in the title of this article refers
to the fact that Monte-Carlo simulation and thus a stochastic process is in-
volved in interpreting the data, so with a random process you sort of create
order in a seemingly random series. A procedure that seems, at least at �rst
glance, somewhat odd.

Monte-Carlo methods are fairly popular in many parts of the numerical
sciences—ranging from mathematics and theoretical physics to economics
and experimental sciences. �ough the analysis in this papers focusses on
the use of Monte-Carlo simulations in data generation from material ex-
periments, I want to �rst introduce the principle idea behind these type of
simulations in a fairly general fashion, the application to experiments is dis-
cussed in section 5.5

Before the physicists J. von Neumann, S. Ulman andN.Metropolis, who
worked at the time at theManhattan project, introducedMonte Carlo simu-
lations in the 1940s at Los Alamos National Laboratory, statistical sampling
in simulations was narrowed down to estimating uncertainties in simula-
tions of deterministic problems. �e Monte Carlo simulation inverted this
approach and solved a deterministic problem with the help of probabilistic
analogues. �ough Monte-Carlo methods vary, we may distinguish the fol-

4 Using Galison’s terms, almost all instruments used in the big collider experiments are in
the logical or electronic tradition (Galison 1997) and thus the raw data is meaningless to
the experimenter. Raw data in less elaborate particle physics experiment, however, such as
the electrical signals from a photo multipliers may be perfectly reasonable.

5 Note that in this paper the notions ‘Monte Carlomethod’ and ‘Monte Carlo simulation’ are
used in a general fashion and loosely synonymously because the distinction between these
terms as drawn by some authors, e.g. Sawilowsky 2003, seems hard to maintain (Kalos and
Whitlock 2008).
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lowing particular steps that seem together characteristic for all Monte-Carlo
simulations (e.g. Kalos and Whitlock 2008):

1. �e domain of possible inputs is de�ned.

2. Input is generated randomly from a probability distribution over
the domain.6

3. A deterministic computation on the inputs is performed.

4. �e results are aggregated.

As an illustration we may consider how this procedure is used to estimate
the number π: (1) By drawing a square on the ground and inscribing a circle
within it, the domain of input is de�ned. (2) Scattering objects of uniform
size (drops of water, grains of sand, or needles) uniformly over the square,
and then (3) counting the number of drops that landed inside the inscribed
circle to the total number of drops gives the ratio of the two areas. (4) �e
ratio of these areas (πr2 for the inscribed circle, (2r)2 for the square) is cal-
culated analytically as π/4. �is gives a probabilistic estimate of π and a
instructive example of howMonte-Carlo methods are used in mathematics.
�e range of application is fairly diverse and not limited to genuine stochas-
ticmodeling as depicted by the estimation of the number π. With the help of
the so-called Feynman-Kac formula that links non-stochastic parabolic par-
tial di�erential equations to stochastic processes, Monte Carlo simulations
can be used for the integration to a deterministic di�erential equation.

InvolvingMonte-Carlo simulations inmaterial experimentingmay bring
about a very severe theory-ladeness of our observations. �is seems rather
uncontroversial. In this paper I want to raise a further question, namely
whether involving genuine stochastic methods renders the constructive and
productive function of experiments impossible and thus data processed via
Monte Carlo would not be able to yield new phenomena, for example. Many
high energy physics experiments like the ones performed at the Large
Hadron Collider (LHC), which is currently the world largest and highest-
energy particle accelerator and is operated by the European Organization
for Nuclear Research, known as CERN, distinguish themselves from other

6 To limit computational time, the input in step (2) is o�en not generated by random sam-
pling, but by using quasi or pseudo random sequences instead. O�en these procedures are
referred to as Quasi or Pseudo Monte Carlo simulations. �e used sequences are totally
deterministic, so the popular name quasi-random may seem misleading. �e sequences
do, however, exhibit statistical randomness. �is article thus does not dwell on this issue
any further and acts as if all Monte-Carlo simulations use indeed random sequences. �is
approach is motivated by the fact that the pseudo random sequences are indeed to mimic
statistical randomness.
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types of data production by the involvement of stochastic process in gener-
ating the data, in particular the involvement of Monte Carlo simulations in
calibrating the detectors. And this is indeed no peculiarity of the HERMES
experiment, but rather a feature of almost all particle detectors at the large
particle physics experiments at the large particle colliders, even at CERN’s
LHC.

3. Two-level Account of Material Experiments
Before analysing in detail howMonte-Carlo simulations are used in high en-
ergy physics, let us �rst look at how “normal” experiments, i.e. those without
computer simulations, work and thereby follow the distinction of two levels
of experiment as introduced by Pierre Duhem and systematized by Michael
Heidelberger. According to this account, one can distinguish a causal and
a symbolic level of experiments.7 Duhem distinguishes experiments in, for
example, physiology from those in physics. While for the former, experi-
mental results may be understood without a (deep) theoretical understand-
ing and can be captured with the causal expressions of our ordinary everyday
language, the latter necessarily and unavoidably interpret the observation
within a symbolic system, provided by some already existing theory. Follow-
ing Duhem, only in the latter—i.e. in the mature sciences—theory-ladeness
of the observation is a problem.

Physiology is paradigmatic for what Duhem refers to as “. . . sciences
. . .where the experimenter reasons directly on the facts by a method which
is only common sense brought to greater attentiveness but where themathe-
matical theory has not yet introduced its symbolic representations” (Duhem
1906, 180). For sciences like physiology, experiments serve to improve and

7 Note that, following Heidelberger (2003), these two levels or “roles” always need to be
present irrespective as to whether we consider an experiment in its productive or its con-
structive or its representative function. Productive experiments generate phenomena that
are usually not part of our environment—for example the creation of elementary particles,
free nuclei or strangematter in high energy physics experiments, but also the generation of
vacua, X-rays, etc. One may distinguish from these productive instruments constructive
ones—though there is some overlap and it is a continua between both cases. In its con-
structive function, an experimentmanipulates phenomena in such a way that they become
accessible in the laboratory. �e constructive instruments coincide withMcMullin’s (1985)
causal idealization in which phenomena are sort of liberated from spurious side-e�ects as
done in imitating experiments that mimic strokes of lightning or the air �ow around a car.
An example for such an instrument is the Leyden jar or experimental setups that try to
mimic or imitate real phenomena. An example for the latter are wind tunnel experiments.
�e representational function of an instrument becomes important when measurement is
involved. For example, when measuring temperature, one sensorial experience, namely
heat, is represented by another usually audial one, for example the height of a mercury
column.
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enhance our understanding of the natural environment in terms of causal re-
lations. It is causal relations that one discovers in these simple experiments.
Within sciences like physics where a mathematical theory has already been
successfully introduced—Duhem refers to these as “mature sciences”—the
aim of experiment is to incorporate new experimental �ndings into the al-
ready existing symbolic notion. So for mature science, experiments can-
not reveal new phenomena in the sense of new causal relations. �e scien-
tists only inscribes phenomena in terms of an abstract and symbolic struc-
ture. �e raw data of our every day experience is replaced by abstract and
symbolic representations in order to be manageable. “�e physicist can no
sooner conceive the concrete apparatus without associating with it the idea
of the schematic apparatus than a Frenchman can conceive an idea without
associating it with the French word expressing it. �is radical impossibility,
preventing one from dissociating physical theories from the experimental
procedures appropriate for testing these theories, complicates this test in a
singular way, [. . . ]” (Duhem 1906, 183).

Following Duhem, in the historical evolution of sciences, the experi-
ment �rst aims to bring information on causal relations and thus the exper-
iment reveals new information about some phenomena—experiments may
be constructive or productive. In the more mature sciences, however, the
observation is highly theory-laden; the observed only makes sense when in-
terpreted in some symbolic interpretation system. Duhem applies his two-
level account of the experiment mainly to the historical evolution of the
sciences. Michael Heidelberger has argued more recently that in all exper-
iments, even within the mature sciences, both levels are present (Heidel-
berger 2003): �ere is always a causal and always a representational level
involved. Moreover, only when the causal level is present, experimental re-
sults can have signi�cance without the abstract and symbolic representa-
tion provided by some background theory: Only when one understands an
experiment as a causal manipulation of instruments, then the experiment
may have a productive or constructive function as attributed to it not only
by Heidelberger, but famously by Hacking and other new experimentalists
(Hacking 1983).

Heidelberger’s reconstruction of Ohm’s experiments which led to the
formulation of Ohm’s law relating electrical current I and voltage U via the
resistance R of the respective circuit element elucidate how the causal level
is present even in experiments in the mature sciences. Ohm’s investigation
of the interaction of his instrument (which consists in magnetic centerpins)
with wires in an electric circuit resulted �rst in a causal concept, namely that
a centerpin is de�ected in a certain way when electricity runs through a wire
in its close vicinity.�is causal connection can be experiencedwithout theo-
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retical background information. Only in a second step did this causal under-
standing lead to an improvement andmodi�cation of the symbolic interpre-
tation. In particular the �ndings could not be implemented into the existing
theoretical (symbolic) apparatus, partly they necessitated a new symbolic
representation of resistance. So the causal and thus in Duhem’s and Heidel-
berger’s understanding theory-free aspects of an experiment, is necessary to
understand an experiment as a causal manipulation of instruments. �ese
instruments then become important in gathering data via their productive
and constructive or representative function.

At �rst glance, involving stochastic processes in generating the data
seems to spoil the causal function of experiments. So the question to be ad-
dressed in particular in the following when analyzing the data generation
that lead to the HERMES e�ect is, whether involving genuine random pro-
cesses in the form of Monte-Carlo simulations in the data processing spoils
the causal level and hence these types of experiments cannot, for example,
yield any information on new phenomena.

4. Monte Carlo Simulations in Data Generation: �e HERMES
E�ect

When computer simulations are involved in data generation it is almost al-
ways in the form of so-called Monte-Carlo methods. As detailed in section
2, these are a class of computational algorithms that rely on repeated ran-
dom sampling to compute their results (Metropolis and Ulam 1949, Manno
1999). As genuine stochastic processes are involved here, it stands to rea-
son whether this stochastic nature of the data-generation spoils the causal
level of experimenting that following Heidelberger and Duhem needs to
be present for experiments to develop their representative, constructive or
productive function. Before addressing this question from a more generic
standpoint, this section analyzes a speci�c misinterpretation of an experi-
mental result, the HERMES e�ect, that was attributed to the Monte-Carlo
simulation involved in data-generation.

�e HERMES experiment ran from 1995 till 2007 to investigate the spin
structure of the nucleon, i.e. protons and neutrons (e.g. Avakian et al. 1998).
To study the nucleon structure, electrons or positrons, i.e. point-like, charged
elementary particles, were accelerated to high energies in a circular ring of
about 6.5 km circumference. At HERMES this beam of high energy elec-
trons was then brought to a collision with gas injected into the beam line.
�e electrons would collide with the nucleus (the protons and neutrons) of
the gas, destroying it and producing new particles. Speci�cally, the electrons
would collide with the quarks and gluons which make up the nucleons. �e
kind and properties of the the produced particles allow to study the internal
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structure of the protons and neutrons, thatmeans, the distribution of quarks
and gluons inside the nucleon.

Fig. 1. �e HERMES e�ect. Cross-sections σ for various nucleons as reported
by Ackersta� et al. 2000 (HERMES Collaboration). Details see text.

Figure 1 shows the ratio of cross-sections σ for various nucleons is plot-
ted as a function of the variable x-Bjorken. �is variable can be understood
as the fraction of the nucleon energy carried by the quark on which the elec-
tron scattered. Shown is the ratio of the cross section of a heavier target with
nuclear mass capital A (σA) to the cross section of Deuterium (σD). All ex-
periments show a slight decrease of this ratio towards smaller x. Very strik-
ing is the fact that in the HERMES data, this ratio drops rather dramatically
(for a slightly heavier target (nitrogen) N 14 instead of (carbon) C12). Obvi-
ously, an explanation for this very di�erent behaviour was sought. �eories
were developed and published—even in peer-reviewed journals.
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5. Monte-Carlo Simulations in Data Processing
When we follow Duhem’s and Heidelberger’s account of experiment, the
causal aspects of manipulating instruments are necessary for an instrument
to have some theory-independent output. Now it seems that if the mea-
surement instrument itself invokes genuine random stochastic processes as
is the case when Monte-Carlo simulations are involved in data processing,
then the causal level of the experiment is endangered, challenging our inter-
pretation of experiments as causal manipulation of instruments. Does the
involvement of Monte-Carlo simulations and thus of a genuine stochastic
processes spoil the causal level of experimenting and is this why we ended
upwith theHERMES e�ect as a numerical artifact? To answer this question,
let us look in more detail how Monte-Carlo simulations were used in inter-
preting data at HERMES. �is procedure is fairly general and not peculiar
to the HERMES experiment, rather Monte-Carlo are used the same way at
all particle accelerators.

Before actually being able to use a detector in high energy physics ex-
periment, one actually runs a simulation of this very detector, whereby two
Monte Carlo processes are involved. (i) With a so-called event generator
the scattering processes as they are expected to occur in the real collision as
set up by the collider experiment are simulated. �e stochastic nature of the
Monte-Carlomethod is of importance here as the theory underlying the nu-
merical model, i.e. the Standard Model of particle physics, takes scattering
as a stochastic event. �e results of this �rst Monte-Carlo simulation deter-
mine “what can be seen” by an ideal detector (particles, energies, momenta,
angles, . . . )—provided that the theoretical model underlying the simulation
is indeed correct. (ii) In a second step, a program (originally developed by
CERN) is used to build a three-dimensionalmodel of the real detector.�en
the input of step 1 is used to determine where the particles that were created
in the collision hit the detector material (again assuming that the theoretical
model is correct). By using abstract models of the cross-sections, it is deter-
mined whether there are interactions between created particles and detec-
tor material. It is then simulated how the track of a scattered particle may
be modi�ed by the interaction with the detector material. Again, follow-
ing physical theory, there are stochastic processes involved in the events and
they are simulated with the help of Monte-Carlo methods.8

8 Note that the two-step process of modeling and processing the experimental data gives, of
course, only a very rough picture of the work of the high-energy physicist. A closer look
would acknowledge various di�erent computer simulations, for example, the �rst step in
themain body of the textmay be decomposed into a simulation of the actual particle gener-
ation in the collision and a simulation of the following parton showers and hadronization.
�ese details are, however, of no relevance for the epistemic discussion.
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�e HERMES e�ect seems to indicate a severe theory-ladenness of ex-
periments within high energy physics. Indeed, it illustrates very clearly at
least two types of theory-ladenness distinguished by Kuhn. While semantic
theory loading (Kuhn 1962, 127�) expresses the idea that theoretical commit-
ments of whatever sort exert a strong in�uence on observational descrip-
tions, salience (Kuhn 1962, 123f) expresses the fear that scientists working
with di�erent theoretical frameworks (what Kuhn refers to as paradigms)
may not look at the same thing when observing the same experiment. Kuhn
illustrates this by Aristotle and Galilei watching pendulum swings. Aristotle
would look at theweight of the pendulum, the vertical height towhich it rose
and the time required for it to achieve rest, while Galilei primarily measured
and observed things like radius, angular displacement and time per swing.
Galilei and Aristotle would not have collected the same data when looking
at the same pendulum experiment.

As the reconstruction of the HERMES experiment above appears to re-
veal, high energy physics seems to illustrate Kuhn’s theory-ladeness of ex-
perimental observations very lucidly. �e output of the two-step simulation
detailed above determines what can actually “be seen” with the help of this
very detector. All interactions or possibly generated particles that were not
already known by the theories underlying the models in step 1 and 2, are
not detected by the observer. Experiments within high energy physics thus
seem to be a paradigm case for what Kuhn referred to salience by working
within a certain theoretical framework. Just like for salience, high energy
physics experiments also provide good examples for semantic theory load-
ing. �e interpreted data can only be of the same format as the output of the
second step of the simulation. However within Kuhn’s or others framework
of reasoning that focusses on theory-ladenness the involvement of stochas-
tic processes in determining the interpreted data does not distinguish itself
frommore familiar types of data generation which do not involve stochastic
processes.

But what actually did go wrong at HERMES?�e critiques were right, it
had to dowith theMonte-Carlo simulation, but not actually with the simula-
tion per se. �e physics result of the HERMES experiment was a ratio of the
cross section of nitrogen divided by the cross section of deuterium. How-
ever, events happening in the detector are recorded with a certain e�ciency,
that means a certain fraction of events is not recorded for various reasons.
Also, apart from the scattering events of interest (in this case: scattering on
the quarks inside the nucleons), also other events can happen (in this case
particularly: elastic scattering of the electron on the whole nucleon, leav-
ing the nucleon intact), which for the experimentalist are indistinguishable
from the �rst kind. �ese are the so-called background events.
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�e �nite e�ciency of the detector as well as the ratio of background to
real events are di�erent for deuterium and nitrogen. So the measured cross
section ratio between nitrogen and deuterium is not the real ratio: events are
missing, others are included although they do not belong there, all that with
di�erent probability for numerator and denominator. To correct the mea-
sured result, as indicated above, a Monte-Carlo simulation of the scattering
and the subsequent measurement in the detector is used. �is simulation
provides the correction to the measured result.

During the elastic scattering which contributes to the background, the
beam electron is de�ected (scattered) and in addition a photon with high
energy is produced. �is photon has a high probability to hit the beam pipe
(a solid tube through which the electron beam passes through the detector).
In reality, this creates a lot of secondary particles, causing the detector to be
blinded and the data of this event being unusable. In reality, background
events have rather high probability of not being recorded. In the simula-
tion, however, the beampipe was ignored and thus photons hitting the beam
pipe. So in the simulated detector, no secondary particles were created and
thus the detector (in the simulation) had no problem in detecting the scat-
tered electron. �e measured result was corrected for the undesired back-
ground. Since the faulty simulation showed too high a probability that the
background events were indeed detected, too much background was sub-
tracted. And since the likelihood of such background events (compared to
the scattering events HERMES looked for) was proportional to the charge of
the nucleus, the e�ect was larger for the heavier nitrogen target. Hence the
�nal result showed a drop of the ratio σ(Nitrogen)/σ(Deuterium), which
in reality was not there. An erratum was published in 2002 and its results
are in agreement with the other experiments (Airapetian et al. 2003).

6. �e Causal Level of Experimenting and the Stochastic Nature
of Data Generation

Summarizing the reconstruction of the origin of the HERMES e�ect in the
last section, we may say that what actually went wrong at HERMES seems
something very common in experimental practice. In particular, it seems
to be no unique feature of the involvement of stochastic processes in the
form of aMonte-Carlo simulation. When aiming at the measurement of the
brightness of a star, for example, while some object (a �y say) gets in be-
tween the star and your measurement instrument without you realizing it,
similar problems show up. �is however does not answer the original ques-
tion posed in this paper, namely as to whether the involvement of genuine
stochastic processes in the form of Monte Carlo simulations actually results
in epistemically di�erent data.
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Only if one is willing to buy a certain (though weak) metaphysical as-
sumption, the involvement of Monte Carlo simulation does makes no dif-
ference on an epistemic level . Following Duhem and Heidelberger, it was
argued that the causal level is indispensable for using the experimental re-
sults as hints for new phenomena, and not only for theory testing. �e
causal interaction betweenmeasuring device and target system can bemain-
tainedwhenMonte-Carlo simulations are involved onlywhenwe accept that
causality is stochastic in nature.

Requiring a causal level in experiments like the one atHERMES requires
that we do interpret causality in a certain way, namely: a probabilistic ac-
count of causality is required in order to make sense of high energy physics
experiments. �is may seem easy to buy for the (experimental or theoreti-
cal) particle physicist, however, it is more than a side note to philosophy of
science debates on the metaphysics of causality. A practical realistic account
of how science works must be sensitive to the metaphysical or rather proto-
scienti�c assumptions that have to be made to actually interpret measure-
ment results as such. Note that the analysis in this article says nothing about
the fundamental nature of causality, whether it is fundamental or may be re-
duced to other features. Here is where the practical realist account comes in
handy: Neither does the world consist in self-identifying objects, nor are hu-
mans world makers. Not even the working scientists who uses instruments
like particle generators to generate phenomena that they subsequently in-
vestigate creates the world. Niiniluoto (1999) nicely points out the intercon-
nection between the human world-co-creator and the objective reality she
investigates. By referring to the world as cake, Niiniluoto (1999, 222) writes
“A cake can be sliced into pieces in a potentially in�nite number of ways, and
resulting slices are human constructions made out of the parts of the cake”.
While Niiniluoto and Vihalemm (2012) take the cake to be the world, by
using constructive instruments like a particle accelerator in which by colli-
sion new particles are created, scientists rather seem to bake their own cake
from given substances in the world. �e resulting cakes may be di�erent.
�is holds for every use of a constructive instrument. �e investigation in
this article however focused on an aspect peculiar for the involvement of
Monte-Carlo methods in data generation. If we take the stochastic nature
of the underlying process seriously, this implies that when a causal account
of experiment is necessary, we have to accept a stochastic interpretation of
causality. Using Niiniluoto’s comparison, this, however, means that in order
to be able to use our knife, i.e. the Monte-Carlo approach to high-energy
physics data, we have to assume certain things about the world that we do
not test in an experiment. And, moreover, we actually cannot test these in
the experiment we are about to undertake.
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Summarizing, this paper focusses on a speci�c form of using computer
simulations in present day science, namely involving Monte Carlo simula-
tions in generating experimental data. �is implies a very severe case of
theory-ladenness of observation. However, the involvement of stochastic
processes, in the case of particle physics in the form of Monte Carlo sim-
ulations, does not spoil the causal level for which I try to argue that it is
necessary to understand an experiment as a productive or constructive in-
strument in scienti�c progress. However, in order to be able to use these
types of experiments in this way a�ords a certainmetaphysical commitment
in that sense that it forces us to take up a probabilistic (i.e. non regularity)
view of causation.
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