A generalization of mg-closed sets in hereditary m-spaces

Ahmad Al-Omari and Takashi Noiri

ABSTRACT. In this paper, we introduce the notion of $mg\mathcal{H}$ -closed sets in a hereditary *m*-space (X, m, \mathcal{H}) and obtain a further generalization of *mg*-closed sets. We investigate basic properties, characterizations and preservation properties of $mg\mathcal{H}$ -closed sets.

1. Introduction

In 1970, Levine [16] introduced the notion of generalized closed (briefly g-closed) sets in topological spaces. Since then, many variations of g-closed sets have been introduced and investigated. As an application of these sets, many low separation axioms have been introduced. Among them, $T_{3/4}$ -spaces due to Dontchev and Ganster [13] are useful. They showed that the digital line lies between a T_1 -space and a $T_{3/4}$ -space.

The notion of ideals in topological spaces was introduced by Kuratowski [15]. Janković and Hamlett [14] defined the local function on an ideal topological space (X, τ, \mathcal{I}) . By using it they obtained a new topology τ^* for X and investigated relations between τ and τ^* . In [14, 15, 23], further properties of ideals on a topological space are obtained.

A subfamily μ of the power set $\mathcal{P}(X)$ on a nonempty set X is called a generalized topology (briefly GT) [12] if $\emptyset \in \mu$ and any union of elements of μ belongs to μ . Császár [11] defined a hereditary class \mathcal{H} which is weaker than an ideal and constructed a new GT μ^* from a GT μ and a hereditary class \mathcal{H} . Moreover he showed that many properties related to τ and τ^* remain valid (possibly with small modifications) for μ and μ^* .

Received March 8, 2023.

 $^{2020\} Mathematics\ Subject\ Classification.\ 54D30,\ 54C10.$

Key words and phrases. m-structure, m-space, mg-closed, here ditary class, mgH-closed.

https://doi.org/10.12697/ACUTM.2023.27.12

Corresponding author: Ahmad Al-Omari

In [18], the author introduced and investigated a unified notion of many generalizations of g-closed sets by using mg-closed sets in an m-space (X, m).

In [19], Noiri and Popa introduced the minimal local function on a minimal space (X, m) with a hereditary class \mathcal{H} and constructed a minimal structure m_H^{\star} which contains m. They showed that many properties related to τ and τ^{\star} (or μ and μ^{\star}) remain similarly valid on m and m_H^{\star} .

In [5], Al-Omari and Noiri investigated relationships between a minimal structure m and a hereditary class \mathcal{H} . They defined an operator, called Γ_{mH}^{\star} , on a heredatary minimal space (X, m, \mathcal{H}) . Also they investigated a minimal structure m which is said to be m-compatible with a hereditary class \mathcal{H} . Several characterizations of minimal structures with the notion of a hereditary class were provided in [1, 2, 3, 4, 6, 7, 8, 11].

In this paper, we introduce the notion of $mg\mathcal{H}$ -closed sets in a hereditary m-space (X, m, \mathcal{H}) and obtain a further generalization of mg-closed sets. We investigate basic properties, characterizations and preservation properties of $mg\mathcal{H}$ -closed sets.

2. *m*-structures

Definition 1. A subfamily m of the power set $\mathcal{P}(X)$ of a nonempty set X is called a *minimal structure* (briefly *m*-structure) [21] on X if $\emptyset \in m$ and $X \in m$.

By (X, m), we denote a nonempty set X with a minimal structure m on X and call it an *m*-space. Each member of m is said to be *m*-open and the complement of an *m*-open set is said to be *m*-closed.

Definition 2. Let (X, m) be an *m*-space. For a subset A of X, the *m*-closure of A and the *m*-interior of A are defined in [17] as follows:

(1) $\mathrm{mCl}(A) = \cap \{F : A \subset F, X \setminus F \in m\},\$

(2) mInt(A) = $\cup \{ U : U \subset A, U \in m \}.$

Lemma 1 ([17]). Let (X, m) be an *m*-space. For subsets A and B of X, the following properties hold:

(1) $A \subset \mathrm{mCl}(A)$ and $\mathrm{mCl}(A) = A$ if A is m-closed,

(2) $\operatorname{mInt}(A) \subset A$ and $\operatorname{mInt}(A) = A$ if A is m-open,

(3) if $A \subset B$, then $\mathrm{mCl}(A) \subset \mathrm{mCl}(B)$,

(4) $\operatorname{mCl}(A) \cup \operatorname{mCl}(B) \subset \operatorname{mCl}(A \cup B),$

(5) $\mathrm{mCl}(\mathrm{mCl}(A)) = \mathrm{mCl}(A)$.

Remark 1. The converse of (2) in Lemma 1 is not true as the following simple example shows.

Example 1. Let $X = \{a, b, c\}$, $m = \{\emptyset, X, \{a\}, \{b\}\}$ and $A = \{a, b\}$. Then $mInt(A) = \cup \{U \in m : U \subset A\} = \{a, b\}$. Hence mInt(A) = A but A is not *m*-open. **Definition 3.** A minimal structure m on a nonempty set X is said to have the *property* (\mathcal{B}) [17] if the union of any family of subsets belonging to m belongs to m.

Lemma 2 ([22]). Let X be a nonempty set and m a minimal structure on X satisfying property (\mathcal{B}). For a subset A of X, the following properties hold:

(1) $A \in m$ if and only if mInt(A) = A,

(2) A is m-closed if and only if mCl(A) = A,

(3) $\operatorname{mInt}(A) \in m$ and $\operatorname{mCl}(A)$ is m-closed.

3. $mg\mathcal{H}$ -closed sets

A nonempty subfamily \mathcal{H} of $\mathcal{P}(X)$ is called a *hereditary class* on X [11] if it satisfies the following property: $A \in \mathcal{H}$ and $B \subset A$ implies $B \in \mathcal{H}$. A hereditary class \mathcal{H} is called an *ideal* if it satisfies the additional condition: $A \in \mathcal{H}$ and $B \in \mathcal{H}$ implies $A \cup B \in \mathcal{H}$. The notion of ideals has been introduced in [15] and [23] and further investigated in [14]. An *m*-space (X, m) with a hereditary class \mathcal{H} on X is called a *hereditary m-space* and is denoted by (X, m, \mathcal{H}) .

Definition 4. Let (X, m, \mathcal{H}) be a hereditary *m*-space. A subset *A* of *X* is said to be *mgH-closed* (resp. *mg-closed* [18]) if $mCl(A) \setminus U \in \mathcal{H}$ (resp. $mCl(A) \subset U$) whenever $A \subset U$ and $U \in m$.

Remark 2. Let (X, m, \mathcal{H}) be a hereditary *m*-space.

(1) Let $\mathcal{H} = \{\emptyset\}$, then every $mg\mathcal{H}$ -closed set is mg-closed.

(2) We have the following implications:

m-closed $\Rightarrow mg$ -closed $\Rightarrow mg\mathcal{H}$ -closed.

The converses of the above implications are not necessary true as shown by the following examples.

Example 2. Let $X = \{a, b, c\}, m = \{\emptyset, X, \{a\}\}, \text{ and } A = \{b\}$. Then only X is an *m*-open set containing A. Hence $\operatorname{mCl}(A) = \{b, c\} \subset X$ but $\operatorname{mCl}(A) \neq A$. Therefore A is *mg*-closed but not *m*-closed.

Example 3. Let $X = \{a, b, c\}, m = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}, A = \{a\}$ and $\mathcal{H} = \{\emptyset, \{c\}\}$. Then (X, m, \mathcal{H}) is a hereditary *m*-space.

(1) A is not mg-closed. Let $U = \{a\}$, then $A \subset U$ and $\mathrm{mCl}(\{a\}) = \{a, c\}$. Therefore $\mathrm{mCl}(A)$ is not contained in U and A is not mg-closed.

(2) A is $mg\mathcal{H}$ -closed. Let $A \subset U$ and $U \in m$.

(i) Let $U = \{a\}$, then $A \subset U$ and $\operatorname{mCl}(A) \setminus U = \{a, c\} \setminus \{a\} = \{c\} \in \mathcal{H}$.

(ii) Let $U = \{a, b\}$, then $A \subset U$ and $\operatorname{mCl}(A) \setminus U = \{a, c\} \setminus \{a, b\} = \{c\} \in \mathcal{H}$.

(iii) Let U = X, then $A \subset U$ and $mCl(A) \setminus U = \{a, c\} \setminus X = \emptyset \in \mathcal{H}$. Therefore A is an $mg\mathcal{H}$ -closed set. **Proposition 1.** Let $(X, m \mathcal{H})$ be a hereditary m-space. Then a subset A of X is $mg\mathcal{H}$ -closed if $mCl(\{x\}) \cap A \notin \mathcal{H}$ holds for any $x \in mCl(A)$.

Proof. Suppose that A is not $mg\mathcal{H}$ -closed. We show that there exists $x \in \mathrm{mCl}(A)$ such that $\mathrm{mCl}(\{x\}) \cap A \in \mathcal{H}$. By assumption, there exists an *m*-open set U such that $A \subset U$ and $\mathrm{mCl}(A) \setminus U \notin \mathcal{H}$. Then $\mathrm{mCl}(A) \setminus U \neq \emptyset$ and there exists $x \in \mathrm{mCl}(A)$ such that $x \notin U$. But U is *m*-open and $X \setminus U$ is *m*-closed. Since $x \in X \setminus U$, $\mathrm{mCl}(\{x\}) \subset X \setminus U$ and hence $\mathrm{mCl}(\{x\}) \cap A \subset (X \setminus U) \cap A = \emptyset \in \mathcal{H}$. Therefore $\mathrm{mCl}(\{x\}) \cap A \in \mathcal{H}$.

The following example shows that the converse of the above theorem is not true.

Example 4. Let $X = \{a, b, c\}, m = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}, A = \{a\}$ and $\mathcal{H} = \{\emptyset, \{c\}\}$. Then, by Example 3.2, A is an $mg\mathcal{H}$ -closed set. There exists $x = c \in \mathrm{mCl}(A) = \{a, c\}$ such that $\mathrm{mCl}(\{x\}) \cap A = \{c\} \cap \{a\} = \emptyset \in \mathcal{H}$.

Proposition 2. Let (X, m, \mathcal{H}) be a hereditary m-space. Then, for each $x \in X$, either $\{x\}$ is m-closed or $X \setminus \{x\}$ is an $mg\mathcal{H}$ -closed set.

Proof. Suppose that $\{x\}$ is not *m*-closed. Then $X \setminus \{x\}$ is not *m*-open. Let *U* be any *m*-open set such that $X \setminus \{x\} \subset U$. Hence U = X. Thus $\mathrm{mCl}(X \setminus \{x\}) \setminus U = \mathrm{mCl}(X \setminus \{x\}) \setminus X = \emptyset \in \mathcal{H}$ and hence $X \setminus \{x\}$ is an $mg\mathcal{H}$ -closed set. \Box

Proposition 3. Let (X, m, \mathcal{H}) be an ideal *m*-space and *A*, *B* be subsets of *X*. If *A* and *B* are $mg\mathcal{H}$ -closed, then $A \cup B$ is $mg\mathcal{H}$ -closed.

Proof. Suppose A and B are $mg\mathcal{H}$ -closed sets in (X, m, \mathcal{H}) . Let $A \cup B \subset U$ and let U be m-open, then $A \subset U$ and $B \subset U$. By assumption, $\mathrm{mCl}(A) \setminus U \in$ \mathcal{H} and $\mathrm{mCl}(B) \setminus U \in \mathcal{H}$. Hence $\mathrm{mCl}(A \cup B) \setminus U = [\mathrm{mCl}(A) \cup \mathrm{mCl}(B)] \setminus U =$ $[\mathrm{mCl}(A) \setminus U] \cup [\mathrm{mCl}(B) \setminus U] \in \mathcal{H}$. Therefore $A \cup B$ is $mg\mathcal{H}$ -closed. \Box

Proposition 4. Let (X, m, \mathcal{H}) be a hereditary m-space and A, B be subsets of X. If A is $mg\mathcal{H}$ -closed and $A \subset B \subset mCl(A)$, then B is $mg\mathcal{H}$ -closed.

Proof. Let $B \subset U$ and U be *m*-open. Then $A \subset U$ and A is $mg\mathcal{H}$ -closed and hence $mCl(A) \setminus U \in \mathcal{H}$. Since $mCl(A) \subset mCl(B) \subset mCl(mCl(A)) =$ $mCl(A), mCl(B) \setminus U \in \mathcal{H}$ and B is $mg\mathcal{H}$ -closed. \Box

Proposition 5. Let (X, m, \mathcal{H}) be a hereditary m-space and let m have the property (\mathcal{B}) . If A is mgH-closed and F is m-closed, then $A \cap F$ is mgH-closed.

Proof. Let $A \cap F \subset U$ and U be any *m*-open set. Then $A \subset U \cup (X \setminus F)$. Since *m* has the property $(\mathcal{B}), U \cup (X \setminus F)$ is *m*-open and hence $\mathrm{mCl}(A) \setminus (U \cup (X \setminus F)) \in \mathcal{H}$. We have the following: $\mathrm{mCl}(A \cap F) \setminus U \subset (\mathrm{mCl}(A) \cap F) \setminus (X \setminus F) \setminus U \subset \mathrm{mCl}(A) \setminus (U \cup (X \setminus F)) \in \mathcal{H}.$ Therefore, $A \cap F$ is $mg\mathcal{H}$ -closed. \Box

Let (X, m, \mathcal{H}) be a hereditary *m*-space. If, for each $H_1 \in \mathcal{H}$, there exists $H_2 \in \mathcal{H} \cap m$ such that $H_1 \subseteq H_2$, then *m* is said to be saturated by \mathcal{H} .

Theorem 1. Let (X, m, \mathcal{H}) be an ideal *m*-space. Let $B \subseteq A \subseteq X$, *B* be *m* $\mathcal{H}g$ -closed relative to *A* and *A* be an *m* $\mathcal{H}g$ -closed subset of *X*, where *m* has the property (\mathcal{B}). If *m* is saturated by \mathcal{H} , then *B* is *m* $\mathcal{H}g$ -closed relative to *X*.

Proof. Let m be saturated by \mathcal{H} . Let $B \subseteq U$ and U be m-open in X. Then $B \subseteq U \cap A$. Since B is $m\mathcal{H}g$ -closed relative to A, we have $m\operatorname{Cl}_A(B) \subseteq (U \cap A) \cup H_1$ for some $H_1 \in \mathcal{H}$. By assumption, there exists $H_2 \in \mathcal{H} \cap m$ such that $A \cap m\operatorname{Cl}(B) \subseteq (U \cap A) \cup H_2$. So $A \subseteq (U \cup H_2) \cup [X \setminus m\operatorname{Cl}(B)]$. Since A is $m\mathcal{H}g$ -closed and $(U \cup H_2) \cup [X \setminus m\operatorname{Cl}(B)] \in m$, $m\operatorname{Cl}(A) \subseteq (U \cup H_2) \cup [X \setminus m\operatorname{Cl}(B)] \cup H_3$ for some $H_3 \in \mathcal{H}$. By assumption, there exists $H_4 \in \mathcal{H} \cap m$ such that $m\operatorname{Cl}(A) \subseteq (U \cup H_2) \cup [X \setminus m\operatorname{Cl}(B)] \cup H_4$. Since $B \subseteq A$, we have $m\operatorname{Cl}(B) \subseteq m\operatorname{Cl}(A) \subseteq (U \cup H_2) \cup [X \setminus m\operatorname{Cl}(B)] \cup H_4$. Hence $m\operatorname{Cl}(B) \subseteq U \cup (H_2 \cup H_4)$ for some $H_2, H_4 \in \mathcal{H}$. Therefore $m\operatorname{Cl}(B) \setminus U \subseteq (H_2 \cup H_4)$. This shows that B is $m\mathcal{H}g$ -closed relative to X.

Definition 5. Let (X, m) be an *m*-space. For a subset *A* of *X*, $\Lambda_m(A)$ [9] is defined as follows: $\Lambda_m(A) = \cap \{U : A \subseteq U \in m\}.$

Theorem 2. Let (X, m, \mathcal{H}) be an ideal m-space. If $mCl(A) \setminus \Lambda_m(A) \in \mathcal{H}$, then A is $m\mathcal{H}g$ -closed.

Proof. Let $mCl(A) \setminus \Lambda_m(A) \in \mathcal{H}$ and V be any m-open set containing A. Then

$$m\mathrm{Cl}(A) \setminus V \subseteq \bigcup_{U \in m} \{m\mathrm{Cl}(A) \setminus U : A \subseteq U\}$$
$$= m\mathrm{Cl}(A) \setminus \bigcap_{U \in m} \{U : A \subseteq U\}$$
$$= m\mathrm{Cl}(A) \setminus \Lambda_m(A) \in \mathcal{H}.$$

Thus, $mCl(A) \setminus V \in \mathcal{H}$ and hence A is $m\mathcal{H}g$ -closed set.

Definition 6. Let (X, m, \mathcal{H}) be a hereditary *m*-space. A subset *A* of *X* is said to be $mg\mathcal{H}$ -open if $X \setminus A$ is $mg\mathcal{H}$ -closed.

Theorem 3. Let (X, m, \mathcal{H}) be a hereditary m-space and A be a subset of X. Then, A is $mg\mathcal{H}$ -open if and only if $F \setminus mInt(A) \in \mathcal{H}$ whenever $F \subset A$ and F is m-closed.

Proof. (\Rightarrow) Let $F \subset A$ and F be any *m*-closed set. Then $X \setminus A \subset X \setminus F$ and $X \setminus F$ is *m*-open. Since $X \setminus A$ is $mg\mathcal{H}$ -closed, $mCl(X \setminus A) \setminus (X \setminus F) \in$ \mathcal{H} and hence $(X \setminus \operatorname{mInt}(A)) \cap F = F \setminus \operatorname{mInt}(A)) \in \mathcal{H}$.

(⇐) Let $X \setminus A \subset U$ and U be any *m*-open set. Then $X \setminus U \subset A$ and $X \setminus U$ is *m*-closed and, by assumption, $(X \setminus U) \setminus \operatorname{mInt}(A) \in \mathcal{H}$. We have $(X \setminus U) \setminus \operatorname{mInt}(A) = (X \setminus U) \cap (X \setminus \operatorname{mInt}(A)) = (X \setminus \operatorname{mInt}(A)) \setminus U = \operatorname{mCl}(X \setminus A) \setminus U$. Hence we obtain $\operatorname{mCl}(X \setminus A) \setminus U \in \mathcal{H}$ and $X \setminus A$ is $mg\mathcal{H}$ -closed. Therefore A is $mg\mathcal{H}$ -open. \Box

Proposition 6. Let (X, m, \mathcal{H}) be a hereditary m-space and A, B be subsets of X. If A is $mg\mathcal{H}$ -open and $mInt(A) \subset B \subset A$, then B is $mg\mathcal{H}$ -open.

Proof. Since $X \setminus A \subset X \setminus B \subset (X \setminus \text{mInt}(A)) = \text{mCl}(X \setminus A)$ and $X \setminus A$ is $mg\mathcal{H}$ -closed, by Proposition 3.4, $X \setminus B$ is $mg\mathcal{H}$ -closed. Hence B is $mg\mathcal{H}$ -open. \Box

Proposition 7. Let (X, m, \mathcal{H}) be an ideal *m*-space and *A*, *B* be subsets of *X*. If *A* and *B* are $mg\mathcal{H}$ -open, then $A \cap B$ is $mg\mathcal{H}$ -open.

Proof. Since $X \setminus A$ and $X \setminus B$ are $mg\mathcal{H}$ -closed, by Proposition 3.3 $(X \setminus A) \cup (X \setminus B) = X \setminus (A \cap B)$ is $mg\mathcal{H}$ -closed. Hence $A \cap B$ is $mg\mathcal{H}$ -open. \Box

Definition 7. Let (X, m) be an *m*-space. Then subsets A and B of X are said to be *m*-separated if $mCl(A) \cap B = \emptyset = A \cap mCl(B)$.

Proposition 8. Let (X, m, \mathcal{H}) be an ideal *m*-space, *m* have the property (\mathcal{B}) and *A*, *B* be subsets of *X*. If *A* and *B* are *m*-separated and *mgH*-open, then $A \cup B$ is *mgH*-open.

Proof. Let *F* ⊆ *A* ∪ *B* and *F* be any *m*-closed set. Since *A* and *B* are *m*-separated, *F* ∩ mCl(*A*) ⊆ *A* and *F* ∩ mCl(*A*) is *m*-closed because *m* has property *B*. Hence, by Theorem 1, (*F*∩mCl(*A*))\mInt(*A*) ∈ *H*. Similarly, we obtain (*F*∩mCl(*B*))\mInt(*B*) ∈ *H*. Therefore *F*∩mCl(*A*) ⊆ mInt(*A*)∪*H_A* and *F* ∩ mCl(*B*) ⊆ mInt(*B*) ∪ *H_B* for some *H_A*, *H_B* ∈ *H*. Since *F* ⊆ *A*∪*B* ⊂ mCl(*A*)∪mCl(*B*), we obtain *F* ⊆ (*F*∩mCl(*A*))∪(*F*∩mCl(*B*)) ⊆ mInt(*A*) ∪ mInt(*B*) ∪ (*H_A* ∪ *H_B*) ⊆ mInt(*A* ∪ *B*) ∪ (*H_A* ∪ *H_B*). Hence, *F* \ mInt(*A* ∪ *B*) ⊆ (*H_A* ∪ *H_B*) ∈ *H*. Therefore *A* ∪ *B* is *mgH*-open. □

Corollary 1. Let (X, m, \mathcal{H}) be a hereditary m-space, m have the property (\mathcal{B}) and A, B be subsets of X. If $X \setminus A$ and $X \setminus B$ are m-separated and $mg\mathcal{H}$ -open, then $A \cap B$ is $mg\mathcal{H}$ -closed.

Proof. The proof is obvious from Proposition 8.

4. Characterizations of $mg\mathcal{H}$ -closed sets

In this section, we obtain some characterizations of $mg\mathcal{H}$ -closed sets and $mg\mathcal{H}$ -open sets.

152

Theorem 4. Let (X, m, \mathcal{H}) be a hereditary m-space, m have the property (\mathcal{B}) and A be a subset of X. Then the following properties are equivalent, where $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$ hold without the assumption that m has property (\mathcal{B}) :

(1) A is $mg\mathcal{H}$ -closed;

(2) if F is m-closed and $F \subset \mathrm{mCl}(A) \setminus A$, then $F \in \mathcal{H}$;

(3) $mCl(A) \setminus A$ is $mg\mathcal{H}$ -open.

Proof. (1) \Rightarrow (2): Suppose that F is m-closed and $F \subset \mathrm{mCl}(A) \setminus A$. Then $X \setminus F \in m$ and $A \subset X \setminus F$. Since A is $mg\mathcal{H}$ -closed, $\mathrm{mCl}(A) \setminus (X \setminus F) \in \mathcal{H}$. We have $F = F \cap \mathrm{mCl}(A) = (X \setminus (X \setminus F)) \cap \mathrm{mCl}(A) = \mathrm{mCl}(A) \setminus (X \setminus F) \in \mathcal{H}$. Hence $F \in \mathcal{H}$.

(2) \Rightarrow (3): Suppose that F is m-closed and $F \subset \mathrm{mCl}(A) \setminus A$. By (2), we have $F \setminus \mathrm{mInt}(\mathrm{mCl}(A) \setminus A) \subset F \in \mathcal{H}$. Therefore, by Theorem 1, $\mathrm{mCl}(A) \setminus A$ is $mg\mathcal{H}$ -open.

 $\begin{array}{l} (3) \Rightarrow (1): \text{ Suppose that } \operatorname{mCl}(A) \setminus A \text{ is } mg\mathcal{H}\text{-}open. \text{ Let } A \subset U \text{ and } U \text{ be any} \\ m\text{-}open \text{ set. Then } X \setminus U \subset X \setminus A \text{ and } X \setminus U \text{ is } m\text{-}closed. \text{ We have } \operatorname{mCl}(A) \setminus A \\ = \operatorname{mCl}(A) \cap (X \setminus A) \supset \operatorname{mCl}(A) \cap (X \setminus U). \text{ Since } m \text{ has property } \mathcal{B}, \operatorname{mCl}(A) \cap (X \setminus U) \text{ is } m\text{-}closed. \text{ By Theorem 1, } (\operatorname{mCl}(A) \cap (X \setminus U)) \setminus \operatorname{mInt}(\operatorname{mCl}(A) \setminus A) \\ = (\operatorname{mCl}(A) \cap (X \setminus U)) \cap [X \setminus \operatorname{mInt}(\operatorname{mCl}(A) \setminus A)] \in \mathcal{H}. \text{ By a simple calculation,} \\ \text{we obtain } \operatorname{mInt}(\operatorname{mCl}(A) \setminus A) = \emptyset \text{ and hence } \operatorname{mCl}(A) \cap (X \setminus U) = \operatorname{mCl}(A) \setminus U \in \mathcal{H}. \text{ Therefore } A \text{ is } mg\mathcal{H}\text{-}closed. \end{array}$

Corollary 2. Let (X, m, \mathcal{H}) be a hereditary m-space, m have property (\mathcal{B}) and A be a subset of X. Then A is mg \mathcal{H} -open if and only if $A \setminus \mathrm{mInt}(A)$ is mg \mathcal{H} -open.

Proof. By Theorem 4, A is $mg\mathcal{H}$ -open if and only if $X \setminus A$ is $mg\mathcal{H}$ -closed if and only if $mCl(X \setminus A) \setminus (X \setminus A)$ is $mg\mathcal{H}$ -open if and only if $(X \setminus mInt(A)) \cap A$ is $mg\mathcal{H}$ -open if and only if $(A \setminus mInt(A))$ is $mg\mathcal{H}$ -open. \Box

Corollary 3. Let (X, m, \mathcal{H}) be a hereditary m-space and A be a subset of X. Then, the following properties are equivalent:

(1) If F is m-closed and $F \subset \mathrm{mCl}(A) \setminus A$, then $F \in \mathcal{H}$;

(2) $mCl(A) \setminus A$ is $mg\mathcal{H}$ -open.

Proof. $(1) \Rightarrow (2)$: We obtained this in Theorem 4.

 $(2) \Rightarrow (1)$: Suppose that $mCl(A) \setminus A$ is $mg\mathcal{H}$ -open. Let F be m-closed and $F \subset mCl(A) \setminus A$. By Theorem 1, $F \setminus mInt(mCl(A) \setminus A) \in \mathcal{H}$. Since $mInt(mCl(A) \setminus A) = \emptyset, F \in \mathcal{H}$.

Theorem 5. Let (X, m, \mathcal{H}) be a hereditary m-space and A be a subset of X. Then A is mg \mathcal{H} -closed if and only if $mCl(A) \cap F \in \mathcal{H}$ whenever $A \cap F = \emptyset$ and F is m-closed.

Proof. (\Rightarrow) Suppose that A is $mg\mathcal{H}$ -closed. Let $A \cap F = \emptyset$ and F be m-closed. Then $A \subset X \setminus F$ and $X \setminus F \in m$. Since A is $mg\mathcal{H}$ -closed,

 $\mathrm{mCl}(A) \setminus (X \setminus F) = \mathrm{mCl}(A) \cap F \in \mathcal{H}.$

(⇐) Let $A \subset U$ and U be an *m*-open set. Then $X \setminus U$ is *m*-closed and $A \cap (X \setminus U) = \emptyset$. By assumption, $mCl(A) \cap (X \setminus U) = mCl(A) \setminus U \in \mathcal{H}$. Therefore A is $mg\mathcal{H}$ -closed.

Theorem 6. Let (X, m, \mathcal{H}) be a hereditary m-space, m have property (\mathcal{B}) and A be a subset of X. Then A is $mg\mathcal{H}$ -open if and only if $X \setminus G \in \mathcal{H}$ whenever G is m-open and $mInt(A) \cup (X \setminus A) \subset G$.

Proof. (\Rightarrow) Suppose that A is $mg\mathcal{H}$ -open. Let G be m-open and $mInt(A) \cup (X \setminus A) \subset G$. Then $X \setminus G \subset X \setminus [mInt(A) \cup (X \setminus A)] = [(X \setminus mInt(A)) \cap A)] = mCl(X \setminus A) \setminus (X \setminus A)$. Since $X \setminus A$ is $mg\mathcal{H}$ -closed and $X \setminus G$ is m-closed, by Theorem 4 (2), $X \setminus G \in \mathcal{H}$.

(⇐) Let $F \subset A$ and F be an *m*-closed set. Since *m* has property \mathcal{B} , mInt(A) \cup ($X \setminus A$) \subset mInt(A) \cup ($X \setminus F$) \in *m*. By assumption, $X \setminus [\text{mInt}(A) \cup (X \setminus F)] \in \mathcal{H}$. But $X \setminus [\text{mInt}(A) \cup (X \setminus F)] = (X \setminus \text{mInt}(A)) \cap F = F \setminus \text{mInt}(A)$. Hence $F \setminus \text{mInt}(A) \in \mathcal{H}$. Therefore A is $mg\mathcal{H}$ -open. \Box

5. Preservation theorems

Now we give a simple proof of the following lemma.

Lemma 3 ([10]). Let $f : (X,m) \to (Y,n)$ be a function. If \mathcal{H} is a hereditary class on X, then $f(\mathcal{H}) = \{f(H) : H \in \mathcal{H}\}$ is a hereditary class on Y.

Proof. Let $H \in \mathcal{H}$ and $B \subset f(H)$. Let $A = H \cap f^{-1}(B)$. Then $A \subset H$ and $f(A) = f(H \cap f^{-1}(B)) = f(H) \cap B = B$. Hence $B = f(A) \in f(\mathcal{H})$. \Box

Lemma 4. Let $f : (X, m) \to (Y, n)$ be a function. If \mathcal{H} is a hereditary class on Y, then $J_H = \{A \subset X : f(A) \in \mathcal{H}\}$ is a hereditary class on X.

Proof. Let $B \subset A$ and $A \in J_H$. Then $f(B) \subset f(A) \in \mathcal{H}$ and $f(B) \in \mathcal{H}$. Hence $B \in J_H$ and J_H is a hereditary class on X.

Definition 8. A function $f: (X, m) \to (Y, n)$ is said to be

(1) *M*-continuous [21] if for each $x \in X$ and each $V \in n$ containing f(x), there exists $U \in m$ containing x such that $f(U) \subset V$,

(2) *M*-closed [20] if for each *m*-closed set *F* of (X, m), f(F) is *n*-closed in (Y, n).

Lemma 5 ([21]). Let m be an m-structure with property (\mathcal{B}). Then a function $f : (X,m) \to (Y,n)$ is M-continuous if and only if for each $V \in n$, $f^{-1}(V) \in m$.

Lemma 6 ([20]). A function $f : (X, m) \to (Y, n)$ is *M*-closed if and only if for each subset *B* of *Y* and each $U \in m$ containing $f^{-1}(B)$, there exists $V \in n$ such that $B \subset V$ and $f^{-1}(V) \subset U$.

154

Theorem 7. Let $f : (X, m, \mathcal{H}) \to (Y, n, f(\mathcal{H}))$ be an *M*-closed and *M*-continuous function, where *m* has the property (\mathcal{B}). If *A* is mg \mathcal{H} -closed in (X, m, \mathcal{H}) , then f(A) is ng $f(\mathcal{H})$ -closed in $(Y, n, f(\mathcal{H}))$.

Proof. Let *A* be $mg\mathcal{H}$ -closed and $f(A) \subset V \in n$. Since *m* has the property (\mathcal{B}) and *f* is *M*-continuous, by Lemma 6 $A \subset f^{-1}(V) \in m$. Since *A* is $mg\mathcal{H}$ -closed, $mCl(A) \setminus f^{-1}(V) \in \mathcal{H}$ and $mCl(A) \subset f^{-1}(V) \cup H$, where $H \in \mathcal{H}$. Hence $f(mCl(A)) \subset f(f^{-1}(V)) \cup f(H) \subset V \cup f(H)$. Since mCl(A) is *m*-closed and *f* is *M*-closed, f(mCl(A)) is *n*-closed. Hence $nCl(f(A)) \subset f(f(A)) \subset f(H)$. Therefore we obtain $nCl(f(A)) \setminus V \subset f(H) \in f(\mathcal{H})$. This shows that f(A) is $ngf(\mathcal{H})$ -closed in $(Y, n, f(\mathcal{H}))$. □

Theorem 8. Let $f : (X, m, J_H) \to (Y, n, \mathcal{H})$ be an *M*-closed and *M*-continuous function, where *m* and *n* have the property (\mathcal{B}). If *B* is ng*H*-closed in (Y, n, \mathcal{H}) , then $f^{-1}(B)$ is mgJ_H-closed in (X, m, J_H) .

Proof. Let $f^{-1}(B) \subset U$ and U be any m-open set of X. Since f is Mclosed, by Lemma 6 there exists $V \in n$ such that $B \subset V$ and $f^{-1}(V) \subset U$. Since B is $ng\mathcal{H}$ -closed, $\operatorname{nCl}(B) \setminus V \in \mathcal{H}$. Hence $\operatorname{nCl}(B) \subset V \cup H$ for some $H \in \mathcal{H}$. Since n has the property (\mathcal{B}) , $\operatorname{nCl}(B)$ is n-closed. Since f is Mcontinuous, we have $\operatorname{mCl}(f^{-1}(B)) \subset f^{-1}(\operatorname{nCl}(B)) \subset f^{-1}(V) \cup f^{-1}(H) \subset$ $U \cup f^{-1}(H)$. Therefore $\operatorname{mCl}(f^{-1}(B)) \setminus U \subset f^{-1}(H) \in J_H$. This shows that $f^{-1}(B)$ is mgJ_H -closed in (X, m, J_H) .

6. Conclusions

The results obtained in this paper are important, and future research could give more insights by exploring further properties of the minimal spaces with hereditary classes such as a fuzzy minimal structure which is a generalization of the concept of fuzzy topology, fuzzy minimal vector spaces and compatible with the concept of fuzzy minimal spaces via hereditary classes.

Acknowledgements

The authors are highly grateful to the editor and referees for their valuable comments and suggestions for improving the paper.

References

- A. Al-Omari and T. Noiri, On Ψ_{*}-operator in ideal m-spaces, Bol. Soc. Paran. Mat. (3s.) **30** (2012), 53–66.
- [2] A. Al-Omari and T. Noiri, Local closure functions in ideal topological spaces, Novi Sad J. Math. 43 (2013), 139–149.
- [3] A. Al-Omari and T. Noiri, On operators in ideal minimal spaces, Mathematica 58 (81) (2016), 3–13.
- [4] A. Al-Omari and T. Noiri, A note on topologies generated by m-structures and ωtopologies, Commun. Fac. Sci. Univ. Ank. Series A1, 67 (2018), 141–146.

- [5] A. Al-Omari and T. Noiri, Operators in minimal spaces with hereditary classes, Mathematica 61 (84) (2019), 101–110.
- [6] A. Al-Omari and T. Noiri, Properties of γH -compact spaces with hereditary classes, Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat. **98** (2) (2020), A4, 11 pp. DOI
- [7] A. Al-Omari and T. Noiri, Generalizations of Lindelöf spaces via hereditary classes, Acta Univ. Sapientie Math. 13 (2021), 281–291.
- [8] A. Al-Omari and T. Noiri, Properties of θ-H-compact sets in hereditary m-spaces, Acta Comment. Univ. Tartu. Math. 26 (2022), 193–206.
- [9] F. Cammaroto and T. Noiri, On Λ_m -sets and related topological spaces, Acta Math. Hungar. **109** (2005), 261–279.
- [10] C. Carpintero, E. Rosas, M. Salas-Brow, and J. Sanabria, μ-compactness with respect to a hereditry class, Bol. Soc. Paran. Mat. 34 (2016), 231–236.
- [11] Á. Császár, Modification of generalized topologies via hereditary classes, Acta Math. Hungar. 115 (2007), 29–35.
- [12] Á. Császár, Generalized topology, generalied continuity, Acta Math. Hungar. 96 (2002), 351–357.
- [13] J. Dontchev and M. Ganster, On δ-generalized closed sets and T_{3/4} spaces, Mem. Fac. Sci. Kochi Univ. Ser. A. Math. 17 (1996), 15–31.
- [14] D. Janković and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97 (1990), 295–310.
- [15] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
- [16] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2) 19 (1970), 89–96.
- [17] H. Maki, K. C. Rao, and A. Nagoor, On generalizing semi-open and preopen sets, Pure Appl. Math. Sci. 49 (1999), 17–29.
- [18] T. Noiri, A unified theory for modifications of g-closed sets, Rend. Circ. Mat. Palermo (2) 56 (2007), 171–184.
- [19] T. Noiri and V. Popa, Generalizations of closed sets in minimal spaces with hereditary classes, Ann. Univ. Sci. Budapest 61 (2018), 69–83.
- [20] T. Noiri and V. Popa, Between closed sets and g-closed sets, Rend. Circ. Mat. Palermo (2) 55 (2006), 175–184.
- [21] V. Popa and T. Noiri, On M-continuous functions, Ann. Univ. Dunărea de Jos Galați, Ser. Mat. Fiz. Mec. Teor. (2) 18(23) (2000), 31–41.
- [22] V. Popa and T. Noiri, A unified theory of weak continuity for functions, Rend. Circ. Mat. Palermo (2) 51 (2002), 439–464.
- [23] R. Vaidyanathaswani, The localization theory in set-topology, Proc. Indian Acad. Sci. 20 (1945), 51–62.

Al Al-Bayt University, Faculty of Sciences, Department of Mathematics, P.O. Box 130095, Mafraq 25113, Jordan

E-mail address: omarimutah1@yahoo.com *URL*: https://orcid.org/0000-0002-6696-1301

2949-1 SHIOKITA-CHO, HINAGU, YATSUSHIRO-SHI, KUMAMOTO-KEN, 869-5142, JAPAN *E-mail address*: t.noiri@nifty.com

URL: https://orcid.org/0000-0002-0862-5297

156