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A generalization of mg-closed sets in hereditary
m-spaces

Ahmad Al-Omari and Takashi Noiri

Abstract. In this paper, we introduce the notion of mgH-closed sets
in a hereditary m-space (X,m,H) and obtain a further generalization of
mg-closed sets. We investigate basic properties, characterizations and
preservation properties of mgH-closed sets.

1. Introduction

In 1970, Levine [16] introduced the notion of generalized closed (briefly
g-closed) sets in topological spaces. Since then, many variations of g-closed
sets have been introduced and investigated. As an application of these sets,
many low separation axioms have been introduced. Among them, T3/4-
spaces due to Dontchev and Ganster [13] are useful. They showed that the
digital line lies between a T1-space and a T3/4-space.

The notion of ideals in topological spaces was introduced by Kuratowski
[15]. Janković and Hamlett [14] defined the local function on an ideal topo-
logical space (X, τ, I). By using it they obtained a new topology τ? for X
and investigated relations between τ and τ?. In [14, 15, 23], further proper-
ties of ideals on a topological space are obtained.

A subfamily µ of the power set P(X) on a nonempty set X is called a
generalized topology (briefly GT) [12] if ∅ ∈ µ and any union of elements of µ
belongs to µ. Császár [11] defined a hereditary class H which is weaker than
an ideal and constructed a new GT µ? from a GT µ and a hereditary class
H. Moreover he showed that many properties related to τ and τ? remain
valid (possibly with small modifications) for µ and µ?.
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In [18], the author introduced and investigated a unified notion of many
generalizations of g-closed sets by using mg-closed sets in an m-space (X,m).

In [19], Noiri and Popa introduced the minimal local function on a minimal
space (X,m) with a hereditary class H and constructed a minimal structure
m?

H which contains m. They showed that many properties related to τ and
τ? (or µ and µ?) remain similarly valid on m and m?

H .
In [5], Al-Omari and Noiri investigated relationships between a minimal

structure m and a hereditary class H. They defined an operator, called
Γ?
mH , on a heredatary minimal space (X,m, H). Also they investigated a

minimal structure m which is said to be m-compatible with a hereditary
class H. Several characterizations of minimal structures with the notion of
a hereditary class were provided in [1, 2, 3, 4, 6, 7, 8, 11].

In this paper, we introduce the notion of mgH-closed sets in a hereditary
m-space (X,m,H) and obtain a further generalization of mg-closed sets. We
investigate basic properties, characterizations and preservation properties of
mgH-closed sets.

2. m-structures

Definition 1. A subfamily m of the power set P(X) of a nonempty set
X is called a minimal structure (briefly m-structure) [21] on X if ∅ ∈ m and
X ∈ m.

By (X,m), we denote a nonempty set X with a minimal structure m on
X and call it an m-space. Each member of m is said to be m-open and the
complement of an m-open set is said to be m-closed.

Definition 2. Let (X,m) be an m-space. For a subset A of X, the m-
closure of A and the m-interior of A are defined in [17] as follows:

(1) mCl(A) = ∩{F : A ⊂ F,X \ F ∈ m},
(2) mInt(A) = ∪{U : U ⊂ A,U ∈ m}.

Lemma 1 ([17]). Let (X,m) be an m-space. For subsets A and B of X,
the following properties hold:

(1) A ⊂ mCl(A) and mCl(A) = A if A is m-closed,
(2) mInt(A) ⊂ A and mInt(A) = A if A is m-open,
(3) if A ⊂ B, then mCl(A) ⊂ mCl(B),
(4) mCl(A) ∪mCl(B) ⊂ mCl(A ∪B),
(5) mCl(mCl(A)) = mCl(A).

Remark 1. The converse of (2) in Lemma 1 is not true as the following
simple example shows.

Example 1. Let X = {a, b, c}, m = {∅, X, {a}, {b}} and A = {a, b}.
Then mInt(A) = ∪{U ∈ m : U ⊂ A} = {a, b}. Hence mInt(A) = A but A is
not m-open.
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Definition 3. A minimal structure m on a nonempty set X is said to
have the property (B) [17] if the union of any family of subsets belonging to
m belongs to m.

Lemma 2 ([22]). Let X be a nonempty set and m a minimal structure
on X satisfying property (B). For a subset A of X, the following properties
hold:

(1) A ∈ m if and only if mInt(A) = A,
(2) A is m-closed if and only if mCl(A) = A,
(3) mInt(A) ∈ m and mCl(A) is m-closed.

3. mgH-closed sets

A nonempty subfamily H of P(X) is called a hereditary class on X [11]
if it satisfies the following property: A ∈ H and B ⊂ A implies B ∈ H. A
hereditary class H is called an ideal if it satisfies the additional condition:
A ∈ H and B ∈ H implies A ∪ B ∈ H. The notion of ideals has been
introduced in [15] and [23] and further investigated in [14]. An m-space
(X,m) with a hereditary class H on X is called a hereditary m-space and is
denoted by (X,m,H).

Definition 4. Let (X,m,H) be a hereditary m-space. A subset A of X
is said to be mgH-closed (resp. mg-closed [18]) if mCl(A) \ U ∈ H (resp.
mCl(A) ⊂ U) whenever A ⊂ U and U ∈ m.

Remark 2. Let (X,m, H) be a hereditary m-space.
(1) Let H = {∅}, then every mgH-closed set is mg-closed.
(2) We have the following implications:
m-closed ⇒ mg-closed ⇒ mgH-closed.

The converses of the above implications are not necessary true as shown by
the following examples.

Example 2. Let X = {a, b, c}, m = {∅, X, {a}}, and A = {b}. Then
only X is an m-open set containing A. Hence mCl(A) = {b, c} ⊂ X but
mCl(A) 6= A. Therefore A is mg-closed but not m-closed.

Example 3. Let X = {a, b, c}, m = {∅, X, {a}, {b}, {a, b}}, A = {a} and
H = {∅, {c}}. Then (X,m, H) is a hereditary m-space.

(1) A is not mg-closed. Let U = {a}, then A ⊂ U and mCl({a}) = {a, c}.
Therefore mCl(A) is not contained in U and A is not mg-closed.

(2) A is mgH-closed. Let A ⊂ U and U ∈ m.
(i) Let U = {a}, then A ⊂ U and mCl(A) \ U = {a, c} \ {a} = {c} ∈ H.
(ii) Let U = {a, b}, then A ⊂ U and mCl(A)\U = {a, c}\{a, b} = {c} ∈ H.
(iii) Let U = X, then A ⊂ U and mCl(A) \ U = {a, c} \ X = ∅ ∈ H.

Therefore A is an mgH-closed set.
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Proposition 1. Let (X,m H) be a hereditary m-space. Then a subset A
of X is mgH-closed if mCl({x}) ∩A /∈ H holds for any x ∈ mCl(A).

Proof. Suppose that A is not mgH-closed. We show that there exists
x ∈ mCl(A) such that mCl({x}) ∩ A ∈ H. By assumption, there exists an
m-open set U such that A ⊂ U and mCl(A) \U /∈ H. Then mCl(A) \U 6= ∅
and there exists x ∈ mCl(A) such that x /∈ U . But U is m-open and X \ U
is m-closed. Since x ∈ X \U , mCl({x}) ⊂ X \U and hence mCl({x})∩A ⊂
(X \ U) ∩A = ∅ ∈ H. Therefore mCl({x}) ∩A ∈ H. �

The following example shows that the converse of the above theorem is
not true.

Example 4. Let X = {a, b, c}, m = {∅, X, {a}, {b}, {a, b}}, A = {a} and
H = {∅, {c}}. Then, by Example 3.2, A is an mgH-closed set. There exists
x = c ∈ mCl(A) = {a, c} such that mCl({x}) ∩A = {c} ∩ {a} = ∅ ∈ H.

Proposition 2. Let (X,m, H) be a hereditary m-space. Then, for each
x ∈ X, either {x} is m-closed or X \ {x} is an mgH-closed set.

Proof. Suppose that {x} is not m-closed. Then X \ {x} is not m-open.
Let U be any m-open set such that X \ {x} ⊂ U . Hence U = X. Thus
mCl(X \ {x}) \ U = mCl(X \ {x}) \ X = ∅ ∈ H and hence X \ {x} is an
mgH-closed set. �

Proposition 3. Let (X,m, H) be an ideal m-space and A, B be subsets
of X. If A and B are mgH-closed, then A ∪B is mgH-closed.

Proof. Suppose A and B are mgH-closed sets in (X,m,H). Let A∪B ⊂ U
and let U be m-open, then A ⊂ U and B ⊂ U . By assumption, mCl(A)\U ∈
H and mCl(B) \U ∈ H. Hence mCl(A∪B) \U = [mCl(A)∪mCl(B)] \U =
[mCl(A) \ U ] ∪ [mCl(B) \ U ] ∈ H. Therefore A ∪B is mgH-closed. �

Proposition 4. Let (X,m, H) be a hereditary m-space and A, B be
subsets of X. If A is mgH-closed and A ⊂ B ⊂ mCl(A), then B is mgH-
closed.

Proof. Let B ⊂ U and U be m-open. Then A ⊂ U and A is mgH-closed
and hence mCl(A) \ U ∈ H. Since mCl(A) ⊂ mCl(B) ⊂ mCl(mCl(A)) =
mCl(A), mCl(B) \ U ∈ H and B is mgH-closed. �

Proposition 5. Let (X,m,H) be a hereditary m-space and let m have
the property (B). If A is mgH-closed and F is m-closed, then A ∩ F is
mgH-closed.

Proof. Let A∩ F ⊂ U and U be any m-open set. Then A ⊂ U ∪ (X \ F ).
Since m has the property (B), U ∪ (X \ F ) is m-open and hence mCl(A) \
(U ∪ (X \ F )) ∈ H. We have the following:
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mCl(A∩F )\U ⊂ (mCl(A)∩F )\(X \F )\U ⊂ mCl(A)\(U∪(X \F )) ∈ H.
Therefore, A ∩ F is mgH-closed. �

Let (X,m,H) be a hereditary m-space. If, for each H1 ∈ H, there exists
H2 ∈ H ∩m such that H1 ⊆ H2, then m is said to be saturated by H.

Theorem 1. Let (X,m,H) be an ideal m-space. Let B ⊆ A ⊆ X, B be
mHg-closed relative to A and A be an mHg-closed subset of X, where m
has the property (B). If m is saturated by H, then B is mHg-closed relative
to X.

Proof. Let m be saturated by H. Let B ⊆ U and U be m-open in X.
Then B ⊆ U ∩A. Since B is mHg-closed relative to A, we have mClA(B) ⊆
(U ∩ A) ∪ H1 for some H1 ∈ H. By assumption, there exists H2 ∈ H ∩m
such that A ∩mCl(B) ⊆ (U ∩ A) ∪H2. So A ⊆ (U ∪H2) ∪ [X \mCl(B)].
Since A is mHg-closed and (U ∪H2) ∪ [X \mCl(B)] ∈ m, mCl(A) ⊆ (U ∪
H2) ∪ [X \ mCl(B)] ∪ H3 for some H3 ∈ H. By assumption, there exists
H4 ∈ H ∩ m such that mCl(A) ⊆ (U ∪ H2) ∪ [X \ mCl(B)] ∪ H4. Since
B ⊆ A, we have mCl(B) ⊆ mCl(A) ⊆ (U ∪H2)∪ [X \mCl(B)]∪H4. Hence
mCl(B) ⊆ U ∪ (H2 ∪ H4) for some H2, H4 ∈ H. Therefore mCl(B) \ U ⊆
(H2 ∪H4). This shows that B is mHg-closed relative to X. �

Definition 5. Let (X,m) be an m-space. For a subset A of X, Λm(A) [9]
is defined as follows: Λm(A) = ∩{U : A ⊆ U ∈ m}.

Theorem 2. Let (X,m,H) be an ideal m-space. If mCl(A)\Λm(A) ∈ H,
then A is mHg-closed.

Proof. Let mCl(A) \Λm(A) ∈ H and V be any m-open set containing A.
Then

mCl(A) \ V ⊆
⋃
U∈m
{mCl(A) \ U : A ⊆ U}

=mCl(A) \
⋂
U∈m
{U : A ⊆ U}

=mCl(A) \ Λm(A) ∈ H.

Thus, mCl(A) \ V ∈ H and hence A is mHg-closed set. �

Definition 6. Let (X,m, H) be a hereditary m-space. A subset A of X
is said to be mgH-open if X \A is mgH-closed.

Theorem 3. Let (X,m, H) be a hereditary m-space and A be a subset of
X. Then, A is mgH-open if and only if F \mInt(A) ∈ H whenever F ⊂ A
and F is m-closed.

Proof. (⇒) Let F ⊂ A and F be any m-closed set. Then X \ A ⊂ X \ F
and X \ F is m-open. Since X \ A is mgH-closed, mCl(X \ A) \ (X \ F ) ∈
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H and hence (X \mInt(A)) ∩ F = F \mInt(A)) ∈ H.
(⇐) Let X \ A ⊂ U and U be any m-open set. Then X \ U ⊂ A and

X \ U is m-closed and, by assumption, (X \ U) \ mInt(A) ∈ H. We have
(X \ U) \ mInt(A) = (X \ U) ∩ (X \ mInt(A)) = (X \ mInt(A)) \ U =
mCl(X \ A) \ U . Hence we obtain mCl(X \ A) \ U ∈ H and X \ A is
mgH-closed. Therefore A is mgH-open. �

Proposition 6. Let (X,m, H) be a hereditary m-space and A, B be
subsets of X. If A is mgH-open and mInt(A) ⊂ B ⊂ A, then B is mgH-
open.

Proof. Since X \ A ⊂ X \ B ⊂ (X \mInt(A)) = mCl(X \ A) and X \ A
is mgH-closed, by Proposition 3.4, X \B is mgH-closed. Hence B is mgH-
open. �

Proposition 7. Let (X,m, H) be an ideal m-space and A, B be subsets
of X. If A and B are mgH-open, then A ∩B is mgH-open.

Proof. Since X \ A and X \ B are mgH-closed, by Proposition 3.3 (X \
A) ∪ (X \B) = X \ (A ∩B) is mgH-closed. Hence A ∩B is mgH-open. �

Definition 7. Let (X,m) be an m-space. Then subsets A and B of X
are said to be m-separated if mCl(A) ∩B = ∅ = A ∩mCl(B).

Proposition 8. Let (X,m,H) be an ideal m-space, m have the property
(B) and A, B be subsets of X. If A and B are m-separated and mgH-open,
then A ∪B is mgH-open.

Proof. Let F ⊆ A ∪ B and F be any m-closed set. Since A and B are
m-separated, F ∩mCl(A) ⊆ A and F ∩mCl(A) is m-closed because m has
property B. Hence, by Theorem 1, (F∩mCl(A))\mInt(A) ∈ H. Similarly, we
obtain (F ∩mCl(B))\mInt(B) ∈ H. Therefore F ∩mCl(A) ⊆ mInt(A)∪HA

and F ∩ mCl(B) ⊆ mInt(B) ∪ HB for some HA, HB ∈ H. Since F ⊆
A∪B ⊂ mCl(A)∪mCl(B), we obtain F ⊆ (F ∩mCl(A))∪ (F ∩mCl(B)) ⊆
mInt(A) ∪ mInt(B) ∪ (HA ∪ HB) ⊆ mInt(A ∪ B) ∪ (HA ∪ HB). Hence,
F \mInt(A ∪B) ⊆ (HA ∪HB) ∈ H. Therefore A ∪B is mgH-open. �

Corollary 1. Let (X,m, H) be a hereditary m-space, m have the property
(B) and A, B be subsets of X. If X \ A and X \ B are m-separated and
mgH-open, then A ∩B is mgH-closed.

Proof. The proof is obvious from Proposition 8.
�

4. Characterizations of mgH-closed sets

In this section, we obtain some characterizations of mgH-closed sets and
mgH-open sets.
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Theorem 4. Let (X,m, H) be a hereditary m-space, m have the property
(B) and A be a subset of X. Then the following properties are equivalent,
where (1) ⇒ (2) and (2) ⇒ (3) hold without the assumption that m has
property (B):

(1) A is mgH-closed;
(2) if F is m-closed and F ⊂ mCl(A) \A, then F ∈ H;
(3) mCl(A) \A is mgH-open.
Proof. (1)⇒ (2): Suppose that F is m-closed and F ⊂ mCl(A)\A. Then

X \ F ∈ m and A ⊂ X \ F . Since A is mgH-closed, mCl(A) \ (X \ F ) ∈ H.
We have F = F ∩mCl(A) = (X \ (X \ F )) ∩mCl(A) = mCl(A) \ (X \ F ) ∈
H. Hence F ∈ H.
(2) ⇒ (3): Suppose that F is m-closed and F ⊂ mCl(A) \ A. By (2), we
have F \mInt(mCl(A) \A) ⊂ F ∈ H. Therefore, by Theorem 1, mCl(A) \A
is mgH-open.
(3)⇒ (1): Suppose that mCl(A)\A is mgH-open. Let A ⊂ U and U be any
m-open set. Then X \U ⊂ X \A and X \U is m-closed. We have mCl(A)\A
= mCl(A)∩ (X \A) ⊃ mCl(A)∩ (X \U). Since m has property B, mCl(A)∩
(X \U) is m-closed. By Theorem 1, (mCl(A)∩ (X \U)) \mInt(mCl(A) \A)
= (mCl(A)∩(X \U))∩ [X \mInt(mCl(A)\A)] ∈ H. By a simple calculation,
we obtain mInt(mCl(A)\A) = ∅ and hence mCl(A)∩(X\U) = mCl(A)\U ∈
H. Therefore A is mgH-closed. �

Corollary 2. Let (X,m, H) be a hereditary m-space, m have property
(B) and A be a subset of X. Then A is mgH-open if and only if A\mInt(A)
is mgH-open.

Proof. By Theorem 4, A is mgH-open if and only if X \A is mgH-closed if
and only if mCl(X \A)\(X \A) is mgH-open if and only if (X \mInt(A))∩A
is mgH-open if and only if (A \mInt(A)) is mgH-open. �

Corollary 3. Let (X,m, H) be a hereditary m-space and A be a subset
of X. Then, the following properties are equivalent:

(1) If F is m-closed and F ⊂ mCl(A) \A, then F ∈ H;
(2) mCl(A) \A is mgH-open.
Proof. (1) ⇒ (2): We obtained this in Theorem 4.
(2) ⇒ (1): Suppose that mCl(A) \ A is mgH-open. Let F be m-closed

and F ⊂ mCl(A) \ A. By Theorem 1, F \ mInt(mCl(A) \ A) ∈ H. Since
mInt(mCl(A) \A) = ∅, F ∈ H. �

Theorem 5. Let (X,m, H) be a hereditary m-space and A be a subset
of X. Then A is mgH-closed if and only if mCl(A) ∩ F ∈ H whenever
A ∩ F = ∅ and F is m-closed.

Proof. (⇒) Suppose that A is mgH-closed. Let A ∩ F = ∅ and F be
m-closed. Then A ⊂ X \ F and X \ F ∈ m. Since A is mgH-closed,
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mCl(A) \ (X \ F ) = mCl(A) ∩ F ∈ H.
(⇐) Let A ⊂ U and U be an m-open set. Then X \ U is m-closed and

A ∩ (X \ U) = ∅. By assumption, mCl(A) ∩ (X \ U) = mCl(A) \ U ∈ H.
Therefore A is mgH-closed. �

Theorem 6. Let (X,m, H) be a hereditary m-space, m have property (B)
and A be a subset of X. Then A is mgH-open if and only if X \ G ∈ H
whenever G is m-open and mInt(A) ∪ (X \A) ⊂ G.

Proof. (⇒) Suppose that A is mgH-open. Let G be m-open and mInt(A)∪
(X \A) ⊂ G. Then X \G ⊂ X \ [mInt(A)∪(X \A)] = [(X \mInt(A))∩A)] =
mCl(X \A) \ (X \A). Since X \A is mgH-closed and X \G is m-closed, by
Theorem 4 (2), X \G ∈ H.

(⇐) Let F ⊂ A and F be an m-closed set. Since m has property B,
mInt(A)∪ (X \A) ⊂ mInt(A)∪ (X \F ) ∈ m. By assumption, X \ [mInt(A)∪
(X\F )] ∈ H. But X\[mInt(A)∪(X\F )] = (X\mInt(A))∩F = F \mInt(A).
Hence F \mInt(A) ∈ H. Therefore A is mgH-open. �

5. Preservation theorems

Now we give a simple proof of the following lemma.

Lemma 3 ([10]). Let f : (X,m) → (Y, n) be a function. If H is a
hereditary class on X, then f(H) = {f(H) : H ∈ H } is a hereditary class
on Y .

Proof. Let H ∈ H and B ⊂ f(H). Let A = H ∩ f−1(B). Then A ⊂ H
and f(A) = f(H ∩ f−1(B)) = f(H)∩B = B. Hence B = f(A) ∈ f(H). �

Lemma 4. Let f : (X,m) → (Y, n) be a function. If H is a hereditary
class on Y , then JH = {A ⊂ X : f(A) ∈ H } is a hereditary class on X.

Proof. Let B ⊂ A and A ∈ JH . Then f(B) ⊂ f(A) ∈ H and f(B) ∈ H.
Hence B ∈ JH and JH is a hereditary class on X. �

Definition 8. A function f : (X,m)→ (Y, n) is said to be
(1) M-continuous [21] if for each x ∈ X and each V ∈ n containing f(x),

there exists U ∈ m containing x such that f(U) ⊂ V ,
(2) M-closed [20] if for each m-closed set F of (X,m), f(F ) is n-closed in

(Y, n).

Lemma 5 ([21]). Let m be an m-structure with property (B). Then a
function f : (X,m)→ (Y, n) is M-continuous if and only if for each V ∈ n,
f−1(V ) ∈ m.

Lemma 6 ([20]). A function f : (X,m)→ (Y, n) is M -closed if and only
if for each subset B of Y and each U ∈ m containing f−1(B), there exists
V ∈ n such that B ⊂ V and f−1(V ) ⊂ U .
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Theorem 7. Let f : (X,m, H) → (Y, n, f(H)) be an M -closed and M -
continuous function, where m has the property (B). If A is mgH-closed in
(X,m,H), then f(A) is ngf(H)-closed in (Y, n, f(H)).

Proof. Let A be mgH-closed and f(A) ⊂ V ∈ n. Since m has the property
(B) and f is M -continuous, by Lemma 6 A ⊂ f−1(V ) ∈ m. Since A is
mgH-closed, mCl(A) \ f−1(V ) ∈ H and mCl(A) ⊂ f−1(V ) ∪H, where H ∈
H. Hence f(mCl(A)) ⊂ f(f−1(V )) ∪ f(H) ⊂ V ∪ f(H). Since mCl(A)
is m-closed and f is M -closed, f(mCl(A)) is n-closed. Hence nCl(f(A)) ⊂
f(mCl(A)) ⊂ V ∪f(H). Therefore we obtain nCl(f(A))\V ⊂ f(H) ∈ f(H).
This shows that f(A) is ngf(H)-closed in (Y, n, f(H)). �

Theorem 8. Let f : (X,m, JH) → (Y, n,H) be an M -closed and M -
continuous function, where m and n have the property (B). If B is ngH-
closed in (Y, n,H), then f−1(B) is mgJH-closed in (X,m, JH).

Proof. Let f−1(B) ⊂ U and U be any m-open set of X. Since f is M -
closed, by Lemma 6 there exists V ∈ n such that B ⊂ V and f−1(V ) ⊂ U .
Since B is ngH-closed, nCl(B) \ V ∈ H. Hence nCl(B) ⊂ V ∪H for some
H ∈ H. Since n has the property (B), nCl(B) is n-closed. Since f is M -
continuous, we have mCl(f−1(B)) ⊂ f−1(nCl(B)) ⊂ f−1(V ) ∪ f−1(H) ⊂
U ∪ f−1(H). Therefore mCl(f−1(B)) \ U ⊂ f−1(H) ∈ JH . This shows that
f−1(B) is mgJH -closed in (X,m, JH). �

6. Conclusions

The results obtained in this paper are important, and future research could
give more insights by exploring further properties of the minimal spaces with
hereditary classes such as a fuzzy minimal structure which is a generalization
of the concept of fuzzy topology, fuzzy minimal vector spaces and compatible
with the concept of fuzzy minimal spaces via hereditary classes.
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Acta Univ. Sapientie Math. 13 (2021), 281–291.

[8] A. Al-Omari and T. Noiri, Properties of θ-H-compact sets in hereditary m-spaces,
Acta Comment. Univ. Tartu. Math. 26 (2022), 193–206.

[9] F. Cammaroto and T. Noiri, On Λm-sets and related topological spaces, Acta Math.
Hungar. 109 (2005), 261–279.

[10] C. Carpintero, E. Rosas, M. Salas-Brow, and J. Sanabria, µ-compactness with respect
to a hereditry class, Bol. Soc. Paran. Mat. 34 (2016), 231–236.
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