Osculating mate of a Frenet curve in the Euclidean 3 -space

Akin Alkan and Mehmet Önder

Abstract

A new kind of partner curves called osculating mate of a Frenet curve is introduced. Some characterizations for osculating mate are obtained and using the obtained results some special curves such as slant helix, spherical helix, C-slant helix and rectifying curve are constructed.

1. Introduction

The most important and fascinating topic of curve theory is finding characterizations for a curve or a pair of curves known as special curves or partner curves. Helices, slant helices, rectifying curves, spherical curves, etc. are common examples of such curves. Especially, the helices are seen in many areas such as nature, design of mechanic tools and highways, simulation of kinematic motion or architect, nucleic acids and molecular model of DNA [19, 20, 23, 24, 25]. Helices are also important in physics since they are used in helical gears, shapes of springs and elastic rods [9, 12]. A helix α is defined by that the tangent of α always makes a constant angle with a fixed direction and a necessary and sufficient condition for a curve α to be a helix is that $\frac{\tau}{\kappa}(s)$ is constant, where κ is the first curvature (or curvature) and τ is the second curvature (or torsion) of α [2, 21]. Another type of special curves is the slant helix, which is defined by the property that there is always a constant angle between the principal normal line of the curve and a fixed direction. This special curve was first defined by Izumiya and Takeuchi [11]. Later, Ziplar et al. [26] have introduced a new special curve called Darboux helix and they have obtained that a curve is a Darboux helix iff the curve is a slant helix.

Received March 27, 2023.
2020 Mathematics Subject Classification. 53A04, 53C40.
Key words and phrases. Osculating mate, rectifying curve, helix, slant helix.
https://doi.org/10.12697/ACUTM.2023.27.13
Corresponding author: Akın Alkan

Furthermore, a special curve can be defined by considering its position vector. A curve α in the Euclidean 3 -space E^{3} for which the position vector of the curve is always contained in its rectifying plane (respectively, osculating plane or normal plane) is called a rectifying curve or briefly rectifying (respectively, osculating curve or normal curve) [5]. Rectifying curves, normal curves and osculating curves satisfy Cesaro's fixed point condition [18]. Namely, rectifying, normal and osculating planes of such curves always contain a particular point. Moreover, Darboux vectors (centrodes) and rectifying curves are related and used in different branches of science such as kinematics, mechanics and differential geometry of curves of constant precession [6].

Kızıltug et al. [13] have defined a new kind of special curves called normal direction curves. Later, Çakmak [7] has studied the same subject in a 3dimensional compact Lie group and he has also given two similar new curves.
Recently, Deshmukh et al. [8] have studied the natural mate and the conjugate mate of a curve. They have given some new characterizations for a spherical curve, a helix, a rectifying curve and a slant helix. Alghanemi and Khan [1 have given the position vectors of the natural mate and the conjugate mate. Mak [15] has studied these mates in three-dimensional Lie groups. Later, Camcı et al. [4 have studied sequential natural mates of Frenet curves in E^{3}.

In the present paper, we define the osculating mate of a Frenet curve α in E^{3}. We give some relations between a Frenet curve and its osculating mate and introduce some applications of osculating mates to a slant helix, a spherical helix, a rectifying curve and a C-slant helix in E^{3}.

2. Preliminaries

Let $\alpha: I \rightarrow E^{3}$ be a unit speed curve with arclength parameter s. The vector $T(s)=\alpha^{\prime}(s)$ is called the unit tangent vector of α and the function $\kappa(s)=\left\|\alpha^{\prime \prime}(s)\right\|$ is called the curvature of α. The unit principal normal vector $N(s)$ of the curve α is defined by $\alpha^{\prime \prime}(s)=\kappa(s) N(s)$. The unit binormal vector of α is $B(s)=T(s) \times N(s)$. Then, the Frenet frame $\{T, N, B\}$ has the following formula

$$
\left(\begin{array}{l}
T^{\prime} \\
N^{\prime} \\
B^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right)\left(\begin{array}{c}
T \\
N \\
B
\end{array}\right),
$$

where $\tau=\tau(s)$ is the torsion of the curve α defined by $\tau=-\left\langle B^{\prime}, N\right\rangle$ [21]. If $\kappa(s) \neq 0$, the curve α is called a Frenet curve. The curve α is a general helix iff $\frac{\tau}{\kappa}(s)$ is constant. Similarly, in [11], the characterization of a slant
helix is given by the necessary and sufficient condition

$$
\begin{equation*}
\sigma(s)=\frac{\kappa^{2}}{\left(\kappa^{2}+\tau^{2}\right)^{3 / 2}}\left(\frac{\tau}{\kappa}\right)^{\prime}=\text { const } \tag{1}
\end{equation*}
$$

A Frenet curve α is said to be a Salkowski (respectively, anti-Salkowski) curve if its curvature κ is constant but the torsion τ is non-constant (respectively, the torsion τ is constant but the curvature κ is non-constant) [17.

A Frenet curve α is said to be a spherical curve if all points of α lie on the same sphere and such a curve is characterized as follows: a Frenet curve α is a spheciral curve iff $\left(p^{\prime} q\right)^{\prime}+\frac{p}{q}=0$ holds, where $p=1 / \kappa, q=1 / \tau$. Moreover, another characterization for a spherical curve is that a Frenet curve α is a spheciral curve iff $p^{2}+\left(p^{\prime} q\right)^{2}=a^{2}$ holds, where $a>0$ is the radius of the sphere on which α lies [16].

A Frenet curve α is called a rectifying curve if the position vector of α always lies on the rectifying plane of the curve [5]. A rectifying curve is characterized by the necessary and sufficient condition that $\frac{\tau}{\kappa}(s)=\frac{1}{c}(s+b)$ holds, where $c \neq 0, b$ are real constants and such a curve has the parametrization $\alpha(s)=(s+b) T(s)+c B(s)$ [5].

The vector W defined by $W=\frac{\tau T+\kappa B}{\sqrt{\kappa^{2}+\tau^{2}}}$ is called the unit Darboux vector of α. Then, the frame $\{N, C=W \times N, W\}$ is called the alternative frame of α. A curve α is called a Darboux helix if the unit Darboux vector W makes a constant angle with a fixed direction and the curve α is a Darboux helix iff α is a slant helix [26]. A curve α is said to be a C-slant helix if the unit vector C always makes a constant angle with a fixed direction. A necessary and sufficient condition for a curve α to be a C-slant helix is that the function

$$
\begin{equation*}
\mu(s)=\frac{\left(f^{2}+g^{2}\right)^{3 / 2}}{f^{2}\left(\frac{g}{f}\right)^{\prime}} \tag{2}
\end{equation*}
$$

is constant [22].

3. Osculating mates of a Frenet curve in E^{3}

In this section, we define the osculating mate of a Frenet curve in E^{3} and give some characterizations for this curve.

Definition 1. Let $\alpha: I \subset \mathbb{R} \rightarrow E^{3}$ be a unit speed Frenet curve. The curve β defined by

$$
\begin{equation*}
\beta(s)=\int\left(x_{1}(s) T(s)+x_{2}(s) N(s)\right) d s \tag{3}
\end{equation*}
$$

and satisfying the conditions $x_{1}^{2}(s)+x_{2}^{2}(s)=1$ and $\beta^{\prime \prime} \perp s p\{T, N\}$ is called the osculating mate of the curve α where s is the arclength parameter of α and $x_{1}(s), x_{2}(s)$ are differentiable functions of s.

Unless otherwise stated, hereafter when we talk about the concept of curves we will mean Frenet curves.
Theorem 1. The Frenet apparatus of the osculating mate β is computed as follows

$$
\begin{gather*}
\left\{\begin{array}{c}
\bar{T}=\sin \left(\int \kappa(s) d s\right) T+\cos \left(\int \kappa(s) d s\right) N, \bar{N}=B \\
\bar{B}=\cos \left(\int \kappa(s) d s\right) T-\sin \left(\int \kappa(s) d s\right) N
\end{array}\right. \tag{4}\\
\bar{\kappa}=\varepsilon_{1} \tau \cos \left(\int \kappa(s) d s\right), \bar{\tau}=\tau \sin \left(\int \kappa(s) d s\right), \tag{5}
\end{gather*}
$$

where $\varepsilon_{1}= \pm 1$ is chosen such as $\bar{\kappa}>0$.
Proof. Let $\{\bar{T}, \bar{N}, \bar{B} ; \bar{\kappa}, \bar{\tau}\}$ be the Frenet apparatus of the osculating mate β. From Definition 1, it follows that $\beta^{\prime}=T=x_{1} T+x_{2} N$. Differentiating the last equality we have

$$
\begin{equation*}
\bar{T}^{\prime}=\left(x_{1}^{\prime}-x_{2} \kappa\right) T+\left(x_{2}^{\prime}+x_{1} \kappa\right) N+x_{2} \tau B, \tag{6}
\end{equation*}
$$

which gives the system

$$
\begin{equation*}
x_{1}^{\prime}-x_{2} \kappa=0, x_{2}^{\prime}+x_{1} \kappa=0, x_{2} \tau \neq 0 . \tag{7}
\end{equation*}
$$

The solution of the system (7) is

$$
\begin{equation*}
x_{1}(s)=\sin \left(\int \kappa(s) d s\right), x_{2}(s)=\cos \left(\int \kappa(s) d s\right) . \tag{8}
\end{equation*}
$$

Then, it follows that $\bar{T}=\sin \left(\int \kappa d s\right) T+\cos \left(\int \kappa d s\right) N$ and from (6), we have $\bar{\kappa} \bar{N}=\tau \cos \left(\int \kappa d s\right) B$. Hence we obtain

$$
\begin{equation*}
\bar{\kappa}=\varepsilon_{1} \tau \cos \left(\int \kappa d s\right), \bar{N}=B \tag{9}
\end{equation*}
$$

where $\varepsilon_{1}= \pm 1$ is chosen such that $\bar{\kappa}>0$. Furthermore,

$$
\begin{equation*}
\bar{B}=\bar{T} \times \bar{N}=\cos \left(\int \kappa d s\right) T-\sin \left(\int \kappa d s\right) N . \tag{10}
\end{equation*}
$$

Differentiating 10 and using the equality $\bar{\tau}^{\prime}=-\left\langle\bar{B}^{\prime}, \bar{N}\right\rangle$, we have $\bar{\tau}=$ $\tau \sin \left(\int \kappa d s\right)$.

Theorem 2. The curvatures κ and τ of α are computed as

$$
\begin{equation*}
\kappa=\frac{\varepsilon_{1} \bar{\kappa}^{2}}{\bar{\kappa}^{2}+\bar{\tau}^{2}}\left(\frac{\bar{\tau}}{\bar{\kappa}}\right)^{\prime}, \tau= \pm \sqrt{\bar{\kappa}^{2}+\bar{\tau}^{2}} \tag{11}
\end{equation*}
$$

Proof. From (5), we easily get

$$
\begin{equation*}
\tau= \pm \sqrt{\bar{\kappa}^{2}+\bar{\tau}^{2}} \tag{12}
\end{equation*}
$$

By writing the equality (12) in equalities (5), it follows

$$
\begin{equation*}
\cos \left(\int \kappa d s\right)=\frac{ \pm \varepsilon_{1} \bar{\kappa}}{\sqrt{\bar{\kappa}^{2}+\bar{\tau}^{2}}}, \sin \left(\int \kappa d s\right)=\frac{ \pm \bar{\tau}}{\sqrt{\bar{\kappa}^{2}+\bar{\tau}^{2}}} \tag{13}
\end{equation*}
$$

respectively. By taking the derivative of the second equality in (13), we get

$$
\begin{equation*}
\kappa \cos \left(\int \kappa d s\right)= \pm \frac{\bar{\kappa}\left(\bar{\kappa} \bar{\tau}^{\prime}-\bar{\kappa}^{\prime} \bar{\tau}\right)}{\left(\bar{\kappa}^{2}+\bar{\tau}^{2}\right)^{3 / 2}} \tag{14}
\end{equation*}
$$

Putting first equality in into gives $\kappa=\frac{\varepsilon_{1} \bar{\kappa}^{2}}{\bar{\kappa}^{2}+\bar{\tau}^{2}}\left(\frac{\bar{\tau}}{\bar{\kappa}}\right)^{\prime}$, which completes the proof.

From Theorem 1, Theorem 2 and equation (1), we have

$$
\begin{equation*}
\bar{\tau}=\tau \sin \left(\int \kappa d s\right), \frac{\kappa}{\tau}=\varepsilon_{1} \bar{\sigma} \tag{15}
\end{equation*}
$$

which gives the following corollary.
Corollary 1. i) α is a plane curve iff the osculating mate β is a plane curve.
ii) α is a helix iff the osculating mate β is a slant helix.

Theorem 3. The osculating mate β is spherical curve iff the curvatures κ, τ of α satisfy the equality

$$
\begin{equation*}
(\tau \cos x)^{\prime}= \pm \tau^{2} \sin x \cos x \sqrt{a^{2} \tau^{2} \cos ^{2} x-1} \tag{16}
\end{equation*}
$$

where $a>0$ is the radius of the sphere and $x(s)=\int \kappa(s) d s$.
Proof. First assume that β lies on a sphere with the radius $a>0$. Hence, $\bar{p}^{2}+\left(\bar{p}^{\prime} \bar{q}\right)^{2}=a^{2}$ holds, where $\bar{p}=1 / \bar{\kappa}, \bar{q}=1 / \bar{\tau}$. From (5), it follows that $\bar{p}^{\prime}=\frac{-\varepsilon_{1}(\tau \cos x)^{\prime}}{\tau^{2} \cos ^{2} x}$. Then, we have

$$
\begin{equation*}
\frac{1}{\tau^{2} \cos ^{2} x}\left[1+\frac{\left((\tau \cos x)^{\prime}\right)^{2}}{\tau^{4} \sin ^{2} x \cos ^{2} x}\right]=a^{2} \tag{17}
\end{equation*}
$$

which gives (16).
Conversely, assume that (16) holds. By differentiating the first equality in (5), we have

$$
\begin{equation*}
-\bar{p}^{\prime}=\frac{\bar{\kappa}^{\prime}}{\bar{\kappa}^{2}}=\frac{-\varepsilon_{1}(\tau \cos x)^{\prime}}{\tau^{2} \cos ^{2} x} \tag{18}
\end{equation*}
$$

Putting (16) into (18) gives

$$
\begin{equation*}
\bar{p}^{\prime}=\frac{\mp \varepsilon_{1} \sin x \sqrt{a^{2} \tau^{2} \cos ^{2} x-1}}{\cos x} \tag{19}
\end{equation*}
$$

By the second equality in (5), we obtain $\bar{p}^{\prime} \bar{q}=\frac{\mp \varepsilon_{1} \sqrt{a^{2} \tau^{2} \cos ^{2} x-1}}{\tau \cos x}$, and so $\bar{p}^{2}+\left(\bar{p}^{\prime} \bar{q}\right)^{2}=a^{2}$, i.e., β lies on a sphere with the radius $a>0$.

Theorem 4. The osculating mate β is rectifying iff the function $\tan \int \kappa d s$ is a linear function of s.

Proof. Suppose that β is rectifying. So we have $\frac{\bar{\tau}}{\bar{\kappa}}=\frac{1}{c}(s+b)$, where $c \neq 0, b$ are real constants. Considering (5), it follows that $\tan \int \kappa d s=$ $\frac{\varepsilon_{1}}{c}(s+b)$.

Conversely, let us write $\varepsilon_{1} \tan \int \kappa d s=\left(a_{1} s+a_{2}\right)$, where $a_{1} \neq 0, a_{2}$ are real constants. Let us define $a_{1}=\frac{1}{c}$ and $a_{2}=\frac{b}{c}$, where $c \neq 0$ is a real constant. Then, we get $\varepsilon_{1} \tan \int \kappa d s=\frac{1}{c}(s+b)$ and it follows that $c \tau \sin \left(\int \kappa d s\right)=\varepsilon_{1}(s+b) \tau \cos \left(\int k d s\right)$. Taking into account (5), we obtain $(s+b) \bar{\kappa}-c \bar{\tau}=0$, which gives that β is rectifying.

Theorem 5. The position vector of the osculating mate β is given by

$$
\begin{equation*}
\beta=\left[\int\left(-\frac{\kappa}{\tau} h^{\prime}+\sin \left(\int \kappa d s\right)\right) d s\right] T-\frac{h^{\prime}}{\tau} N+h B, \tag{20}
\end{equation*}
$$

where $h(s)=\frac{\left(d d^{\prime}\right)^{\prime}-1}{\tau \cos \int \kappa d s}$ and $d=d(s)=\|\beta(s)\|$ is the distance function of β.
Proof. For the position vector β, we can write

$$
\begin{equation*}
\beta=a_{1} T+a_{2} N+a_{3} B \tag{21}
\end{equation*}
$$

where $a_{i}=a_{i}(s),(i=1,2,3)$ are smooth functions of s. Differentiating (21) and using (4), we have

$$
\left\{\begin{array}{c}
\sin \left(\int \kappa d s\right) T+\cos \left(\int \kappa d s\right) N=\left(a_{1}^{\prime}-a_{2} \kappa\right) T+\left(a_{1} \kappa+a_{2}^{\prime}-a_{3} \tau\right) N \tag{22}\\
+\left(a_{2} \tau+a_{3}^{\prime}\right) B
\end{array}\right.
$$

From (22), we have the following system

$$
\left\{\begin{array}{c}
a_{1}^{\prime}-a_{2} \kappa=\sin \left(\int \kappa d s\right), \tag{23}\\
a_{1} \kappa+a_{2}^{\prime}-a_{3} \tau=\cos \left(\int \kappa d s\right), \\
a_{2} \tau+a_{3}^{\prime}=0
\end{array}\right.
$$

From (21), it follows that $d^{2}=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}$. Differentiating the last equality gives $d d^{\prime}=a_{1} a_{1}^{\prime}+a_{2} a_{2}^{\prime}+a_{3} a_{3}^{\prime}$. Then, from the system (23), we get

$$
\begin{equation*}
d d^{\prime}=a_{1} \sin \left(\int \kappa d s\right)+a_{2} \cos \left(\int \kappa d s\right) \tag{24}
\end{equation*}
$$

Differentiating (24) and taking into account the system (23), we obtain $a_{3}=$ $\frac{\left(d d^{\prime}\right)^{\prime}-1}{\tau \cos \left(\int \kappa d s\right)}$. By writing $h(s)=a_{3}(s)$, from the system 23$)$, we get

$$
\begin{equation*}
a_{2}=-\frac{h^{\prime}}{\tau}\left(d d^{\prime}\right)^{\prime}, a_{1}=\int\left[-\frac{\kappa}{\tau}(h)^{\prime}+\sin \left(\int \kappa d s\right)\right] d s \tag{25}
\end{equation*}
$$

Considering (21), we have (20).
Corollary 2. Let β be an osculating mate of α.
i) β is a spherical curve iff $h(s)=\frac{-1}{\tau \cos \int \kappa d s}$.
ii) If β is a rectifying curve, then $h=0$.

Proof. i) β is a spherical curve iff d is a non-zero constant iff $h(s)=$ $\frac{-1}{\tau \cos \int \kappa d s}$.
ii) Since β is a rectifying curve, its distance function d satisfies $d^{2}(s)=$ $s^{2}+c_{1} s+c_{2}$, where $c_{i}(i=1,2)$ are constants [6]. Then we have $h=0$.

Theorem 6. Let β be an osculating mate of α.
i) β is a Bertrand curve iff the function $\left(p q^{\prime}\right)^{2}+q^{2}$ is a non-zero constant.
ii) α is a Bertrand curve iff $\varepsilon_{1} \varsigma_{1} \bar{\sigma} \mp \varsigma_{2}=\frac{1}{\sqrt{\bar{\kappa}^{2}+\bar{\tau}^{2}}}$, where $\varsigma_{1} \neq 0, \varsigma_{2}$ are constants.

Proof. i) Since β is a Bertrand curve, we can write $a \bar{\kappa}+b \bar{\tau}=1$, where $a \neq 0$ and b are constants [3]. Writing (5) in the last equality gives

$$
\begin{equation*}
a \varepsilon_{1} \cos \left(\int \kappa d s\right)+b \sin \left(\int \kappa d s\right)=\frac{1}{\tau}=q . \tag{26}
\end{equation*}
$$

By differentiating (26), we have

$$
\begin{equation*}
-a \varepsilon_{1} \sin \left(\int \kappa d s\right)+b \cos \left(\int \kappa d s\right)=\left(\frac{1}{\tau}\right)^{\prime} \frac{1}{\kappa}=q^{\prime} p \tag{27}
\end{equation*}
$$

From (26) and (27), it follows that $\left(p q^{\prime}\right)^{2}+q^{2}=a^{2}+b^{2}$.
Conversely, let $\left(p q^{\prime}\right)^{2}+q^{2}$ be a non-zero constant. Define $q=\left(a^{2}+b^{2}\right) \cos \theta$ and $p q^{\prime}=\left(a^{2}+b^{2}\right) \sin \theta$, where $a \neq 0, b$ are real constants. Differentiating the first equality and writing the result in the second one gives $\theta^{\prime}=-\kappa$. Then the equality $q=\left(a^{2}+b^{2}\right) \cos \theta$ becomes $\tau=\frac{1}{\left(a^{2}+b^{2}\right) \cos \left(\int \kappa d s+m\right)}$, where m is an integration constant. By taking into account (5), we have

$$
\begin{equation*}
\bar{\kappa}=\frac{\varepsilon_{1} \cos \left(\int \kappa d s\right)}{\left(a^{2}+b^{2}\right) \cos \left(\int \kappa d s+m\right)}, \bar{\tau}=-\frac{\sin \left(\int \kappa d s\right)}{\left(a^{2}+b^{2}\right) \cos \left(\int \kappa d s+m\right)} . \tag{28}
\end{equation*}
$$

By writing $A=\left(a^{2}+b^{2}\right) \cos (m), B=\left(a^{2}+b^{2}\right) \sin (m)$ and taking into account (28) it follows that $A \bar{\kappa}+B \bar{\tau}=1$, i.e., β is a Bertrand curve.
ii) If α is a Bertrand curve, then $\varsigma_{1} \kappa+\varsigma_{2} \tau=1$, where $\varsigma_{1} \neq 0, \varsigma_{2}$ are constants. Writing i1 in the last equality, it follows that $\frac{\varepsilon_{1} 1 \bar{K}^{2}}{\bar{\kappa}^{2}+\bar{\tau}^{2}}\left(\frac{\bar{\tau}}{\bar{\kappa}}\right)^{\prime} \pm$ $\varsigma_{2} \sqrt{\bar{\kappa}^{2}+\bar{\tau}^{2}}=1$ or, equivalently, $\varepsilon_{1} \varsigma_{1} \bar{\sigma} \pm \varsigma_{2}=\frac{1}{\sqrt{\bar{\kappa}^{2}+\bar{\tau}^{2}}}$.

Conversely, if $\varepsilon_{1} \varsigma_{1} \bar{\sigma} \pm \varsigma_{2}=\frac{1}{\sqrt{\bar{\kappa}^{2}+\bar{\tau}^{2}}}$ holds, then taking into account 11 we have $\varsigma_{1} \kappa+\varsigma_{2} \tau=1$, i.e., α is a Bertrand curve.

Theorem 7. Let β be an osculating mate of α.
i) β is a Mannheim curve iff $\frac{1}{\tau} \cos \int \kappa d s=\varepsilon_{1} \lambda_{1}$, where λ_{1} is non-zero constant.
ii) α is a Mannheim curve iff $\varepsilon_{1} \sqrt{\bar{\kappa}^{2}+\bar{\tau}^{2}} \bar{\sigma}^{3}=\lambda_{2}\left(1+\bar{\sigma}^{2}\right)$, where λ_{2} is non-zero constant.

Proof. i) If β is a Mannheim curve, there is a non-zero constant λ_{1} such that $\bar{\kappa}=\lambda_{1}\left(\bar{\kappa}^{2}+\bar{\tau}^{2}\right)$ holds [14, 10]. Writing (5) in the last equality gives $\frac{1}{\tau} \cos \int \kappa d s=\varepsilon_{1} \lambda_{1}$.

Conversely, if $\frac{1}{\tau} \cos \int \kappa d s=\varepsilon_{1} \lambda_{1}$ holds for a non-zero constant λ_{1}, from (4) and (5), we have that $\bar{\kappa}=\lambda_{1}\left(\bar{\kappa}^{2}+\bar{\tau}^{2}\right)$ holds, i.e., β is a Mannheim curve.
ii) If α is a Mannheim curve, the curvatures of α satisfy $\kappa=\lambda_{2}\left(\kappa^{2}+\tau^{2}\right)$, where λ_{2} is a non-zero constant. Hence we get $\frac{1}{\kappa}=\lambda_{2}\left(1+\frac{\tau^{2}}{\kappa^{2}}\right)$. By writing 11 in the last equality and considering (1), we obtain $\varepsilon_{1} \sqrt{\bar{\kappa}^{2}+\bar{\tau}^{2}} \bar{\sigma}^{3}=$ $\lambda_{2}\left(1+\bar{\sigma}^{2}\right)$.

The converse is clear.
Corollary 3. Let β be an osculating mate of α. Then, α is a Mannheim curve iff the cuvatures of α and β satisfy $\bar{\kappa}= \pm \lambda \tau$, where λ is a non-zero constant.

Theorem 8. The curve β be an osculating mate of α.
i) Let α be a Salkowski curve. Then β is a Salkowski curve iff $\tau=$ $\varepsilon_{1} e_{3} \sec \left(e_{1} s+e_{2}\right)$, where $e_{i}(i=1,2,3)$ are real constants.
ii) Let β be a Salkowski curve with constant curvature $\bar{\kappa}=e_{4}$. Then α is a Salkowski curve with $\kappa=c>0$ iff $\varepsilon_{1} e_{4} \bar{\tau}^{\prime \prime}-2 c \bar{\tau} \bar{\tau}^{\prime}=0$ holds.
iii) Let β be an anti-Salkowski curve with constant torsion $\bar{\tau}=e_{5}$. Then α is a Salkowski curve with $\kappa=c>0$ iff $\varepsilon_{1} e_{5} \bar{\kappa}^{\prime \prime}+2 c \bar{\kappa} \bar{\kappa}^{\prime}=0$ holds.

Proof. i) Since α is a Salkowski curve, we have $\kappa=e_{1}>0$ is constant but τ is non-constant. Then, from (4) it follows that $\bar{\kappa}=\varepsilon_{1} \tau \cos \left(e_{1} s+e_{2}\right), \bar{\tau}=$ $\tau \sin \left(e_{1} s+e_{2}\right)$, where e_{2} is an integration contant. We get $\frac{\bar{\tau}}{\bar{\kappa}}=\varepsilon_{1} \tan \left(e_{1} s+\right.$ e_{2}). Hence β is a Salkowski curve with constant curvature $\bar{\kappa}=e_{3}>0$ iff $\tau=\varepsilon_{1} e_{3} \sec \left(e_{1} s+e_{2}\right)$.

The proofs of (ii) and (iii) are similar to the proof of (i).
Let now $(\bar{T}),(\bar{N}),(\bar{B})$ denote the tangent indicatrix, the principal normal indicatrix and the binormal indicatrix of the osculating mate β, respectively. The curvatures of these spherical curves are computed as

$$
\begin{equation*}
\kappa_{\bar{T}}=\frac{\sqrt{\bar{\kappa}^{2}+\bar{\tau}^{2}}}{\bar{\kappa}}, \tau_{\bar{T}}=\frac{\bar{\kappa}}{\bar{\kappa}^{2}+\bar{\tau}^{2}}\left(\frac{\bar{\tau}}{\bar{\kappa}}\right)^{\prime} \tag{29}
\end{equation*}
$$

$$
\begin{align*}
& \kappa_{\bar{N}}=\frac{\sqrt{\bar{\kappa}^{2}+\bar{\tau}^{2}}}{\bar{\tau}}, \tau_{\bar{N}}=\frac{\bar{\kappa}^{2}}{\bar{\tau}\left(\bar{\kappa}^{2}+\bar{\tau}^{2}\right)}\left(\frac{\bar{\tau}}{\bar{\kappa}}\right)^{\prime}, \tag{30}\\
& \kappa_{\bar{B}}=\frac{\sqrt{\bar{\kappa}^{2}+\bar{\tau}^{2}}}{\bar{\tau}}, \tau_{\bar{B}}=\frac{\bar{\kappa}^{2}}{\bar{\tau}\left(\bar{\kappa}^{2}+\bar{\tau}^{2}\right)}\left(\frac{\bar{\tau}}{\bar{\kappa}}\right)^{\prime}, \tag{31}
\end{align*}
$$

respectively [22]. We obtain the following result.
Corollary 4. The statements given below are equivalent.
i) The tangent inticatrix (\bar{T}) of β is a general helix.
ii) The osculating mate β is a slant helix.
iii) α is a general helix.

Proof. From (5), 29 and (1), it follows that $\frac{\tau_{\bar{T}}}{\kappa_{\bar{T}}}=\bar{\sigma}=\varepsilon_{1} \frac{\kappa}{\tau}$, which finishes the proof.

Corollary 5. The statements given below are equivalent.
i) The principal normal inticatrix (\bar{N}) of β is a general helix.
ii) The osculating mate β is a C-slant helix.
iii) α is a slant helix.

Proof. If we write (5) in 30 and consider (1) and 27, we obtain $\frac{\tau_{\bar{N}}}{\kappa_{\bar{N}}}=$ $\frac{1}{\bar{\mu}}=-\sigma$, which gives the desired results.

Corollary 6. The statements given below are equivalent.
i) The binormal inticatrix (\bar{B}) of β is a general helix.
ii) The osculating mate β is a slant helix.
iii) α is a general helix.

Proof. Putting $\sqrt[5]{ }$ into 31 and considering 11, we have $\frac{\tau_{\bar{B}}}{\kappa_{\bar{B}}}=-\bar{\sigma}=$ $-\varepsilon_{1} \frac{\kappa}{\tau}$, which gives the desired statements.
3.1. Osculating type (OT) osculating mates. In this subsection we define osculating type osculating mates (or OT-osculating mates) in E^{3} and give the relationships between osculating mates and $O T$-osculating mates. This section also gives a method to obtain a rectifying curve.

Consider a space curve $\alpha: I \rightarrow E^{3}$ with Frenet triangle $\{T, N, B\}$ and curvatures κ, τ. The vector $\tilde{D}=\frac{\tau}{\kappa}(s) T(s)+B(s)$ is said to be the modified Darboux vector of α [11]. Let now the curve α be a Frenet curve and the curve β be an osculating mate of α. The curve β is called an osculating-type osculating mate (or an OT-osculating mate) of α, if the position vector of β is always contained in the osculating plane of α.

Considering the definition of OT-osculating mate, we can write

$$
\begin{equation*}
\beta(s)=m(s) T(s)+n(s) N(s) \tag{32}
\end{equation*}
$$

where $m(s), n(s)$ are non-zero smooth functions of s. From (4),

$$
\left\{\begin{array}{l}
T=\sin \left(\int \kappa d s\right) \bar{T}+\cos \left(\int \kappa d s\right) \bar{B}, \tag{33}\\
N=\cos \left(\int \kappa d s\right) \bar{T}-\sin \left(\int \kappa d s\right) \bar{B} .
\end{array}\right.
$$

Writing (33) in (32) gives

$$
\left\{\begin{align*}
\beta(s)= & {\left[m \sin \left(\int \kappa d s\right)+n \cos \left(\int \kappa d s\right)\right] \bar{T} } \tag{34}\\
& +\left[m \cos \left(\int \kappa d s\right)-n \sin \left(\int \kappa d s\right)\right] \bar{B} .
\end{align*}\right.
$$

Defining

$$
\left\{\begin{array}{l}
\zeta(s)=m \sin \left(\int \kappa d s\right)+n \cos \left(\int \kappa d s\right), \tag{35}\\
\eta(s)=m \cos \left(\int \kappa d s\right)-n \sin \left(\int \kappa d s\right),
\end{array}\right.
$$

in (34) and differentiating the obtained equality gives

$$
\begin{equation*}
\bar{T}=\zeta^{\prime} \bar{T}+(\zeta \bar{\kappa}-\eta \bar{\tau}) \bar{N}+\eta^{\prime} \bar{B} \tag{36}
\end{equation*}
$$

Hence we get

$$
\begin{equation*}
\eta=a=\text { const }, \zeta=s+b=\frac{\bar{\tau}}{\bar{\kappa}} a, \tag{37}
\end{equation*}
$$

where a, b are non-zero constants. Considering (37), we obtain

$$
\begin{equation*}
\beta(s)=a\left(\frac{\bar{\tau}}{\bar{\kappa}} \bar{T}+\bar{B}\right)(s)=a \tilde{\bar{D}}(s), \tag{38}
\end{equation*}
$$

where \tilde{D} is the modified Darboux vector of β. Then the following theorem is obtained.

Theorem 9. Let β be an OT-osculating mate of α. Then
i) β is a rectifiyng curve.
ii) The position vector β and the modified Darboux vector $\tilde{\bar{D}}$ of an osculating mate β are linearly dependent.

Considering (35), (37) and (33), the last theorem gives a method to construct a rectifying curve by using an osculating mate as follows.

Corollary 7. The curve β given by the parametrization

$$
\left\{\begin{align*}
\beta(s)= & {\left[(s+b) \sin \left(\int \kappa d s\right)+a \cos \left(\int \kappa d s\right)\right] T(s) } \tag{39}\\
& +\left[(s+b) \cos \left(\int \kappa d s\right)-a \sin \left(\int \kappa d s\right)\right] N(s)
\end{align*}\right.
$$

is a rectifying curve and also an osculating mate of α, where a, b are nonzero constants.

Figure 1. (a) Spherical helix α (left). (b) Osculating mate β (right).

Figure 2. (a) Tangent indicatrix \bar{T} (left). (b) OT-osculating mate of α (right).

Example 1. Let us consider the spherical helix α in E^{3} defined by $\alpha(t)=$ $\left(\frac{1}{\sqrt{2}} \sin t, \cos t \cos (\sqrt{2} t)+\frac{1}{\sqrt{2}} \sin t \sin (\sqrt{2} t),-\cos t \sin (\sqrt{2} t)+\frac{1}{\sqrt{2}} \sin t \cos (\sqrt{2} t)\right)$, (see Fig. 1(a)). The arc parameter of α is $s=\sin t$. The Frenet apparatus of α is computed as follows,

$$
\begin{aligned}
& T(s)=\frac{\sqrt{2}}{2}(1,-\sin (\sqrt{2} \arcsin s),-\cos (\sqrt{2} \arcsin s)) \\
& N(s)=(0,-\cos (\sqrt{2} \arcsin s), \sin (\sqrt{2} \arcsin s)) \\
& B(s)=-\frac{\sqrt{2}}{2}(1, \sin (\sqrt{2} \arcsin s), \cos (\sqrt{2} \arcsin s)),
\end{aligned}
$$

$$
\kappa=\frac{1}{\sqrt{1-s^{2}}}, \quad \tau=-\frac{1}{\sqrt{1-s^{2}}}
$$

From (4) and (9), the osculating mate β of α is obtained as

$$
\beta(s)=\int(s T(s)+\cos (\arcsin s) N(s)) d s=\left(\beta_{1}(s), \beta_{2}(s), \beta_{3}(s)\right)
$$

where

$$
\begin{aligned}
& \beta_{1}(s)=\frac{\sqrt{2}}{4} s^{2}+c_{1} \\
& \beta_{2}(s)=\int\left(-\frac{\sqrt{2}}{2} s \sin (\sqrt{2} \arcsin s)-\cos (\sqrt{2} \arcsin s) \cos (\arcsin s)\right) d s \\
& \beta_{3}(s)=\int\left(-\frac{\sqrt{2}}{2} s \cos (\sqrt{2} \arcsin s)+\cos (\arcsin s) \sin (\sqrt{2} \arcsin s)\right) d s
\end{aligned}
$$

where c_{1} is an integration constant (see Fig. 1(b)). From Corollary 5, the osculating mate β is a slant helix and its tangent indicatrix \bar{T} is a general helix which is plotted in Fig. 2(a). Furthermore, by choosing $a=b=\sqrt{2}$, from (39) an OT-osculating mate of α, which is also a rectifying curve and plotted in Fig. 2(b), is obtained.

4. Conclusions

A new type of associated curves is introduced and called an osculating mate. The relations between a Frenet curve and its osculating mate are obtained. The obtained results allow to construct a slant helix, a C-slant helix, a spherical helix and a rectifying curve by considering an osculating mate of a Frenet curve.

References

[1] A. Alghanemi and M. A. Khan, Position vectors of the natural mate and conjugate mate of a space curve, Adv. Math. Phys 2023 (2023), 7565988, 5 pp. DOI
[2] M. Barros, General helices and a theorem of Lancret, Proc. Amer. Math. Soc. 125 (1997), 1503-1509.
[3] J. Bertrand, Memoire sur la theorie des courbes a double courbure, Comptes Rendus. 15 (1850), 332-350.
[4] Ç. Camcı, B. Y. Chen, K. İlarslan, and A. Uçum, Sequential natural mates of Frenet curves in Euclidean 3-space, J. Geom. 112(46) (2021), 15 pp. DOI
[5] B. Y. Chen, When does the position vector of a space curve always lie in its normal plane?, Amer Math. Monthly 110 (2003), 147-152.
[6] B. Y. Chen and F. Dillen, Rectifying curves as centrodes and extremal curves, Bull. Inst. Math. Acad. Sin. 33 (2005), 77-90.
[7] A. Çakmak, New type direction curves in 3-dimensional compact Lie group, Symmetry $11(3)$ (2019), 387, 12 pp. DOI
[8] S. Deschmukh, B. Y. Chen, and A. Alghanemi Natural mates of Frenet curves in Euclidean 3-space, Turk. J. Math. 42 (2018), 2826-2840.
[9] T. J. Healey, Material symmetry and chirality in nonlinearly elastic rods, Math. Mech. Solids. 7 (2002), 405-420.
[10] S. Honda and M. Takahashi, Bertrand and Mannheim curves of framed curves in the 3-dimensional Euclidean space, Turk. J. Math. 44 (2020), 883-899.
[11] S. Izumiya and N. Takeuchi, New special curves and developable surfaces, Turk. J. Math. 28 (2004), 153-163.
[12] M. J. Keil and J. Rodriguez, Methods for generating compound spring element curves, J. Geom. Graphics 3 (1999), 67-76.
[13] S. Kızıltuğ, M. Önder, and Y. Yaylı, Normal direction curves and applications, Miskolc Math. Notes 22 (2021), 363-374. DOI
[14] H. Liu and F. Wang, Mannheim partner curves in 3-space, J. Geom. 88 (2008), 120126.
[15] M. Mak, Natural and conjugate mates of Frenet curves in three-dimensional Lie groups, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 70 (2021), 522-540.
[16] R. S. Millman and G. D. Parker, Elements of Differential Geometry, Englewood Cliffs, Prentice Hall, New-York, 1977.
[17] J. Monterde, Salkowski curves revisted: a family of curves with constant curvature and non-constant torsion, Comput. Aided Geom. Des. 26 (2009), 271-278.
[18] T. Otsuki, Differential Geometry, Asakura Publ., Tokyo, 1961. (Japanese)
[19] M. Peyrard, Nonlinear dynamics and statistical physics of DNA, Nonlinearity 17 (2004), 40 pp. DOI
[20] D. C. Rapaport, Molecular dynamics simulation of polymer helix formation using rigid-link methods, Phys. Rev. E. 66 (2002), 011906, 15 pp.. DOI
[21] D. J. Struik, Lectures on Classical Differential Geometry, 2nd ed., Addison Wesley, Dover, 1988.
[22] B. Uzunoğlu, İ. Gök, and Y. Yaylı, A new approach on curves of constant precession, Appl. Math. Comput. 275, (2016), 317-323.
[23] A. E. Walsby, Gas vesicles, Microbiol. Rev. 58 (1994), 94-144.
[24] A. E. Walsby, P. K. Hayes, Gas vesicle proteins, Biochem. J. 264 (1989), 313-322.
[25] J. D. Watson and F. H. Crick, Molecular structures of nucleic acids, Nature 171 (1953), 737-738.
[26] E. Zıplar, A. Şenol, and Y. Yaylı, On Darboux helices in Euclidean 3-space, Glob. J. Sci. Front. Res. Math. Decision Sci. 12 (2012), 522-540.

Manisa Celal Bayar University, Gördes Vocational School, 45750, Gördes, Manisa, Turkey

E-mail address: akin.alkan@cbu.edu.tr
Delibekirli Village, Tepe Street, 31440, Kirikhan, Hatay, Turkey
E-mail address: mehmetonder197999@gmail.com

