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Osculating mate of a Frenet curve in the Euclidean
3-space

Akın Alkan and Mehmet Önder

Abstract. A new kind of partner curves called osculating mate of a
Frenet curve is introduced. Some characterizations for osculating mate
are obtained and using the obtained results some special curves such
as slant helix, spherical helix, C-slant helix and rectifying curve are
constructed.

1. Introduction

The most important and fascinating topic of curve theory is finding char-
acterizations for a curve or a pair of curves known as special curves or part-
ner curves. Helices, slant helices, rectifying curves, spherical curves, etc. are
common examples of such curves. Especially, the helices are seen in many
areas such as nature, design of mechanic tools and highways, simulation of
kinematic motion or architect, nucleic acids and molecular model of DNA
[19, 20, 23, 24, 25]. Helices are also important in physics since they are
used in helical gears, shapes of springs and elastic rods [9, 12]. A helix α is
defined by that the tangent of α always makes a constant angle with a fixed
direction and a necessary and sufficient condition for a curve α to be a helix
is that τ

κ(s) is constant, where κ is the first curvature (or curvature) and τ is
the second curvature (or torsion) of α [2, 21]. Another type of special curves
is the slant helix, which is defined by the property that there is always a
constant angle between the principal normal line of the curve and a fixed
direction. This special curve was first defined by Izumiya and Takeuchi [11].
Later, Zıplar et al. [26] have introduced a new special curve called Darboux
helix and they have obtained that a curve is a Darboux helix iff the curve is
a slant helix.
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Furthermore, a special curve can be defined by considering its position
vector. A curve α in the Euclidean 3-space E3 for which the position vec-
tor of the curve is always contained in its rectifying plane (respectively,
osculating plane or normal plane) is called a rectifying curve or briefly recti-
fying (respectively, osculating curve or normal curve) [5]. Rectifying curves,
normal curves and osculating curves satisfy Cesaro’s fixed point condition
[18]. Namely, rectifying, normal and osculating planes of such curves always
contain a particular point. Moreover, Darboux vectors (centrodes) and rec-
tifying curves are related and used in different branches of science such as
kinematics, mechanics and differential geometry of curves of constant pre-
cession [6].

Kızıltuğ et al. [13] have defined a new kind of special curves called normal
direction curves. Later, Çakmak [7] has studied the same subject in a 3-
dimensional compact Lie group and he has also given two similar new curves.

Recently, Deshmukh et al. [8] have studied the natural mate and the
conjugate mate of a curve. They have given some new characterizations for
a spherical curve, a helix, a rectifying curve and a slant helix. Alghanemi
and Khan [1] have given the position vectors of the natural mate and the
conjugate mate. Mak [15] has studied these mates in three-dimensional Lie
groups. Later, Camcı et al. [4] have studied sequential natural mates of
Frenet curves in E3.

In the present paper, we define the osculating mate of a Frenet curve α
in E3. We give some relations between a Frenet curve and its osculating
mate and introduce some applications of osculating mates to a slant helix,
a spherical helix, a rectifying curve and a C-slant helix in E3.

2. Preliminaries

Let α : I → E3 be a unit speed curve with arclength parameter s. The
vector T (s) = α′(s) is called the unit tangent vector of α and the function
κ(s) = ‖α′′(s)‖ is called the curvature of α. The unit principal normal vector
N(s) of the curve α is defined by α′′(s) = κ(s)N(s). The unit binormal
vector of α is B(s) = T (s) × N(s). Then, the Frenet frame {T,N,B} has
the following formula T ′

N ′

B′

 =

 0 κ 0
−κ 0 τ
0 −τ 0

 T
N
B

 ,

where τ = τ(s) is the torsion of the curve α defined by τ = −〈B′, N〉 [21].
If κ(s) 6= 0, the curve α is called a Frenet curve. The curve α is a general
helix iff τ

κ(s) is constant. Similarly, in [11], the characterization of a slant
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helix is given by the necessary and sufficient condition

σ(s) =
κ2

(κ2 + τ2)3/2

(τ
κ

)′
= const. (1)

A Frenet curve α is said to be a Salkowski (respectively, anti-Salkowski)
curve if its curvature κ is constant but the torsion τ is non-constant (re-
spectively, the torsion τ is constant but the curvature κ is non-constant)
[17].

A Frenet curve α is said to be a spherical curve if all points of α lie on the
same sphere and such a curve is characterized as follows: a Frenet curve α is
a spheciral curve iff (p′q)′+ p

q = 0 holds, where p = 1/κ, q = 1/τ . Moreover,

another characterization for a spherical curve is that a Frenet curve α is a
spheciral curve iff p2 + (p′q)2 = a2 holds, where a > 0 is the radius of the
sphere on which α lies [16].

A Frenet curve α is called a rectifying curve if the position vector of α
always lies on the rectifying plane of the curve [5]. A rectifying curve is char-
acterized by the necessary and sufficient condition that τ

κ(s) = 1
c (s+b) holds,

where c 6= 0, b are real constants and such a curve has the parametrization
α(s) = (s+ b)T (s) + cB(s) [5].

The vector W defined by W = τT+κB√
κ2+τ2

is called the unit Darboux vector

of α. Then, the frame {N,C = W ×N,W} is called the alternative frame of
α. A curve α is called a Darboux helix if the unit Darboux vector W makes a
constant angle with a fixed direction and the curve α is a Darboux helix iff α
is a slant helix [26]. A curve α is said to be a C-slant helix if the unit vector
C always makes a constant angle with a fixed direction. A necessary and
sufficient condition for a curve α to be a C-slant helix is that the function

µ(s) =
(f2 + g2)3/2

f2( gf )′
(2)

is constant [22].

3. Osculating mates of a Frenet curve in E3

In this section, we define the osculating mate of a Frenet curve in E3 and
give some characterizations for this curve.

Definition 1. Let α : I ⊂ R → E3 be a unit speed Frenet curve. The
curve β defined by

β(s) =

∫
(x1(s)T (s) + x2(s)N(s)) ds (3)
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and satisfying the conditions x21(s) + x22(s) = 1 and β′′ ⊥ sp {T,N} is called
the osculating mate of the curve α where s is the arclength parameter of α
and x1(s), x2(s) are differentiable functions of s.

Unless otherwise stated, hereafter when we talk about the concept of
curves we will mean Frenet curves.

Theorem 1. The Frenet apparatus of the osculating mate β is computed
as follows {

T = sin
(∫
κ(s)ds

)
T + cos

(∫
κ(s)ds

)
N, N = B,

B = cos
(∫
κ(s)ds

)
T − sin

(∫
κ(s)ds

)
N,

(4)

κ = ε1τ cos

(∫
κ(s)ds

)
, τ = τ sin

(∫
κ(s)ds

)
, (5)

where ε1 = ±1 is chosen such as κ > 0.

Proof. Let
{
T ,N,B;κ, τ

}
be the Frenet apparatus of the osculating mate

β. From Definition 1, it follows that β′ = T = x1T + x2N . Differentiating
the last equality we have

T
′
=
(
x′1 − x2κ

)
T +

(
x′2 + x1κ

)
N + x2τB, (6)

which gives the system

x′1 − x2κ = 0, x′2 + x1κ = 0, x2τ 6= 0. (7)

The solution of the system (7) is

x1(s) = sin

(∫
κ(s)ds

)
, x2(s) = cos

(∫
κ(s)ds

)
. (8)

Then, it follows that T = sin
(∫
κds
)
T + cos

(∫
κds
)
N and from (6), we

have κN = τ cos
(∫
κds
)
B. Hence we obtain

κ = ε1τ cos

(∫
κds

)
, N = B, (9)

where ε1 = ±1 is chosen such that κ > 0. Furthermore,

B = T ×N = cos

(∫
κds

)
T − sin

(∫
κds

)
N. (10)

Differentiating (10) and using the equality τ ′ = −
〈
B
′
, N
〉

, we have τ =

τ sin
(∫
κds
)
. �

Theorem 2. The curvatures κ and τ of α are computed as

κ =
ε1κ

2

κ2 + τ2

(
τ

κ

)′
, τ = ±

√
κ2 + τ2. (11)
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Proof. From (5), we easily get

τ = ±
√
κ2 + τ2. (12)

By writing the equality (12) in equalities (5), it follows

cos

(∫
κds

)
=

±ε1κ√
κ2 + τ2

, sin

(∫
κds

)
=

±τ√
κ2 + τ2

, (13)

respectively. By taking the derivative of the second equality in (13), we get

κ cos

(∫
κds

)
= ±κ(κτ ′ − κ′τ)

(κ2 + τ2)3/2
. (14)

Putting first equality in (13) into (14) gives κ = ε1κ
2

κ2+τ2

(
τ
κ

)′
, which completes

the proof. �

From Theorem 1, Theorem 2 and equation (1), we have

τ = τ sin

(∫
κds

)
,
κ

τ
= ε1σ, (15)

which gives the following corollary.

Corollary 1. i) α is a plane curve iff the osculating mate β is a plane
curve.
ii) α is a helix iff the osculating mate β is a slant helix.

Theorem 3. The osculating mate β is spherical curve iff the curvatures
κ, τ of α satisfy the equality

(τ cosx)′ = ±τ2 sinx cosx
√
a2τ2 cos2 x− 1, (16)

where a > 0 is the radius of the sphere and x(s) =
∫
κ(s)ds.

Proof. First assume that β lies on a sphere with the radius a > 0. Hence,
p2 + (p′q)2 = a2 holds, where p = 1/κ, q = 1/τ . From (5), it follows that

p′ = −ε1(τ cosx)′
τ2 cos2 x

. Then, we have

1

τ2 cos2 x

[
1 +

((τ cosx)′)2

τ4 sin2 x cos2 x

]
= a2, (17)

which gives (16).
Conversely, assume that (16) holds. By differentiating the first equality

in (5), we have

− p′ = κ′

κ2
=
−ε1(τ cosx)′

τ2 cos2 x
. (18)

Putting (16) into (18) gives

p′ =
∓ε1 sinx

√
a2τ2 cos2 x− 1

cosx
. (19)



162 AKIN ALKAN AND MEHMET ÖNDER

By the second equality in (5), we obtain p′q = ∓ε1
√
a2τ2 cos2 x−1
τ cosx , and so

p2 + (p′q)2 = a2, i.e., β lies on a sphere with the radius a > 0. �

Theorem 4. The osculating mate β is rectifying iff the function tan
∫
κds

is a linear function of s.

Proof. Suppose that β is rectifying. So we have τ
κ

= 1
c (s+ b) , where

c 6= 0, b are real constants. Considering (5), it follows that tan
∫
κds =

ε1
c (s+ b).

Conversely, let us write ε1 tan
∫
κds = (a1s+ a2) , where a1 6= 0, a2 are

real constants. Let us define a1 = 1
c and a2 = b

c , where c 6= 0 is a

real constant. Then, we get ε1 tan
∫
κds = 1

c (s+ b) and it follows that

cτ sin
(∫
κds
)

= ε1 (s+ b) τ cos
(∫
kds
)
. Taking into account (5), we obtain

(s+ b)κ− cτ = 0, which gives that β is rectifying. �

Theorem 5. The position vector of the osculating mate β is given by

β =

[∫ (
−κ
τ
h′ + sin

(∫
κds

))
ds

]
T − h′

τ
N + hB, (20)

where h(s) = (dd′)′−1
τ cos

∫
κds

and d = d(s) = ‖β(s)‖ is the distance function of β.

Proof. For the position vector β, we can write

β = a1T + a2N + a3B, (21)

where ai = ai(s), (i = 1, 2, 3) are smooth functions of s. Differentiating (21)
and using (4), we have{

sin
(∫
κds
)
T + cos

(∫
κds
)
N = (a′1 − a2κ)T + (a1κ+ a′2 − a3τ)N

+ (a2τ + a′3)B.
(22)

From (22), we have the following system a′1 − a2κ = sin
(∫
κds
)
,

a1κ+ a′2 − a3τ = cos
(∫
κds
)
,

a2τ + a′3 = 0.
(23)

From (21), it follows that d2 = a21 + a22 + a23. Differentiating the last equality
gives dd′ = a1a

′
1 + a2a

′
2 + a3a

′
3. Then, from the system (23), we get

dd′ = a1 sin

(∫
κds

)
+ a2 cos

(∫
κds

)
. (24)

Differentiating (24) and taking into account the system (23), we obtain a3 =
(dd′)′−1

τ cos(
∫
κds)

. By writing h(s) = a3(s), from the system (23), we get

a2 = −h
′

τ
(dd′)′, a1 =

∫ [
−κ
τ

(h)′ + sin

(∫
κds

)]
ds. (25)
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Considering (21), we have (20). �

Corollary 2. Let β be an osculating mate of α.
i) β is a spherical curve iff h(s) = −1

τ cos
∫
κds

.

ii) If β is a rectifying curve, then h = 0.

Proof. i) β is a spherical curve iff d is a non-zero constant iff h(s) =
−1

τ cos
∫
κds

.

ii) Since β is a rectifying curve, its distance function d satisfies d2(s) =
s2 + c1s+ c2, where ci (i = 1, 2) are constants [6]. Then we have h = 0. �

Theorem 6. Let β be an osculating mate of α.
i) β is a Bertrand curve iff the function (pq′)2 +q2 is a non-zero constant.
ii) α is a Bertrand curve iff ε1ς1σ ∓ ς2 = 1√

κ2+τ2
, where ς1 6= 0, ς2 are

constants.

Proof. i) Since β is a Bertrand curve, we can write aκ + bτ = 1, where
a 6= 0 and b are constants [3]. Writing (5) in the last equality gives

aε1 cos

(∫
κds

)
+ b sin

(∫
κds

)
=

1

τ
= q. (26)

By differentiating (26), we have

− aε1 sin

(∫
κds

)
+ b cos

(∫
κds

)
=

(
1

τ

)′ 1

κ
= q′p. (27)

From (26) and (27), it follows that (pq′)2 + q2 = a2 + b2.
Conversely, let (pq′)2+q2 be a non-zero constant. Define q = (a2+b2) cos θ

and pq′ = (a2 + b2) sin θ, where a 6= 0, b are real constants. Differentiating
the first equality and writing the result in the second one gives θ′ = −κ.
Then the equality q = (a2 + b2) cos θ becomes τ = 1

(a2+b2) cos(
∫
κds+m)

, where

m is an integration constant. By taking into account (5), we have

κ =
ε1 cos

(∫
κds
)

(a2 + b2) cos
(∫
κds+m

) , τ = −
sin
(∫
κds
)

(a2 + b2) cos
(∫
κds+m

) . (28)

By writing A =
(
a2 + b2

)
cos(m), B =

(
a2 + b2

)
sin(m) and taking into

account (28) it follows that Aκ+Bτ = 1, i.e., β is a Bertrand curve.
ii) If α is a Bertrand curve, then ς1κ + ς2τ = 1, where ς1 6= 0, ς2 are

constants. Writing (11) in the last equality, it follows that ε1ς1κ
2

κ2+τ2

(
τ
κ

)′
±

ς2
√
κ2 + τ2 = 1 or, equivalently, ε1ς1σ ± ς2 = 1√

κ2+τ2
.

Conversely, if ε1ς1σ ± ς2 = 1√
κ2+τ2

holds, then taking into account (11)

we have ς1κ+ ς2τ = 1, i.e., α is a Bertrand curve. �
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Theorem 7. Let β be an osculating mate of α.
i) β is a Mannheim curve iff 1

τ cos
∫
κds = ε1λ1, where λ1 is non-zero

constant.
ii) α is a Mannheim curve iff ε1

√
κ2 + τ2σ3 = λ2

(
1 + σ2

)
, where λ2 is

non-zero constant.

Proof. i) If β is a Mannheim curve, there is a non-zero constant λ1 such

that κ = λ1(κ
2 + τ2) holds [14, 10]. Writing (5) in the last equality gives

1
τ cos

∫
κds = ε1λ1.

Conversely, if 1
τ cos

∫
κds = ε1λ1 holds for a non-zero constant λ1, from

(4) and (5), we have that κ = λ1(κ
2 +τ2) holds, i.e., β is a Mannheim curve.

ii) If α is a Mannheim curve, the curvatures of α satisfy κ = λ2(κ
2 + τ2),

where λ2 is a non-zero constant. Hence we get 1
κ = λ2(1 + τ2

κ2
). By writing

(11) in the last equality and considering (1), we obtain ε1
√
κ2 + τ2σ3 =

λ2

(
1 + σ2

)
.

The converse is clear. �

Corollary 3. Let β be an osculating mate of α. Then, α is a Mannheim
curve iff the cuvatures of α and β satisfy κ = ±λτ, where λ is a non-zero
constant.

Theorem 8. The curve β be an osculating mate of α.
i) Let α be a Salkowski curve. Then β is a Salkowski curve iff τ =

ε1e3 sec(e1s+ e2), where ei (i = 1, 2, 3) are real constants.
ii) Let β be a Salkowski curve with constant curvature κ = e4. Then α is

a Salkowski curve with κ = c > 0 iff ε1e4τ
′′ − 2cττ ′ = 0 holds.

iii) Let β be an anti-Salkowski curve with constant torsion τ = e5. Then
α is a Salkowski curve with κ = c > 0 iff ε1e5κ

′′ + 2cκκ′ = 0 holds.

Proof. i) Since α is a Salkowski curve, we have κ = e1 > 0 is constant but
τ is non-constant. Then, from (4) it follows that κ = ε1τ cos (e1s+ e2) , τ =

τ sin (e1s+ e2) , where e2 is an integration contant. We get τ
κ

= ε1 tan(e1s+

e2). Hence β is a Salkowski curve with constant curvature κ = e3 > 0 iff
τ = ε1e3 sec(e1s+ e2).

The proofs of (ii) and (iii) are similar to the proof of (i). �

Let now (T ), (N), (B) denote the tangent indicatrix, the principal normal
indicatrix and the binormal indicatrix of the osculating mate β, respectively.
The curvatures of these spherical curves are computed as

κ
T

=

√
κ2 + τ2

κ
, τ

T
=

κ

κ2 + τ2

(
τ

κ

)′
, (29)
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κ
N

=

√
κ2 + τ2

τ
, τ

N
=

κ2

τ(κ2 + τ2)
(
τ

κ
)′, (30)

κ
B

=

√
κ2 + τ2

τ
, τ

B
=

κ2

τ(κ2 + τ2)
(
τ

κ
)′, (31)

respectively [22]. We obtain the following result.

Corollary 4. The statements given below are equivalent.

i) The tangent inticatrix (T ) of β is a general helix.
ii) The osculating mate β is a slant helix.
iii) α is a general helix.

Proof. From (5), (29) and (1), it follows that
τ
T
κ
T

= σ = ε1
κ
τ , which finishes

the proof. �

Corollary 5. The statements given below are equivalent.

i) The principal normal inticatrix (N) of β is a general helix.
ii) The osculating mate β is a C−slant helix.
iii) α is a slant helix.

Proof. If we write (5) in (30) and consider (1) and (2), we obtain
τ
N
κ
N

=

1
µ

= −σ, which gives the desired results. �

Corollary 6. The statements given below are equivalent.

i) The binormal inticatrix (B) of β is a general helix.
ii) The osculating mate β is a slant helix.
iii) α is a general helix.

Proof. Putting (5) into (31) and considering (1), we have
τ
B
κ
B

= −σ =

−ε1 κτ , which gives the desired statements. �

3.1. Osculating type (OT) osculating mates. In this subsection we
define osculating type osculating mates (or OT-osculating mates) in E3 and
give the relationships between osculating mates and OT -osculating mates.
This section also gives a method to obtain a rectifying curve.

Consider a space curve α : I → E3 with Frenet triangle {T,N,B} and

curvatures κ, τ . The vector
∼
D = τ

κ(s)T (s) +B(s) is said to be the modified
Darboux vector of α [11]. Let now the curve α be a Frenet curve and the
curve β be an osculating mate of α. The curve β is called an osculating-type
osculating mate (or an OT-osculating mate) of α, if the position vector of β
is always contained in the osculating plane of α.

Considering the definition of OT-osculating mate, we can write

β(s) = m(s)T (s) + n(s)N(s), (32)
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where m(s), n(s) are non-zero smooth functions of s. From (4),{
T = sin

(∫
κds
)
T + cos

(∫
κds
)
B,

N = cos
(∫
κds
)
T − sin

(∫
κds
)
B.

(33)

Writing (33) in (32) gives{
β(s) =

[
m sin

(∫
κds
)

+ n cos
(∫
κds
)]
T

+
[
m cos

(∫
κds
)
− n sin

(∫
κds
)]
B.

(34)

Defining {
ζ(s) = m sin

(∫
κds
)

+ n cos
(∫
κds
)
,

η(s) = m cos
(∫
κds
)
− n sin

(∫
κds
)
,

(35)

in (34) and differentiating the obtained equality gives

T = ζ ′T + (ζκ− ητ)N + η′B. (36)

Hence we get

η = a = const, ζ = s+ b =
τ

κ
a, (37)

where a, b are non-zero constants. Considering (37), we obtain

β(s) = a

(
τ

κ
T +B

)
(s) = a

∼
D(s), (38)

where
∼
D is the modified Darboux vector of β. Then the following theorem

is obtained.

Theorem 9. Let β be an OT-osculating mate of α. Then
i) β is a rectifiyng curve.

ii) The position vector β and the modified Darboux vector
∼
D of an oscu-

lating mate β are linearly dependent.

Considering (35), (37) and (33), the last theorem gives a method to con-
struct a rectifying curve by using an osculating mate as follows.

Corollary 7. The curve β given by the parametrization{
β(s) =

[
(s+ b) sin

(∫
κds
)

+ a cos
(∫
κds
)]
T (s)

+
[
(s+ b) cos

(∫
κds
)
− a sin

(∫
κds
)]
N(s)

(39)

is a rectifying curve and also an osculating mate of α, where a, b are non-
zero constants.
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Figure 1. (a) Spherical helix α (left). (b) Osculating mate β (right).

Figure 2. (a) Tangent indicatrix T (left). (b) OT-osculating
mate of α (right).

Example 1. Let us consider the spherical helix α in E3 defined by α (t) =(
1√
2

sin t, cos t cos(
√

2t)+ 1√
2

sin t sin(
√

2t),− cos t sin(
√

2t)+ 1√
2

sin t cos(
√

2t)
)
,

(see Fig. 1(a)). The arc parameter of α is s = sin t. The Frenet apparatus
of α is computed as follows,

T (s) =

√
2

2

(
1,− sin(

√
2 arcsin s), − cos(

√
2 arcsin s)

)
,

N (s) =
(

0,− cos(
√

2 arcsin s), sin(
√

2 arcsin s)
)
,

B (s) = −
√

2

2

(
1, sin(

√
2 arcsin s), cos(

√
2 arcsin s)

)
,
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κ =
1√

1− s2
, τ = − 1√

1− s2
.

From (4) and (9), the osculating mate β of α is obtained as

β(s) =

∫
(sT (s) + cos(arcsin s)N(s)) ds = (β1 (s) , β2 (s) , β3 (s)) ,

where

β1 (s) =

√
2

4
s2 + c1,

β2 (s) =

∫ (
−
√

2

2
s sin(

√
2 arcsin s)− cos(

√
2 arcsin s) cos(arcsin s)

)
ds,

β3 (s) =

∫ (
−
√

2

2
s cos(

√
2 arcsin s) + cos (arcsin s) sin(

√
2 arcsin s)

)
ds,

where c1 is an integration constant (see Fig. 1(b)). From Corollary 5, the

osculating mate β is a slant helix and its tangent indicatrix T is a general
helix which is plotted in Fig. 2(a). Furthermore, by choosing a = b =

√
2,

from (39) an OT-osculating mate of α, which is also a rectifying curve and
plotted in Fig. 2(b), is obtained.

4. Conclusions

A new type of associated curves is introduced and called an osculating
mate. The relations between a Frenet curve and its osculating mate are
obtained. The obtained results allow to construct a slant helix, a C-slant
helix, a spherical helix and a rectifying curve by considering an osculating
mate of a Frenet curve.
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