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On the generalized [-absolute convergence of
single and multiple Fourier series

KIRAN N. DARJI

ABSTRACT. In this paper, we provide sufficient conditions for the gen-
eralized (-absolute convergence of multiple Fourier series of a function
f of p-(AY, ..., A¥)-bounded variation.

1. Introduction

Concerning the absolute convergence of Fourier series, the theorem of
Bernstein [2, Vol. II, Theorem 2 of Bernstein, p. 154], the theorem of Szdsz
[2, Vol. II, p. 155], and the theorem of Zygmund [2, Vol. II, p. 160]
are classical. Generalizing these classical results of Bernstein, Szdsz and
Zygmund, Gogoladze and Meskhia [4] obtained sufficient conditions for the
generalized [-absolute convergence of single Fourier series. In 2007, Méricz
and Veres [6] proved the analogues of theorems of Szdsz and Zygmund for
multiple Fourier series. Moéricz and Veres [5] have also generalized their
results and given a multidimensional analogue of the results of Gogoladze
and Meskhia.

In the present paper, we provide sufficient conditions for the general-
ized [-absolute convergence of multiple Fourier series of a function f of
p-(A', ..., ANV)-bounded variation. Our results generalize the earlier results
of Gogoladze and Meskhia [4, Corollary 3, p. 32|, of Vyas [10, Theorem 3.1
and Corollary 3.2, p. 233-234] and of Vyas and Patadia [12, Theorem 1, for
ng = k, for all k| for single Fourier series, and also of Méricz and Veres [5),
Theorem 4 and Corollary 4, p. 153; and their extensions Theorem 4 and
Corollary 4', p. 160] and of Vyas and Darji [IT, Theorem 3.3, p. 73 and an
extension of Theorem 3.3, p. 80] for multiple Fourier series.
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172 KIRAN N. DARJI

In the sequel, T := [—7,m) is the torus, L is the class of non-decreasing
sequences A = {\;}72, of positive numbers such that ), i diverges, and
C is a constant whose value may be different at each occurrence.

2. New results for single Fourier series

Given a sequence A = {\;}7°, € L and p > 1, a complex valued function f
defined on T is said to be of p-A-bounded variation (that is, f € ABV ®)(T)),
if

1

V(D) emsup d (SO o
j J

T

where Z is a finite collection of non-overlapping subintervals {I;} = {[a;, b;]}
in T and f(I;) = f(b;) — f(aj).

Note that, for A = {1} (that is, \y = 1, for all k) and p = 1 one gets the
class BV (T); for p = 1 one gets the class ABV(T); and for A = {1} one gets
the class BV®)(T). If f € ABV®)(T), then f is bounded on T [, Lemma
1, p. 771].

For a 2m-periodic complex valued function f € L(T), its Fourier series is

defined as
x) ~ Z f(m) e"™*, xz €T,
meEZ
where the Fourier coefficients f are defined by

=5 /f e~ "M dx, m € Z.
v

A Fourier series of f is said to be -absolute convergent if
Do 1fm)) < oo
meZ
For g =1, one gets the absolute convergence of the Fourier series of f.
The modulus of continuity of a function f is defined as
w(f;0) :=sup{|f(x+h)— f(z)]: €T, 0<h <5}, §>0.

Following the definition in [4], a sequence v = {v,, : m € N1} of non-
negative numbers is said to belong to the class 4, for some o > 1 if the

inequality
1/a

Yo | S ¥ g, (1)
mE'DH meDu 1
is satisfied for all p > 0, where

D_1:=Do={1}, D,:={2"+ 1,27 42 . 2"} for p >0 (2
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and the constant 7 does not depend on p. Without loss of generality, we
assume that n > 1. Note that,

gy Ty, if 1 <y < g < 0. (3)
If a sequence 7 is such that
max{y, :m € Dy} <n min{y, :m € D1}, pe Ny,
then v € U, for every a > 1. This inequality was introduced by Ul’yanov
[7]. For convenience in writing, put y_,, := Ym, m € N.
We prove the following result.

Theorem 1. If f € ABV®(T) (p > 1) and v = {yn} € Uy /(2—p) for
some B € (0,2), then

B
r s q . T p+aq
S iha= Y wlfm) <00y 2 #RT, <w<f>> |

Im|>1 p=0 2.j=1%;
where n is from corresponding to a :==2/(2—0), ¢ >0, p+q> 2, and
ry,:= Z Ym for p e N. (4)
meD,,

Proof. For a given h > 0, put

Afj(@;h) == f(z+jh) = f(z+ (G —1h).
Then, for each m € Z,

Af;(m) = 2if(m) ™= gin <72h> .

Since f € ABV®)(T), f is bounded on T and hence f € L*(T). Using
Parseval formula, we get

5 |1 s ()| <o [ 1antmpa).

meZ
Putting h := 5, p € N, and taking into account that

T |mw o7
1T =y

im| € Dy, (5)
it follows that

So= X 1imP =0 ( [ |as (5[ o).

|m|€Dy
for all j =1,...,2H.
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Applying Hélder’s inequality on the right side of the above inequality, we

have N
ol )

Since the left hand side of the above 1nequa11ty is independent of j, mul-
tiplying both sides of it by )\ij, summing over j from 1 to 2#, and letting

N |
Agw =370 3,0 we get

2¢ ) . m\|Pta pta
ey /Z |Af (@ 5:) [
(Ag)7ra \JTH Aj
Since ‘Afj (37; 21#)| =0 (w (f; 21“)), we have
2
B wWI(f; 9 rra ‘Afj T3 2#)‘1) e
s=o| (") /Z o]
where o
A TP
> W = O(1) as f € ABV®P)/(T).
j=1 7
Hence,

B WI(f; )\ 74
&_o((lw;> )_

Since 1 = g + #, by Hoélder’s inequality, we have

B2 (2-8)/2
= > wmlfmlP < | 30 Ifm)P S e
Im|€Dy, |m|eD,, Im|€D,,
o £\ P (2-8)/2
w I p+aq
< [ A 2k/ 2/(2—p) '
—( M#) > (6)
|m|eD,

In case pu > 1, in view of with o := ﬁ, and @, we get

8
w!(f; 3iw) | ¥
Aou '
If p = 0, then from equation (6) it follows that

R, <nC27H21, (

B

Foi=2(f )+ (-1 =0 (“W)> B

A1
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Hence, the result follows from

7 Amlfm)P =" R
©n=0

Im|>1

In the case when p = ¢ = 1, it follows from Theorem [1] that

B
S i fs < OS2 T, (;(f) >

1=0 J=1 X
This was proved by Vyas [10, Theorem 3.1, p. 233].

Corollary 1. Under the hypothesis of Theorem[1], we have

(s <nCd m PRy, (gm) p

m=1 Jj=1 E

In the case when ¢ = 2 —p and {\;} = {1}, it follows from Corollary [1| that

— @ps (o
20 s <€ S m P e (£ 5).

This was proved by Gogoladze and Meskhia [4, Corollary 3, p. 32].
Similarly, Corollary [1| reduces to the result concerning the generalized (-
absolute convergence of single Fourier series of Vyas [10, Corollary 3.2, p.
234] in the case when p = ¢ = 1; and also reduces to the result proved in [3|
Corollary 3.6, p. 366] in the case p = ¢q. Further, Corollary (1| was proved by
Vyas and Patadia [12, Theorem 1, with ny = k, for all k, p. 131] in the case

when {v,,} = {1} andp=¢=1.

3. New results for double Fourier series

Consider function f on R¥. For k = 1 and I = [a,b], define f(I) :=
fb) — f(a). For k=2, I =[a,b] and J = [e,d], define
fAxJ) = f,d) = f(I,c) = f(b,d) = fa,d) — f(b,c) + f(a,c).
Given (A';A?), where A" = {\"}°, € L, forr = 1, 2, and p > 1, a
complex valued measurable function f defined on T 1S sald to be of p-
(A, A?)-bounded variation (that is, f € (A, A2)BV®)(T ))
1
p

(L x )P
A1 A2, (f T ) = Sup ZZ )\1)\2 < 00,

I, 2
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where I' and I? are finite collections of non-overlapping subintervals {I Jl}
and {I?} in T, respectively.

Consider a function f : T — R defined by f(z,y) = g(x) + h(y), where
g and h are any two arbitrary functions from T into R Wthh need not be
bounded (or need not be measurable) Then Vipr a2), (f, T ) = 0. Thus, a
function f with Va1 a2 (f, ) < oo need not be bounded (or need not be
measurable).

If f e (Al,AQ)BV(p)(T2) is such that the marginal functions f(0,-) €
A2BV®)(T) and f(-,0) € ALBV®)(T), then f is said to be of p-(A', A?)*
bounded variation (that is, f € (A', A2)*BV®) (Tz)).

If f € (A',A2)*BV®) (TQ), then f is bounded on T [8, Lemma 5.1, with
p(n) = p, for all n].

Note that, for p = 1 and A = A? = {1}, the classes (Al,A2)BV(p)(T2)
and (A, A?)*BV (®) (Tz) reduce to the classes BVy (TQ), the class of functions
of bounded variation in the sense of Vitali (refer to [6, p. 279] for the defini-
tion of BVy (TQ)) and BVH(TZ), the class of functions of bounded variation
in the sense of Hardy (refer to [6, p. 280] for the definition of BVy (TQ)), re-
spectively; for p = 1, the classes (A1 A?)BV®) (T2) and (Al A2)*BV(p) (T2)
reduce to the classes (A', A2)BV (T ) [1, Definition 2] and (AI,A2)*BV(T2),
respectively; and for A = A? = {1}, the classes (AL, A%)B V(p)(TQ) and
(AY, A2)*BV®)|(T ) reduce to the classes BV‘Sp)( T%) (refer to [B, p. 153])
and B Vl(f ) (Tz), respectively.

For a complex valued function f € L'(T?), where f is 27-periodic in each
variable, its double Fourier series is given by

~ ST fomen) €T (@) € T2,

MEZnEL

where the Fourier coefficients f(m,n) are defined by

f(m // f(x,y) e M=) qu dy, (m,n) € Z2.

A double Fourier series of f is said to be S-absolute convergent if
> D fmn)) <,
mEZLnEZ

where

YD Mmn) = Y Y fmn)l’ + Y |f(m,0))

MEZLNEL Im|>1|n|>1 meZ
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+ > 1£(0,n)[P=£(0,0)/". (7)

ne’l

In the special cases, when m = 0 or n = 0, we write
F(m,0) = fu(m), where fi(z / ) dy, 2T ()

and

F(0,n) = fa(n), where fo(y / f(z,y) dz, yeT.  (9)
We may write
Y 1AM =" Fm,0)7 and D [fa(n)|” =D |F(0,n))°
mEZ mEZ neZ neL
Combining this with gives
SO I =" Y Fmn)| )1 fi(m) 1P | f2(n)[ P £(0,0)]°.
meEZ nel |m|>1|n|>1 meZ nez
Thus, the Fourier series of f is S-absolute convergent if
ZZ]fmn|B<oo Z|f1 |'8<ooandZ|f2 )P < 0.
Im|>1 |n|>1 meZ nez
For g =1, one gets the absolute convergence of the double Fourier series of
f. The modulus of continuity of a function f is defined as
w(f;01,02) :=sup{|f([x,z+ hi] X [y,y + h2])|: 0 < hy <01, 0 < hy < d2}.

Following the definition in [5], a double sequence v = {ymn : (m,n) €
Ni} of nonnegative numbers belongs to the class i, for some o > 1 if the
inequality

1/a

YD v | SN N Ty (10)

meD, n€D, meDy 1 n€ED, 1

is satisfied for all p,v > 0, where D), is as defined in for p > 0. For
instance, if > 1 and v = 0, then inequality is of the form
1/«

Do | <Oy

mEDM mGDN 1

It is easy to check that the inclusion remains valid; and if a double
sequence 7 = {Vmn > 0} is such that

max{ymn : m € Dy, n € D,}
<7 min{Ymn: meDy_1, n € Dy_1}, (u,v) € N2,
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where 7 is a constant, then v € i, for every o > 1. For convenience in
writing, put
V-mmn = Ym,—n = V—m,—n = Tmn, (m7 n) 6N3~

We prove the following result.

Theorem 2. If a measurable f € (A*, A2)BV®) (Tz) (p>1), fis bounded,
and ¥ = {VYmn} € Uga—pg) for some B € (0,2), then

Z(’Y? f)ﬁ = Z Z ’Ymn‘f(ma n)’/j

[m|>1|n|>1
£
o0 o pTq
_ wi(f; 37, 3w
SncZZQ (ntv)B/2 | I (f5 37, 2 ) , (11)
u=0 =0 Z Ek 1 )\1)\2
where n is from (10) corresponding to o :=2/(2—05), ¢ >0, p+q>2 and
Iy = Z Z Ymn for p,v € N. (12)
meD, neD,

Proof. For given hi, ho > 0, put
Afje (@, y5ha, he) o= f ([ + (G — Dha, @ + jha] X [y + (k — 1)ho, y + kho]) .
Then, for each m,n € Z,

_ . o 4 h h
Afip(m,n) = —4f(m,n) eimU—)h gin(k=3)ha gipy <m2 1) sin (7122) .
Since f is bounded, f € L? (Tz). Therefore the Parseval formula gives
f in (1) g (2 [ 2 A by, ho)|dwd
> |f(m,n)sin — ) sinl =~ )| =0 TQ\ fik (@ ys hay he)["dady | .

meZnel
Putting hy := 9, he := o, u,v € N, taking into account the inequality
and using that an analogous inequality holds for \n| € D,, we have

= % 5 ifomar=o(f [ s (g Z)[ ao )

|m|€Dy [n|€Dy
Applying Holder’s inequality on the right side of the above inequality, we

forall j =1,...,2"* and for all k =1, ...,2".
have ,
p+q\ pta
ouo((f Lot n 2 D))

Since the left hand side of the above inequality is independent of j and k,




ON THE GENERALIZED S-ABSOLUTE CONVERGENCE OF FOURIER SERIES 179

multiplying both sides of it by ﬁ, summing over j from 1 to 2* and k
5k

from 1 to 2¥, and letting Agu ov := Z?il iu 1 /\IAQ, we get

_2
p+q p+aq

A (Y = B
[y Bl gs)
7k

A2u2v via J=1 k=1

Since ‘Afjk (a:,y; 22 21,,) =0 (w (f; o 2%)), we have S, =

p+aq
fa ) QU ’Afk L Y; o u) ’
O((2u2 //ZZ j 122#2 dz dy 7
Agr 2 T 5 = AjAk
where
o8 v p
Afk' €T y7 ) v 72
> ! )\1)\22” %) = 0(1) asf € (A", A))BV®)/(T).
j=1k=1 k
Hence,

_2
Suyzo(@%fs;aw).
Aogu gv

Since 1 = ’B + 5 by Holder’s inequality, we have

> Z Yo f (m,n) |

|m|€Dy [n|€D,
B/2 (2-8)/2

< > > lmnP Yo > kY

|m|€D, |n|€Dy |m|€Dy |n|€D,
(2-p)/2

B8
wi(f; gz, 30) \ 7o 2/2 8)
< | —= =7 .
_( o S OY (13)

|m|eDy, |n|€Dy

In case max{u, v} > 1, in view of , with o := fﬁ and ( ., we get

q
R, <1nC o—(u+v)B/2 Ty 11 <

If 4 = v =0, then from equation it follows that
Roo =y (IF (LD + [F (=1, D)) + | f (1, -DP + [f (=1, -D)I)

B
wi T, p+aq
0 [ ((f))
MY
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Hence, the result follows from

S 3 vl m )PP =33 Ry

Im|>1 |n|>1 u=0v=0
]

In the case ¢ = 2 — p and {)\Jl} = {\2} = {1}, it follows from Theorem
that

. SN 9 (u+0)8 @i (p 2 1)
Z(%f)BSUCZZQ ’ Fu—l,u—lw Pra (fa 2#72’/ .
p=0v=0
This was proved by Moéricz and Veres [5, Theorem 4, p. 153].

Corollary 2. If a measurable f € (Al,AQ)*BV(p)(TQ), then holds
true, where p,q,v, B, n, a and T are as in Theorem 2]

Proof. Since f € (A', A2)*BV®) (Tz) is bounded and (A, A2)*BV ) (T2) C
(AY, A2)BV®) (TQ), the corollary follows from Theorem O
Corollary 3. Under the hypothesis of Theorem [, we have

oo 0o wq( LT E) p+aq
Z(’Y;f)ﬁ <nC Z Z(mn)iﬁﬂ Ymn m n T (14)
m=1n=1 ijl 2 k=1 Y
Proof. In the case p,v > 1 from and it follows that
_B_
[ p+q
S oz p S o, )
/j,*].,l/*]. P v 1
1=0v=0 Zj=1 k=1 )\Jl)\%
5
o o pPTaq
wi(f; =,
<30 ) o | i)
m=1n=1 Zjil Zk:l )\;)\i
In case u > 1 and v = 0, it follows that
7ta 74

0 q(f. T ! o0 a(f. ™

— 2 w (f7 777) —3/2 w <f7 77T)
Sty (ST 5, ()
p=0 ijl AJAT m=1 J=1 AN
In case 4 = 0 and v > 1, an analogous inequality holds; while in case p =0

and v = 0, we have
2 s

AT
Hence, the corollary follows from Theorem O
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Corollary |3| was proved by Méricz and Veres [0, Corollary 4, p. 153] in the
case when ¢ = 2 — p and {)\}} = {A?} = {1}, and also proved by Vyas and
Darji [I1, Theorem 3.3, p. 73] in the case when {vyn} = {1} andp=¢ = 1.

Corollary 4. Under the hypothesis of Corollary the inequality
holds true.

Proof of Corollary {]is similar to that of Corollary

Combining Corollary [I] and Corollary [3} we can easily find sufficient con-
ditions imposed on f, fi and fs for the convergence of the double series

Z Z'Ymn|f(mvn)|ﬂ

MEZNEL

For {vmn} = {vm} = {7} = {1}, combining Corollary [I| and Corollary
we obtain the following corollary.

Corollary 5. If a measurable f € (Al,AQ)*BV(p)(TQ), p>1,q9 >0,
p+q=>2,8€(0,2),

oo 00 pt+q
Wi(f: &«

S S omn) o () )

Zj:l Zk:l )\Jl)\i

m=1n=1

B
p+q

o0
g2 [ @15 5)
Z m~—B/2 S ’”i < 00,
m=1 7=1 )\Jl
and
-
00 p+q
_ wi(fa; T)
Zn B2 72” ”i < 00,

where fi1 and fo are as defined in and @, respectively, then the double

Fourier series of f is B-absolute convergent.

4. Extension to multiple Fourier series

Let I* = [ag,by] C R, for k = 1,2,---,N. In Section [3, we defined
f(IY) for a function f of one variable and f(I' x I?) for a function f of
two variables. Similarly, for a function f on RY, by induction, defining the
expression f(I' x - -+ x IV71) for a function of N — 1 variables, one gets

F o x Ny = fI P x--x IV by) — fFIY % - - x IV ap).
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Given (Al,..,AN), where A" = {\[}22, € L, for r = 1 .,N,and p > 1,
a complex valued measurable function f defined on TV is said to be of p-
(A, ..., AN)-bounded variation (that is, f € (A, ..., AN)BV®) (TN)), if

N |f (I}
Viar,..a2),(f;T) = sup Z Z )\N < 00,

JL,. N

where J1, ..., J¥=1 and JY are finite collections of non-overlapping subinter-
vals {1} },... {IkN 1} and {IN }in T, respectlvely

Moreover, a function f € (A',...,AN)BV®)(T ) is said to be of
p-(AL, ..., AN)*bounded variation (that is, f € (AL, ..., AN)*BV®(T")) if
for each of its marginal functions

f(a:l, ceuy .13,'_1,0,1'1'_;,_1, ...,a:N) S (Al, veey Aiil, Ai+1, veey AN)*BV(p)(TN_I

),

for all i = 1,2,..,N. If f € (A', ..., AN)*BV®(T") then f is bounded on
T [8, Lemmma 6.3, with p(n) = n, for all n|.

Note that the classes (A!, ..., AN)BV®) (TN) and (A', ..., AN)*BV () (TN),
forp=1and A = ... = AY = {1}, reduce to the classes BV}, (TN) (the class

of functions of bounded variation in the sense of Vitali) and BVH(TN) (the
class of functions of bounded variation in the sense of Hardy), respectively;

for p = 1, the classes (Al,...,AN)BV(p)(TN) and (Al,...,AN)*BV(p)(TN)
reduce to the classes (A%, ...,AN)BV(TN) and (Al ...,AN)*BV(TN), respec-
tively; and for A’ = ... = AN = {1}, the classes (A, ..., AN)BV® (TN) and
(AL, ...,AN)*BV(p)(TN) reduce to the classes BV‘Sp)(TN) and BVISP)(TN),
respectively.

For a complex valued function f € L'(T"), where f is 27-periodic in each
variable, its multiple Fourier series is given by

fz1, .., zN) ~ Z Z fma,...,my) elmzitetmyen)

mi1EZ mNEZ

where the Fourier coefficients f mq,...,my) are defined by

R B e
7T

The multiple Fourier series of f is said to be S-absolute convergent if

Z Z |f(ma,...,mn)]P < .

mi1EZ my€EZ
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The modulus of continuity of a function f is defined as w(f;d1,...,0n) :=
sup{\f([xl,xl + hl] X ... X [acN,acN + hN])’ 0 < hj < (5]', j =1, ,N}

Analogously to and , an N—multiple sequence v = {{ym,,..my | :
(m1,...,my) € NV} of nonnegative numbers is said to belong to the class
i, for some o > 1 if the inequality

1/Ot
E § (0%
( m GD;L] o mNEDHN )m],...,’H’LN>

<n (it +un)(1—0o)/c Zm1€DM—1 ZmNEDpN—I Yma,...;my (15)

is satisfied for all p1, ..., un > 0, where D,, is as defined in for p > 0.
The following statements are the extensions of the results of Section

Theorem 3. If a measurable f € (A',..., AN)BV®)(T ) (p>1), fis
bounded, and v = {Vm,,..my} € Ha/(2—p) for some 3 € (0,2), then

Shs= D D> Ympmnlf O, my)|?

lmi|z1  |my|=1
9] ) q( f. T ™
(ot 2 w(f; gazs - )

< WCZ--' Z o—(urt...+nn)B/ | T - 2#‘12MN 2PN
m=0 pn=0 Zklzl EkN UL )\N ,
(16)

where 1 is from corresponding to o :=2/(2— ), ¢ >0, p+q > 2,
Lprypin = Z Z Yma,omn fOT 1, ...,y € N.
mleDul mNEDMN

In the case when ¢ = 2 —p and {\; } = --- = = {\N v} = {1}, it follows

from Theorem [3|that > (v; f)s

o0 o
<nC Z e Z 9~ (ttun)B Pyt un—1 w® s <f’ ou1’ 2Mi1\f> ’

p1=0 uN=0

This was proved by Moricz and Veres [5, Theorem 4/, p. 160].

Corollary 6. If a measurable f € (Al,...,AN)*BV(p)(TN), then
holds true, where p,q,~v, B, n, a and I" are as in Theorem [3]

Corollary 7. Under the hypothesis of Theoreml, we have Y (7v; f)g <
_B8_

Q

Pt
e Tt
770 Z Z N Ymai,...,mn

mi=1 my=1 Zk‘1 1° ZkN 1/\1 )\N

(17)
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Corollary [7| was proved by Moéricz and Veres [5, Corollary 4" p. 160] in the
case when ¢ = 2 —p and {\, } = - = {)\,iVN} = {1}; and also proved by
Vyas and Darji [11, Theorem 5.3, p. 80] in the case when {Vm,,...mx} = {1}
and p=q=1.

Corollary 8. Under the hypothesis of Corollary @, the inequality
holds true.

Extended results of this section can be proved in the same way as we
proved the results in Section
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