
ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA

Volume 27, Number 2, December 2023
Available online at https://ojs.utlib.ee/index.php/ACUTM

On the generalized β-absolute convergence of
single and multiple Fourier series

Kiran N. Darji

Abstract. In this paper, we provide sufficient conditions for the gen-
eralized β-absolute convergence of multiple Fourier series of a function
f of p-(Λ1, ...,ΛN )-bounded variation.

1. Introduction

Concerning the absolute convergence of Fourier series, the theorem of
Bernstein [2, Vol. II, Theorem 2 of Bernstein, p. 154], the theorem of Szász
[2, Vol. II, p. 155], and the theorem of Zygmund [2, Vol. II, p. 160]
are classical. Generalizing these classical results of Bernstein, Szász and
Zygmund, Gogoladze and Meskhia [4] obtained sufficient conditions for the
generalized β-absolute convergence of single Fourier series. In 2007, Móricz
and Veres [6] proved the analogues of theorems of Szász and Zygmund for
multiple Fourier series. Móricz and Veres [5] have also generalized their
results and given a multidimensional analogue of the results of Gogoladze
and Meskhia.

In the present paper, we provide sufficient conditions for the general-
ized β-absolute convergence of multiple Fourier series of a function f of
p-(Λ1, ...,ΛN )-bounded variation. Our results generalize the earlier results
of Gogoladze and Meskhia [4, Corollary 3, p. 32], of Vyas [10, Theorem 3.1
and Corollary 3.2, p. 233–234] and of Vyas and Patadia [12, Theorem 1, for
nk = k, for all k] for single Fourier series, and also of Móricz and Veres [5,

Theorem 4 and Corollary 4, p. 153; and their extensions Theorem 4
′

and
Corollary 4

′
, p. 160] and of Vyas and Darji [11, Theorem 3.3, p. 73 and an

extension of Theorem 3.3, p. 80] for multiple Fourier series.
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In the sequel, T := [−π, π) is the torus, L is the class of non-decreasing
sequences Λ = {λk}∞k=1 of positive numbers such that

∑
k

1
λk

diverges, and

C is a constant whose value may be different at each occurrence.

2. New results for single Fourier series

Given a sequence Λ = {λk}∞k=1 ∈ L and p ≥ 1, a complex valued function f

defined on T is said to be of p-Λ-bounded variation (that is, f ∈ ΛBV (p)(T)),
if

VΛp(f,T) := sup
I


∑

j

|f(Ij)|p

λj

 1
p

 <∞,

where I is a finite collection of non-overlapping subintervals {Ij} = {[aj , bj ]}
in T and f(Ij) = f(bj)− f(aj).

Note that, for Λ = {1} (that is, λk ≡ 1, for all k) and p = 1 one gets the
class BV (T); for p = 1 one gets the class ΛBV (T); and for Λ = {1} one gets

the class BV (p)(T). If f ∈ ΛBV (p)(T), then f is bounded on T [9, Lemma
1, p. 771].

For a 2π-periodic complex valued function f ∈ L1(T), its Fourier series is
defined as

f(x) ∼
∑
m∈Z

f̂(m) eimx, x ∈ T,

where the Fourier coefficients f̂(m) are defined by

f̂(m) :=
1

2π

∫
T
f(x) e−imx dx, m ∈ Z.

A Fourier series of f is said to be β-absolute convergent if∑
m∈Z
|f̂(m)|β <∞.

For β = 1, one gets the absolute convergence of the Fourier series of f .
The modulus of continuity of a function f is defined as

ω(f ; δ) := sup {|f(x+ h)− f(x)| : x ∈ T, 0 < h ≤ δ} , δ > 0.

Following the definition in [4], a sequence γ = {γm : m ∈ N+} of non-
negative numbers is said to belong to the class Uα for some α ≥ 1 if the
inequality  ∑

m∈Dµ

γαm

1/α

≤ η 2µ(1−α)/α
∑

m∈Dµ−1

γm (1)

is satisfied for all µ ≥ 0, where

D−1 := D0 = {1}, Dµ := {2µ−1 + 1, 2µ−1 + 2, ..., 2µ} for µ ≥ 0 (2)
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and the constant η does not depend on µ. Without loss of generality, we
assume that η ≥ 1. Note that,

Uα2 ⊂ Uα1 if 1 ≤ α1 < α2 <∞. (3)

If a sequence γ is such that

max{γm : m ∈ Dµ} ≤ η min{γm : m ∈ Dµ−1}, µ ∈ N+,

then γ ∈ Uα for every α ≥ 1. This inequality was introduced by Ul’yanov
[7]. For convenience in writing, put γ−m := γm, m ∈ N+.

We prove the following result.

Theorem 1. If f ∈ ΛBV (p)(T) (p ≥ 1) and γ = {γm} ∈ U2/(2−β) for
some β ∈ (0, 2), then

∑
(γ; f)β :=

∑
|m|≥1

γm|f̂(m)|β ≤ ηC
∞∑
µ=0

2−µβ/2 Γµ−1

(
ωq(f ; π

2µ )∑2µ

j=1
1
λj

) β
p+q

,

where η is from (1) corresponding to α := 2/(2− β), q > 0, p+ q ≥ 2, and

Γµ :=
∑
m∈Dµ

γm for µ ∈ N. (4)

Proof. For a given h > 0, put

∆fj (x;h) := f (x+ jh)− f (x+ (j − 1)h) .

Then, for each m ∈ Z,

∆̂f j(m) = 2if̂(m) eim(j− 1
2

)h sin

(
mh

2

)
.

Since f ∈ ΛBV (p)(T), f is bounded on T and hence f ∈ L2(T). Using
Parseval formula, we get∑

m∈Z

∣∣∣∣f̂(m) sin

(
mh

2

)∣∣∣∣2 = O

(∫
T
|∆fj(x;h)|2dx

)
.

Putting h := π
2µ , µ ∈ N, and taking into account that

π

4
<
|m|π
2µ+1

≤ π

2
, |m| ∈ Dµ, (5)

it follows that

Sµ :=
∑
|m|∈Dµ

|f̂(m)|2 = O

(∫
T

∣∣∣∆fj (x;
π

2µ

)∣∣∣2 dx

)
,

for all j = 1, ..., 2µ.
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Applying Hölder’s inequality on the right side of the above inequality, we
have

Sµ = O

((∫
T

∣∣∣∆fj (x;
π

2µ

)∣∣∣p+q dx) 2
p+q

)
.

Since the left hand side of the above inequality is independent of j, mul-
tiplying both sides of it by 1

λj
, summing over j from 1 to 2µ, and letting

Λ2µ :=
∑2µ

j=1
1
λj

, we get

Sµ = O

 1

(Λ2µ)
2
p+q

∫
T

2µ∑
j=1

∣∣∆fj (x; π
2µ

)∣∣p+q
λj

dx

 2
p+q

 .

Since
∣∣∆fj (x; π

2µ

)∣∣ = O
(
ω
(
f ; π

2µ

))
, we have

Sµ = O

(ωq(f ; π
2µ )

Λ2µ

) 2
p+q

∫
T

2µ∑
j=1

∣∣∆fj (x; π
2µ

)∣∣p
λj

dx

 2
p+q

 ,

where
2µ∑
j=1

∣∣∆fj (x; π
2µ

)∣∣p
λj

= O(1) as f ∈ ΛBV (p)(T).

Hence,

Sµ = O

((
ωq(f ; π

2µ )

Λ2µ

) 2
p+q

)
.

Since 1 = β
2 + 2−β

2 , by Hölder’s inequality, we have

Rµ :=
∑
|m|∈Dµ

γm|f̂(m)|β ≤

 ∑
|m|∈Dµ

|f̂(m)|2
β/2 ∑

|m|∈Dµ

γ2/(2−β)
m

(2−β)/2

≤
(
ωq(f ; π

2µ )

Λ2µ

) β
p+q

 ∑
|m|∈Dµ

γ2/(2−β)
m

(2−β)/2

. (6)

In case µ ≥ 1, in view of (1) with α := 2
2−β , and (6), we get

Rµ ≤ ηC 2−µβ/2 Γµ−1

(
ωq(f ; π

2µ )

Λ2µ

) β
p+q

.

If µ = 0, then from equation (6) it follows that

R0 := γ1(|f̂(1)|β + |f̂(−1)|β) = O

γ1

(
ωq(f, π)

1
λ1

) β
p+q

 .
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Hence, the result follows from∑
|m|≥1

γm|f̂(m)|β =
∞∑
µ=0

Rµ.

�

In the case when p = q = 1, it follows from Theorem 1 that

∑
(γ; f)β ≤ ηC

∞∑
µ=0

2−µβ/2 Γµ−1

(
ω(f ; π

2µ )∑2µ

j=1
1
λj

)β
2

.

This was proved by Vyas [10, Theorem 3.1, p. 233].

Corollary 1. Under the hypothesis of Theorem 1, we have

∑
(γ; f)β ≤ ηC

∞∑
m=1

m−β/2 γm

(
ωq(f ; πm)∑m

j=1
1
λj

) β
p+q

.

In the case when q = 2− p and {λj} = {1}, it follows from Corollary 1 that∑
(γ; f)β ≤ ηC

∞∑
m=1

m−β γm ω
(2−p)β

2

(
f ;
π

m

)
.

This was proved by Gogoladze and Meskhia [4, Corollary 3, p. 32].
Similarly, Corollary 1 reduces to the result concerning the generalized β-

absolute convergence of single Fourier series of Vyas [10, Corollary 3.2, p.
234] in the case when p = q = 1; and also reduces to the result proved in [3,
Corollary 3.6, p. 366] in the case p = q. Further, Corollary 1 was proved by
Vyas and Patadia [12, Theorem 1, with nk = k, for all k, p. 131] in the case
when {γm} = {1} and p = q = 1.

3. New results for double Fourier series

Consider function f on Rk. For k = 1 and I = [a, b], define f(I) :=
f(b)− f(a). For k = 2, I = [a, b] and J = [c, d], define

f(I × J) := f(I, d)− f(I, c) = f(b, d)− f(a, d)− f(b, c) + f(a, c).

Given (Λ1,Λ2), where Λr = {λrn}∞n=1 ∈ L, for r = 1, 2, and p ≥ 1, a

complex valued measurable function f defined on T2
is said to be of p-

(Λ1,Λ2)-bounded variation (that is, f ∈ (Λ1,Λ2)BV (p)(T2
)), if

V(Λ1,Λ2)p(f,T
2
) := sup

I1, I2


∑

j

∑
k

|f(I1
j × I2

k)|p

λ1
jλ

2
k

 1
p

 <∞,
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where I1 and I2 are finite collections of non-overlapping subintervals {I1
j }

and {I2
k} in T, respectively.

Consider a function f : T2 → R defined by f(x, y) = g(x) + h(y), where
g and h are any two arbitrary functions from T into R which need not be

bounded (or need not be measurable). Then V(Λ1,Λ2)p(f,T
2
) = 0. Thus, a

function f with V(Λ1,Λ2)p(f,T
2
) < ∞ need not be bounded (or need not be

measurable).

If f ∈ (Λ1,Λ2)BV (p)(T2
) is such that the marginal functions f(0, ·) ∈

Λ2BV (p)(T) and f(·, 0) ∈ Λ1BV (p)(T), then f is said to be of p-(Λ1,Λ2)∗-

bounded variation (that is, f ∈ (Λ1,Λ2)∗BV (p)(T2
)).

If f ∈ (Λ1,Λ2)∗BV (p)(T2
), then f is bounded on T2

[8, Lemma 5.1, with
p(n) = p, for all n].

Note that, for p = 1 and Λ1 = Λ2 = {1}, the classes (Λ1,Λ2)BV (p)(T2
)

and (Λ1,Λ2)∗BV (p)(T2
) reduce to the classes BVV (T2

), the class of functions
of bounded variation in the sense of Vitali (refer to [6, p. 279] for the defini-

tion of BVV (T2
)) and BVH(T2

), the class of functions of bounded variation

in the sense of Hardy (refer to [6, p. 280] for the definition of BVH(T2
)), re-

spectively; for p = 1, the classes (Λ1,Λ2)BV (p)(T2
) and (Λ1,Λ2)∗BV (p)(T2

)

reduce to the classes (Λ1,Λ2)BV (T2
) [1, Definition 2] and (Λ1,Λ2)∗BV (T2

),

respectively; and for Λ1 = Λ2 = {1}, the classes (Λ1,Λ2)BV (p)(T2
) and

(Λ1,Λ2)∗BV (p)(T2
) reduce to the classes BV

(p)
V (T2

) (refer to [5, p. 153])

and BV
(p)
H (T2

), respectively.
For a complex valued function f ∈ L1(T2), where f is 2π-periodic in each

variable, its double Fourier series is given by

f(x, y) ∼
∑
m∈Z

∑
n∈Z

f̂(m,n) ei(mx+ny), (x, y) ∈ T2,

where the Fourier coefficients f̂(m,n) are defined by

f̂(m,n) :=
1

4π2

∫ ∫
T2

f(x, y) e−i(mx+ny) dx dy, (m,n) ∈ Z2.

A double Fourier series of f is said to be β-absolute convergent if∑
m∈Z

∑
n∈Z
|f̂(m,n)|β <∞,

where ∑
m∈Z

∑
n∈Z
|f̂(m,n)|β =

∑
|m|≥1

∑
|n|≥1

|f̂(m,n)|β +
∑
m∈Z
|f̂(m, 0)|β
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+
∑
n∈Z
|f̂(0, n)|β−|f̂(0,0)|β. (7)

In the special cases, when m = 0 or n = 0, we write

f̂(m, 0) = f̂1(m), where f1(x) :=
1

2π

∫
T
f(x, y) dy, x ∈ T (8)

and

f̂(0, n) = f̂2(n), where f2(y) :=
1

2π

∫
T
f(x, y) dx, y ∈ T. (9)

We may write∑
m∈Z
|f̂1(m)|β =

∑
m∈Z
|f̂(m, 0)|β and

∑
n∈Z
|f̂2(n)|β =

∑
n∈Z
|f̂(0, n)|β.

Combining this with (7) gives∑
m∈Z

∑
n∈Z
|f̂(m,n)|β=

∑
|m|≥1

∑
|n|≥1

|f̂(m,n)|β+
∑
m∈Z
|f̂1(m)|β+

∑
n∈Z
|f̂2(n)|β−|f̂(0, 0)|β.

Thus, the Fourier series of f is β-absolute convergent if∑
|m|≥1

∑
|n|≥1

|f̂(m,n)|β <∞,
∑
m∈Z
|f̂1(m)|β <∞ and

∑
n∈Z
|f̂2(n)|β <∞.

For β = 1, one gets the absolute convergence of the double Fourier series of
f . The modulus of continuity of a function f is defined as

ω(f ; δ1, δ2) := sup {|f([x, x+ h1]× [y, y + h2])| : 0 < h1 ≤ δ1, 0 < h2 ≤ δ2} .
Following the definition in [5], a double sequence γ = {γmn : (m,n) ∈

N2
+} of nonnegative numbers belongs to the class Uα for some α ≥ 1 if the

inequality ∑
m∈Dµ

∑
n∈Dν

γαmn

1/α

≤ η2(µ+ν)(1−α)/α
∑

m∈Dµ−1

∑
n∈Dν−1

γmn (10)

is satisfied for all µ, ν ≥ 0, where Dµ is as defined in (2) for µ ≥ 0. For
instance, if µ ≥ 1 and ν = 0, then inequality (10) is of the form ∑

m∈Dµ

γαm1

1/α

≤ η2µ(1−α)/α
∑

m∈Dµ−1

γm1.

It is easy to check that the inclusion (3) remains valid; and if a double
sequence γ = {γmn ≥ 0} is such that

max{γmn : m ∈ Dµ, n ∈ Dν}

≤ η min{γmn : m ∈ Dµ−1, n ∈ Dν−1}, (µ, ν) ∈ N2,
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where η is a constant, then γ ∈ Uα for every α ≥ 1. For convenience in
writing, put

γ−m,n = γm,−n = γ−m,−n : = γm,n, (m,n) ∈ N2
+.

We prove the following result.

Theorem 2. If a measurable f ∈ (Λ1,Λ2)BV (p)(T2
) (p ≥ 1), f is bounded,

and γ = {γmn} ∈ U2/(2−β) for some β ∈ (0, 2), then∑
(γ; f)β :=

∑
|m|≥1

∑
|n|≥1

γmn|f̂(m,n)|β

≤ ηC
∞∑
µ=0

∞∑
ν=0

2−(µ+ν)β/2 Γµ−1,ν−1

 ωq(f ; π
2µ ,

π
2ν )∑2µ

j=1

∑2ν

k=1
1

λ1jλ
2
k


β
p+q

, (11)

where η is from (10) corresponding to α := 2/(2− β), q > 0, p+ q ≥ 2 and

Γµν :=
∑
m∈Dµ

∑
n∈Dν

γmn for µ, ν ∈ N. (12)

Proof. For given h1, h2 > 0, put

∆fjk (x, y;h1, h2) := f ([x+ (j − 1)h1, x+ jh1]× [y + (k − 1)h2, y + kh2]) .

Then, for each m,n ∈ Z,

∆̂f jk(m,n) = −4f̂(m,n) eim(j− 1
2

)h1 ein(k− 1
2

)h2 sin

(
mh1

2

)
sin

(
nh2

2

)
.

Since f is bounded, f ∈ L2(T2
). Therefore the Parseval formula gives∑

m∈Z

∑
n∈Z

∣∣∣∣f̂(m,n) sin

(
mh1

2

)
sin

(
nh2

2

)∣∣∣∣2=O

(∫ ∫
T2
|∆fjk (x, y;h1, h2)|2dxdy

)
.

Putting h1 := π
2µ , h2 := π

2ν , µ, ν ∈ N, taking into account the inequality (5)
and using that an analogous inequality holds for |n| ∈ Dν , we have

Sµν :=
∑
|m|∈Dµ

∑
|n|∈Dν

|f̂(m,n)|2 = O

(∫ ∫
T2

∣∣∣∆fjk (x, y;
π

2µ
,
π

2ν

)∣∣∣2 dx dy

)
,

for all j = 1, ..., 2µ and for all k = 1, ..., 2ν .
Applying Hölder’s inequality on the right side of the above inequality, we

have

Sµν = O

((∫ ∫
T2

∣∣∣∆fjk (x, y;
π

2µ
,
π

2ν

)∣∣∣p+q) 2
p+q

)
.

Since the left hand side of the above inequality is independent of j and k,



ON THE GENERALIZED β-ABSOLUTE CONVERGENCE OF FOURIER SERIES 179

multiplying both sides of it by 1
λ1jλ

2
k
, summing over j from 1 to 2µ and k

from 1 to 2ν , and letting Λ2µ,2ν :=
∑2µ

j=1

∑2ν

k=1
1

λ1jλ
2
k
, we get

Sµν = O

 1

(Λ2µ,2ν )
2
p+q

∫ ∫
T2

2µ∑
j=1

2ν∑
k=1

∣∣∆fjk (x, y; π
2µ ,

π
2ν

)∣∣p+q
λ1
jλ

2
k

 2
p+q

 .

Since
∣∣∆fjk (x, y; π

2µ ,
π
2ν

)∣∣ = O
(
ω
(
f ; π

2µ ,
π
2ν

))
, we have Sµν =

O

(ωq (f ; π
2µ ,

π
2ν

)
Λ2µ,2ν

) 2
p+q

∫ ∫
T2

2µ∑
j=1

2ν∑
k=1

∣∣∆fjk (x, y; π
2µ ,

π
2ν

)∣∣p
λ1
jλ

2
k

dx dy

 2
p+q

 ,

where
2µ∑
j=1

2ν∑
k=1

∣∣∆fjk (x, y; π
2µ ,

π
2ν

)∣∣p
λ1
jλ

2
k

= O(1) asf ∈ (Λ1,Λ2)BV (p)(T2
).

Hence,

Sµν = O

((
ωq(f ; π

2µ ,
π
2ν )

Λ2µ,2ν

) 2
p+q

)
.

Since 1 = β
2 + 2−β

2 , by Hölder’s inequality, we have

Rµν :=
∑
|m|∈Dµ

∑
|n|∈Dν

γmn|f̂(m,n)|β

≤

 ∑
|m|∈Dµ

∑
|n|∈Dν

|f̂(m,n)|2
β/2 ∑

|m|∈Dµ

∑
|n|∈Dν

γ2/(2−β)
mn

(2−β)/2

≤
(
ωq(f ; π

2µ ,
π
2ν )

Λ2µ,2ν

) β
p+q

 ∑
|m|∈Dµ

∑
|n|∈Dν

γ2/(2−β)
mn

(2−β)/2

. (13)

In case max{µ, ν} ≥ 1, in view of (10), with α := 2
2−β , and (13), we get

Rµν ≤ ηC 2−(µ+ν)β/2 Γµ−1,ν−1

(
ωq(f ; π

2µ ,
π
2ν )

Λ2µ,2ν

) β
p+q

.

If µ = ν = 0, then from equation (13) it follows that

R00 := γ11(|f̂(1, 1)|β + |f̂(−1, 1)|β + |f̂(1,−1)|β + |f̂(−1,−1)|β)

= O

γ11

(
ωq(f, π, π)

1
λ11λ

2
1

) β
p+q

 .
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Hence, the result follows from∑
|m|≥1

∑
|n|≥1

γmn|f̂(m,n)|β =

∞∑
µ=0

∞∑
ν=0

Rµν .

�

In the case q = 2 − p and {λ1
j} = {λ2

k} = {1}, it follows from Theorem 2
that ∑

(γ; f)β ≤ ηC
∞∑
µ=0

∞∑
ν=0

2−(µ+ν)β Γµ−1,ν−1 ω
(2−p)β

2

(
f ;

π

2µ
,
π

2ν

)
.

This was proved by Móricz and Veres [5, Theorem 4, p. 153].

Corollary 2. If a measurable f ∈ (Λ1,Λ2)∗BV (p)(T2
), then (11) holds

true, where p, q, γ, β, η, α and Γ are as in Theorem 2.

Proof. Since f ∈ (Λ1,Λ2)∗BV (p)(T2
) is bounded and (Λ1,Λ2)∗BV (p)(T2

) ⊂
(Λ1,Λ2)BV (p)(T2

), the corollary follows from Theorem 2. �

Corollary 3. Under the hypothesis of Theorem 2, we have

∑
(γ; f)β ≤ ηC

∞∑
m=1

∞∑
n=1

(mn)−β/2 γmn

 ωq(f ; πm ,
π
n)∑m

j=1

∑n
k=1

1
λ1jλ

2
k


β
p+q

. (14)

Proof. In the case µ, ν ≥ 1 from (2) and (12) it follows that

∞∑
µ=0

∞∑
ν=0

2−(µ+ν)β/2 Γµ−1,ν−1

 ωq(f ; π
2µ ,

π
2ν )∑2µ

j=1

∑2ν

k=1
1

λ1jλ
2
k


β
p+q

≤
∞∑
m=1

∞∑
n=1

(mn)−β/2γmn

 ωq(f ; πm ,
π
n)∑m

j=1

∑n
k=1

1
λ1jλ

2
k


β
p+q

.

In case µ ≥ 1 and ν = 0, it follows that

∞∑
µ=0

2−µβ/2 Γµ−1,−1

ωq(f ; π
2µ , π)∑2µ

j=1
1

λ1jλ
2
1


β
p+q

≤
∞∑
m=1

m−β/2γm1

ωq(f ; πm , π)∑m
j=1

1
λ1jλ

2
1


β
p+q

.

In case µ = 0 and ν ≥ 1, an analogous inequality holds; while in case µ = 0
and ν = 0, we have

Γ−1,−1

(
ωq(f ;π, π)

1
λ11λ

2
1

) β
p+q

≤ γ11

(
ωq(f ;π, π)

1
λ11λ

2
1

) β
p+q

.

Hence, the corollary follows from Theorem 2. �
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Corollary 3 was proved by Móricz and Veres [5, Corollary 4, p. 153] in the
case when q = 2 − p and {λ1

j} = {λ2
k} = {1}, and also proved by Vyas and

Darji [11, Theorem 3.3, p. 73] in the case when {γmn} = {1} and p = q = 1.

Corollary 4. Under the hypothesis of Corollary 2, the inequality (14)
holds true.

Proof of Corollary 4 is similar to that of Corollary 2.

Combining Corollary 1 and Corollary 3, we can easily find sufficient con-
ditions imposed on f , f1 and f2 for the convergence of the double series∑

m∈Z

∑
n∈Z

γmn|f̂(m,n)|β.

For {γmn} = {γm} = {γn} = {1}, combining Corollary 1 and Corollary 3,
we obtain the following corollary.

Corollary 5. If a measurable f ∈ (Λ1,Λ2)∗BV (p)(T2
), p ≥ 1, q > 0,

p+ q ≥ 2, β ∈ (0, 2),

∞∑
m=1

∞∑
n=1

(mn)−β/2

 ωq(f ; πm ,
π
n)∑m

j=1

∑n
k=1

1
λ1jλ

2
k


β
p+q

<∞,

∞∑
m=1

m−β/2

ωq(f1; πm)∑m
j=1

1
λ1j


β
p+q

<∞,

and

∞∑
n=1

n−β/2

ωq(f2; πn)∑n
k=1

1
λ2k


β
p+q

<∞,

where f1 and f2 are as defined in (8) and (9), respectively, then the double
Fourier series of f is β-absolute convergent.

4. Extension to multiple Fourier series

Let Ik = [ak, bk] ⊂ R, for k = 1, 2, · · ·, N . In Section 3, we defined
f(I1) for a function f of one variable and f(I1 × I2) for a function f of
two variables. Similarly, for a function f on RN , by induction, defining the
expression f(I1 × · · · × IN−1) for a function of N − 1 variables, one gets

f(I1 × · · · × IN ) = f(I1 × · · · × IN−1, bN )− f(I1 × · · · × IN−1, aN ).



182 KIRAN N. DARJI

Given (Λ1, ...,ΛN ), where Λr = {λrk}∞k=1 ∈ L, for r = 1, ..., N , and p ≥ 1,

a complex valued measurable function f defined on TN is said to be of p-

(Λ1, ...,ΛN )-bounded variation (that is, f ∈ (Λ1, ...,ΛN )BV (p)(TN )), if

V(Λ1,...,Λ2)p(f,T
N

) := sup
J1,···,JN


∑

k1

· · ·
∑
kN

|f(I1
k1
× · · · × INkN )|p

λ1
k1
...λNkN

 1
p

 <∞,

where J1, ..., JN−1 and JN are finite collections of non-overlapping subinter-
vals {I1

k1
}, ..., {IN−1

kN−1
} and {INkN } in T, respectively.

Moreover, a function f ∈ (Λ1, ...,ΛN )BV (p)(TN ) is said to be of

p-(Λ1, ...,ΛN )∗-bounded variation (that is, f ∈ (Λ1, ...,ΛN )∗BV (p)(TN )) if
for each of its marginal functions

f(x1, ..., xi−1, 0, xi+1, ..., xN ) ∈ (Λ1, ...,Λi−1,Λi+1, ...,ΛN )∗BV (p)(TN−1
),

for all i = 1, 2, ..., N . If f ∈ (Λ1, ...,ΛN )∗BV (p)(TN ) then f is bounded on

TN [8, Lemmma 6.3, with p(n) = n, for all n].

Note that the classes (Λ1, ...,ΛN )BV (p)(TN ) and (Λ1, ...,ΛN )∗BV (p)(TN ),

for p = 1 and Λ1 = ... = ΛN = {1}, reduce to the classes BVV (TN ) (the class

of functions of bounded variation in the sense of Vitali) and BVH(TN ) (the
class of functions of bounded variation in the sense of Hardy), respectively;

for p = 1, the classes (Λ1, ...,ΛN )BV (p)(TN ) and (Λ1, ...,ΛN )∗BV (p)(TN )

reduce to the classes (Λ1, ...,ΛN )BV (TN ) and (Λ1, ...,ΛN )∗BV (TN ), respec-

tively; and for Λ1 = ... = ΛN = {1}, the classes (Λ1, ...,ΛN )BV (p)(TN ) and

(Λ1, ...,ΛN )∗BV (p)(TN ) reduce to the classes BV
(p)
V (TN ) and BV

(p)
H (TN ),

respectively.

For a complex valued function f ∈ L1(TN ), where f is 2π-periodic in each
variable, its multiple Fourier series is given by

f(x1, ..., xN ) ∼
∑
m1∈Z

...
∑
mN∈Z

f̂(m1, ...,mN ) ei(m1x1+...+mNxN ),

where the Fourier coefficients f̂(m1, ...,mN ) are defined by

f̂(m1, ...,mN ) :=
1

(2π)N

∫
...

∫
TN

f(x1, ..., xN ) e−i(m1x1+...+mNxN )dx1...dxN .

The multiple Fourier series of f is said to be β-absolute convergent if∑
m1∈Z

...
∑
mN∈Z

|f̂(m1, ...,mN )|β <∞.
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The modulus of continuity of a function f is defined as ω(f ; δ1, ..., δN ) :=
sup{|f([x1, x1 + h1]× ...× [xN , xN + hN ])| : 0 < hj ≤ δj , j = 1, ..., N}.

Analogously to (1) and (10), an N−multiple sequence γ = {{γm1,...,mN } :
(m1, ...,mN ) ∈ NN+} of nonnegative numbers is said to belong to the class
Uα for some α ≥ 1 if the inequality(∑

m1∈Dµ1
...
∑

mN∈DµN
γαm1,...,mN

)1/α

≤ η 2(µ1+...+µN )(1−α)/α
∑

m1∈Dµ1−1
...
∑

mN∈DµN−1
γm1,...,mN (15)

is satisfied for all µ1, ..., µN ≥ 0, where Dµ is as defined in (2) for µ ≥ 0.

The following statements are the extensions of the results of Section 3.

Theorem 3. If a measurable f ∈ (Λ1, ...,ΛN )BV (p)(TN ) (p ≥ 1), f is
bounded, and γ = {γm1,...,mN } ∈ U2/(2−β) for some β ∈ (0, 2), then∑

(γ; f)β :=
∑
|m1|≥1

· · ·
∑
|mN |≥1

γm1,...,mN |f̂(m1, ...,mN )|β

≤ ηC
∞∑

µ1=0

...
∞∑

µN=0

2−(µ1+...+µN )β/2 Γµ1−1,...,µN−1

 ωq(f ; π
2µ1 , ...,

π
2µN )∑2µ1

k1=1 ...
∑2µN

kN=1
1

λ1k1
...λNkN


β
p+q

′

(16)
where η is from (15) corresponding to α := 2/(2− β), q > 0, p+ q ≥ 2,

Γµ1,...,µN :=
∑

m1∈Dµ1

...
∑

mN∈DµN

γm1,...,mN for µ1, ..., µN ∈ N.

In the case when q = 2 − p and {λ1
k1
} = · · · = {λNkN } = {1}, it follows

from Theorem 3 that
∑

(γ; f)β

≤ ηC
∞∑

µ1=0

· · ·
∞∑

µN=0

2−(µ1+···+µN )β Γµ1−1,...,µN−1 ω
(2−p)β

2

(
f ;

π

2µ1
, ...,

π

2µN

)
.

This was proved by Móricz and Veres [5, Theorem 4
′
, p. 160].

Corollary 6. If a measurable f ∈ (Λ1, ...,ΛN )∗BV (p)(TN ), then (16)
holds true, where p, q, γ, β, η, α and Γ are as in Theorem 3.

Corollary 7. Under the hypothesis of Theorem 3, we have
∑

(γ; f)β ≤

ηC

∞∑
m1=1

...
∞∑

mN=1

(m1 ···mN )−β/2γm1,...,mN

 ωq(f ; π
m1
, ..., π

mN
)∑m1

k1=1 ...
∑mN

kN=1
1

λ1k1
...λNkN


β
p+q

.

(17)
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Corollary 7 was proved by Móricz and Veres [5, Corollary 4
′
, p. 160] in the

case when q = 2 − p and {λ1
k1
} = · · · = {λNkN } = {1}; and also proved by

Vyas and Darji [11, Theorem 5.3, p. 80] in the case when {γm1,...,mN } = {1}
and p = q = 1.

Corollary 8. Under the hypothesis of Corollary 6, the inequality (17)
holds true.

Extended results of this section can be proved in the same way as we
proved the results in Section 3.
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