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Bialgebras, the Yang–Baxter equation and Manin
triples for mock-Lie algebras
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Sami Mabrouk

Abstract. The aim of this paper is to introduce the notion of a mock-
Lie bialgebra which is equivalent to a Manin triple of mock-Lie algebras.
The study of a special case called coboundary mock-Lie bialgebra leads
to introducing the mock-Lie Yang–Baxter equation on a mock-Lie alge-
bra which is an analogue of the classical Yang–Baxter equation on a Lie
algebra. Note that a skew-symmetric solution of mock-Lie Yang–Baxter
equation gives a mock-Lie bialgebra. Finally, O-operators are studied to
construct a skew-symmetric solution of a mock-Lie Yang–Baxter equa-
tion.

1. Introduction

A while ago, a new class of algebras emerged in the literature – the so
called mock-Lie algebras. These are commutative algebras satisfying the
Jacobi identity. They appeared for the first time in [21] and since then a lot
of work is done on this subject, note for example [41, 29]. These algebras
live a dual life: as members of a very particular class of Jordan algebras and
as strange cousins of Lie algebras.

The theory of Lie bialgebras and Poisson Lie groups dates back to the
early 80s. Poisson Lie groups are Lie groups equipped with an additional
structure, a Poisson bracket, satisfying a compatibility condition with the
group multiplication. The infinitesimal object associated with a Poisson Lie
group is the tangent vector space at the origin of the group, which is in a
natural way a Lie algebra g, see, for instance, [17, 36]. The Poisson struc-
ture on the group induces on the Lie algebra an additional structure which
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is nothing but a Lie algebra structure on the dual vector space g∗ satisfy-
ing a compatibility condition with the Lie bracket on g itself. Such a Lie
algebra together with its additional structure is called a Lie bialgebra. So a
bialgebra structure on a given algebra is obtained by a corresponding set of
comultiplication together with the set of compatibility conditions between
multiplication and comultiplication [12]. For example, take a finite dimen-
sional vector space V with a given algebraic structure, this can be acheived
by equipping the dual space V ∗ with the same algebraic structure and a set
of compatibility conditions between the structures on V and those on V ∗.
Among the well-known bialgebra structures, we have the associative bialge-
bra and infinitesimal bialgebra introduced in [6, 31]. Note that these two
structures have the same associative multiplications on V and V ∗. They are
distinguished only by the compatibility conditions, with the comultiplication
acting as a homomorphism (respectively a derivation) on the multiplication
for the associative bialgebra (respectively the infinitesimal bialgebra). In
general, it is quite common to have multiple bialgebra structures that differ
only by their compatibility conditions. A good compatibility condition is
prescribed on one hand by a strong motivation and potential applications,
and on the other hand by a rich structure theory and effective constructions.
See also [20, 9, 16, 25, 26, 27, 33, 34, 38, 39, 40, 24, 23] for more details.

One reason for the usefulness of the Lie bialgebra is that it has a cobound-
ary theory, which leads to the construction of Lie bialgebras from solutions
of the classical Yang–Baxter equations. The origin of the Yang–Baxter-
equations is purely physics. They were first introduced by Baxter, McGuire,
and Yang in [17, 18, 37]. Later on, this equation attracts the attention
of scientists and becomes one of the most basic equations in mathematical
physics [11, 13]. Namely it plays a crucial role for introducing the theory of
quantum groups. This exceptional importance can be seen in many other
domains like: quantum groups, knot theory, braided categories, analysis of
integrable systems, quantum mechanics, non-commutative descent theory,
quantum computing, non-commutative geometry, etc. Various forms of the
Yang–Baxter-equation and some of their uses in physics are summarized
in [35]. Many scientists have found solutions for the Yang–Baxter equa-
tion, however the full classification of its solutions remains an open problem.
In the theory of Lie bialgebras, it is essential to consider the coboundary
case, which is related to the theory of the classical Yang–Baxter equation
[12, 10, 8, 30]. We aim to have an analogue in the mock-Lie case.

This paper is organized as follows. In Section 2 we recall some basic
definitions and constructions about mock-Lie algebras. Section 3 deals with
matched pairs, Manin triples and mock-Lie bialgebras. In Section 4, we
introduce and develop the notion of coboundary mock-Lie bialgebra and
mock-Lie Yang–Baxter equation. In Section 5, we give the O-operators
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of mock-Lie algebras and construct a solution of a mock-Lie Yang–Baxter
equation.

Unless otherwise specified, all the vector spaces and algebras are finite
dimensional over a field K of characteristic zero.

Notations. Let V and W be two vector spaces.

(1) Denote by τ : V ⊗W →W ⊗V the switch isomorphism, τ(v⊗w) =
w ⊗ v.

(2) For a linear map ∆ : V → ⊗2V , we use the Sweedler’s notation
∆(x) =

∑
(x) x1 ⊗ x2 for x ∈ V . We will often omit the summation

sign
∑

(x) to simplify the notations.

(3) Denote by V ∗ = Hom(V,K) the linear dual of V . For ϕ ∈ V ∗ and
u ∈ V , we write 〈ϕ, u〉 := ϕ(u) ∈ K.

(4) For a linear map φ : V →W , we define the map φ∗ : W ∗ → V ∗ by

〈φ∗(ξ), v〉 = 〈ξ, φ(v)〉, ∀v ∈ V, ξ ∈W ∗.

(5) For an element x in a mock-Lie algebra (A, •) and n ≥ 2, define the
adjoint map L(x) : ⊗nA→ ⊗nA by

L(x)(y1 ⊗ · · · ⊗ yn) =
n∑
i=1

y1 ⊗ · · · ⊗ yi−1 ⊗ x • yi ⊗ yi+1 ⊗ · · · ⊗ yn (1)

for all y1, . . . , yn ∈ A. Conversely, given Y = y1 ⊗ · · · ⊗ yn, we define
L(Y ) : g→ ⊗ng by

L(Y )(x) = L(x)(Y ), for x ∈ g.

2. Preliminaries

In this section, we provide some preliminaries about mock-Lie algebras
and left mock-pre-Lie algebras. Our main references are [4, 21, 7, 14].

Definition 2.1. A mock-Lie algebra is a pair (A, •) consisting of a vector
space A together with a multiplication • : A⊗A→ A satisfying

x • y = y • x, (commutativity),

x • (y • z) + y • (z • x) + z • (x • y) = 0, (Jacobi identity), (2)

for any x, y, z ∈ A. The Jacobi identity (2) is equivalent to

x • (y • z) = −(x • y) • z − y • (x • z).

In other words, the left multiplication L : A→ End(A) defined by L(x)y =
x • y, is an anti-derivation on A. Recall that a linear map D : A → A is
called an anti-derivation if, for all x, y ∈ A,

D(x • y) = −D(x) • y − x •D(y).
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Example 2.1. Recall that an anti-associative algebra is a pair (A, ?) con-
sisting of a vector space A together with a product ? : A⊗A→ A such that
the anti-associator vanishes, i.e,

Aass(x, y, z) := (x ? y) ? z + x ? (y ? z) = 0, ∀x, y, z ∈ A.
Let (A, ?) be an anti-associative algebra. Then, (A, •) is a mock-Lie algebra,
where x • y := x ? y + y ? x, for all x, y ∈ A.

Examples 2.2. In the following we list some examples of finite dimensional
mock-Lie algebras given in [21].

(1) Let A be a 3-dimensional vector space with a basis B = {e1, e2, e3}.
Then (A, •) is a mock-Lie algebra where the product • is defined on the
basis B by

e1 • e1 = e2, e3 • e3 = e2.

(2) Let A be a 4-dimensional vector space with a basis B = {e1, e2, e3, e4}.
Then (A, •) is a mock-Lie algebra where the product • is defined on the
basis B by

e1 • e1 = e2, e1 • e3 = e4.

(3) The 3-dimensional commutative Heisenberg algebra H3 over an alge-
braically closed field of characteristic not 2 or 3 equipped with the prod-
uct

e1 • e2 = e2 • e1 = e3

is a mock-Lie algebra.

See [22] for more examples of mock-Lie algebras. Now, we recall the
definition of representations of a mock-Lie algebra.

Definition 2.2. A representation of a mock-Lie algebra (A, •) is a pair (V, ρ)
where V is a vector space and ρ : A→ End(V ) is a linear map such that for
all x, y ∈ A, the following equality holds:

ρ(x • y) = −ρ(x)ρ(y)− ρ(y)ρ(x).

Example 2.3. Let (A, •) be a mock-Lie algebra. Then (A,L) is a represen-
tation of A on itself, called the adjoint representation.

An equivalent characterisation of representations on mock-Lie algebras is
given in the following.

Proposition 2.4. Let (A, •) be a mock-Lie algebra, V be a vector space and
ρ : A → End(V ) a linear map. Then (V, ρ) is a representation of A if and
only if the direct sum A⊕ V together with the multiplication defined by

(x+ u) •A⊕V (y + v) = x • y + ρ(x)v + ρ(y)u, ∀x, y ∈ A, ∀u, v ∈ V,
is a mock-Lie algebra. This mock-Lie algebra is called the semi-direct product
of A and V and it is denoted by Anρ V .
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Definition 2.3. Let (A, •) be a mock-Lie algebra and consider two repre-
sentations (V1, ρ1) and (V2, ρ2). A linear map φ : V1 → V2 is said to be a
morphism of representations if

ρ2(x) ◦ φ = φ ◦ ρ1(x), ∀x ∈ A.

If φ is bijective, then (V1, ρ1) and (V2, ρ2) are equivalent (isomorphic).

To relate matched pairs of mock-Lie algebras to mock-Lie bialgebras and
Manin triples for mock-Lie algebras in the next section, we need the no-
tions of the coadjoint representation, which is the dual representation of the
adjoint representation. In the following, we recall these facts.

Let (A, •) be a mock-Lie algebra and (V, ρ) be a representation of A. Let
V ∗ be the dual vector space of V . Define the linear map ρ∗ : A→ End(V ∗)
as

〈ρ∗(x)u∗, v〉 = 〈u∗, ρ(x)v〉, ∀x ∈ A, v ∈ V, u∗ ∈ V ∗, (3)

where 〈·, ·〉 is the usual pairing between V and the dual space V ∗. With the
above notations, we have the following result.

Proposition 2.5. Let (V, ρ) be a representation of a mock-Lie algebra (A, •).
Then (V ∗, ρ∗) is a representation of A on V ∗.

Consider the case when V = A and define the linear map L∗ : A →
End(A∗) by

〈L∗(x)(ξ), y〉 = 〈ξ, L(x)y〉, ∀x, y ∈ A, ξ ∈ A∗.

Then we have the following corollary.

Corollary 2.6. Let (A, •) be a mock-Lie algebra and (A,L) be the adjoint
representation of A. Then (A∗, L∗) is a representation of (A, •) on A∗ which
is called the coadjoint representation.

If there is a mock-Lie algebra structure on the dual space A∗, we denote
the left multiplication by L.

Definition 2.4. Let (A, •) be a mock-Lie algebra and (V, ρ) be a represen-
tation. A linear map T : V → A is called an O-operator associated to (V, ρ)
if T satisfies

T (u) • T (v) = T
(
ρ(Tu)v + ρ(Tv)u

)
, ∀u, v ∈ V.

In the case (V, ρ) = (A,L), theO-operator T is called a Rota–Baxter operator
(of weight zero).

Definition 2.5. A mock-pre-Lie algebra is a vector space A equipped with
a linear map · : A⊗A→ A satisfying the identity

Aass(x, y, z) = −Aass(y, x, z), ∀x, y, z ∈ A. (4)
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Recall that Aass(x, y, z) = (x · y) · z + x · (y · z). Therefore, equality (4) is
equivalent to

(x ? y) · y = (x · y) · z − y · (x · z),
where x ? y = x · y + y · x for all x, y ∈ A.

Note that if (A, ·) is a mock-pre-Lie algebra, then the product given by

x ? y = x · y + y · x, ∀x, y ∈ A,
defines a mock-Lie algebra structure, which is called the sub-adjacent mock-
Lie algebra of (A, ·), and is denoted by Aac. Furthermore, (A, ·) is called the
compatible mock-pre-Lie algebra structure on Aac.

On the other hand, let Θ : A → End(A) be defined by Θ(x)y = x ·
y, for all x, y ∈ A. Then (A,Θ) is a representation of the mock-Lie algebra
Aac.

Proposition 2.7. Let (A, •) be a mock-Lie algebra and (V, ρ) be a repre-
sentation of A. If T is an O-operator associated to (V, ρ), then (V, ·) is a
mock-pre-Lie algebra, where

u · v = ρ(Tu)v, ∀u, v ∈ V.

Proposition 2.8. Let (A, •) be a mock-Lie algebra. Then there is a compat-
ible mock-pre-Lie algebra if and only if there exists an invertible O-operator
T : V → A associated to a representation (V, ρ). Furthermore, the compati-
ble mock-pre-Lie structure on A is given by

x · y = T
(
ρ(x)T−1(y)

)
, ∀x, y ∈ A.

3. Matched pairs, Manin triples and mock-Lie bialgebras

In this section, we introduce the notions of Manin triple of a mock-Lie al-
gebra and mock-Lie bialgebras. The equivalence between them is interpreted
in terms of matched pairs of mock-Lie algebras.

We first recall the notion of matched pairs of mock-Lie algebras (see [5]).
Let (A, •) and (H, �) be two mock-Lie algebras. Let ρ : A → End(H) and
µ : H → End(A) be two linear maps. On the direct sum A ⊕ H of the
underlying vector spaces, define a linear map ◦ : ⊗2(A⊕H)→ A⊕H by

(x+ a) ◦ (y + b) = x • y + µ(b)x+ µ(a)y + a � b+ ρ(y)a+ ρ(x)b (5)

for any x, y ∈ A and a, b ∈ H.

Theorem 3.1. Let (A, •) and (H, �) be two mock-Lie algebras. Then the
pair (A ⊕ H, ◦) is a mock-Lie algebra if and only if (H, ρ) and (A,µ) are
representations of (A, •) and (H, �) respectively, and for all x, y ∈ A, a, b ∈
H, the following compatibility conditions are satisfied:

ρ(x)(a � b) + ρ(x)a � b+ a � ρ(x)b+ ρ(µ(a)x)b+ ρ(µ(b)x)a = 0, (6)

µ(a)(x • y) + µ(a)x • y + x • µ(a)y + µ(ρ(x)a)y + µ(ρ(y)a)x = 0. (7)
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Definition 3.1. A matched pair of mock-Lie algebras is a quadruple
(A,H; ρ, µ) consisting of two mock-Lie algebras (A, •) and (H, �), together
with representations ρ : A → End(H) and µ : H → End(A), respectively,
such that the compatibility conditions (6) and (7) are satisfied.

Remark 3.1. We denote the mock-Lie algebra defined by equality (5) by
A ./ H. It is straightforward to show that every mock-Lie algebra which is a
direct sum of the underlying vector spaces of two mock-Lie subalgebras can
be obtained from a matched pair of mock-Lie algebras as above.

Definition 3.2. A bilinear form ω on a mock-Lie algebra (A, •) is called
invariant if it satisfies

ω(x • y, z) = ω(x, y • z), ∀x, y, z ∈ A.
Proposition 3.2. Let (A, •) be a mock-Lie algebra and (A,L) be the adjoint
representation of A on itself. Then (A,L) and (A∗, L∗) are equivalent as
representations of the mock-Lie algebra (A, •) if and only if there exists a
nondegenerate symmetric invariant bilinear form ω on A.

Proof. Suppose that there exists a nondegenerate symmetric invariant bi-
linear form ω on A. Since ω is nondegenerate, there exists a linear isomor-
phism φ : A→ A∗ defined by

〈φ(x), y〉 = ω(x, y), ∀x, y ∈ A.
Hence, for any x, y, z ∈ A, we have

〈φ(L(x)(y)), z〉 = ω(L(x)(y), z) = ω(x • y, z) = ω(y, x • z)
= 〈φ(y), x • z〉 = 〈L∗(x)φ(y), z〉.

That is, (A,L) and (A∗, L∗) are equivalent. Conversely, in a similar way we
can get the conclusion. �

Definition 3.3. A Manin triple of mock-Lie algebras is a triple of mock-
Lie algebras (A,A+, A−) together with a nondegenerate symmetric invariant
bilinear form ω on A such that the following conditions are satisfied:
(a) A+, A− are mock-Lie subalgebras of A,
(b) A = A+ ⊕A− as vector spaces,
(c) A+ and A− are isotropic with respect to ω, that is, ω(x+, y+) = ω(x−, y−)

= 0, for any x+, y+ ∈ A+, x−, y− ∈ A−.

A homomorphism between two Manin triples of mock-Lie algebras (A,A+,
A−) and (B,B+, B−) associated to two nondegenerate symmetric invariant
bilinear forms ω1 and ω2, respectively, is a homomorphism of mock-Lie al-
gebras f : A→ B such that

f(A+) ⊂ B+, f(A−) ⊂ B−, (x, y) = ω2(f(x), f(y)), ∀x, y ∈ A.
If in addition, f is an isomorphism of vector spaces, then the two Manin
triples are called isomorphic.
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Definition 3.4 ([28]). Let (A, •) be a mock-Lie algebra. Suppose that there
is a mock-Lie algebra structure (A∗, �) on the dual space A∗ of A and there
is a mock-Lie algebra structure on the direct sum A⊕A∗ of the underlying
vector spaces A and A∗ such that (A, •) and (A∗, �) are subalgebras and the
natural non-degerenate symmetric bilinear form on A⊕A∗ given by

ωd(x+ ξ, y + η) := 〈x, η〉+ 〈ξ, y〉, ∀x, y ∈ A, ξ, η ∈ A∗, (8)

is invariant, then (A⊕A∗, A,A∗) is called a standard Manin triple of mock-
Lie algebra associated to standard bilinear form ωd.

Obviously, a standard Manin triple of mock-Lie algebras is a Manin triple
of mock-Lie algebras. Conversely, we have the following result.

Proposition 3.3. Every Manin triple of mock-Lie algebras is isomorphic to
a standard one.

Proof. Since A+ and A− are isotropic under the nondegenerate invariant
bilinear form ω on A+⊕A−, then in this case A− and (A+)∗ are identified by
ω and the mock-Lie algebra structure on A− is transferred to (A+)∗. Hence
the mock-Lie algebra structure on A+ ⊕ A− is transferred to A+ ⊕ (A+)∗.
Transferring the nondegenrate bilinear form ω to A+⊕ (A+)∗, we obtain the
standard bilinear form given by (8). Thus, (A,A+, A−) is isomorphic to the
stansadrd Manin triple (A⊕A∗, A,A∗). �

Proposition 3.4 ([28]). Let (A, •) be a mock-Lie algebra. Suppose that there
is a mock-Lie algebra structure (A∗, �) on A∗. Then there exists a mock-Lie
algebra sructure on the vector space A ⊕ A∗ such that (A ⊕ A∗, A,A∗) is a
standard Manin triple of mock-Lie algebras with respect to ωd defined by (8)
if and only if (A,A∗;L∗,L∗) is a matched pair of mock-Lie algebras. Here
L∗ is the coadjoint representation of the mock-Lie algebra (A∗, �).

Proposition 3.5. Let (A, •) be a mock-Lie algebra. Suppose that there is a
mock-Lie algebra structure (A∗, �) on A∗. Then (A,A∗;L∗,L∗) is a matched
pair of mock-Lie algebras if and only if for any x, y ∈ A, ξ ∈ A∗, we have

L∗(ξ)(x•y)+(L∗(ξ)(x))•y+x•(L∗(ξ)(y))+L∗(L∗(x)(ξ))(y)+L∗(L∗(y)(ξ))(x) = 0.
(9)

Proof. Obiviously, equality (9) is exactly (7) in the case ρ = L∗, µ = L∗.
In addition, for any x, y ∈ A, ξ, η ∈ A∗, we have

〈L∗(ξ)(x • y), η〉 = 〈x • y,L(ξ)(η)〉 = 〈L(x)(y), ξ � η〉 = 〈y, L∗(x)(ξ � η)〉;
〈(L∗(ξ)(x)) • y, η〉 = 〈L(L∗(ξ)(x))(y), η〉 = 〈y, L∗(L∗(ξ)(x))(η)〉;
〈x • (L∗(ξ)(y)), η〉 = 〈L(x)(L∗(ξ)(y)), η〉 = 〈L∗(ξ)(y), L∗(x)(η)〉

= 〈y,L(ξ)(L∗(x)(η))〉 = 〈y, ξ � (L∗(x)(η))〉;
〈L∗(L∗(x)(ξ))(y), η〉 = 〈y,L(L∗(x)(ξ))(η)〉 = 〈y, (L∗(x)(ξ)) � η〉;
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〈L∗(L∗(y)(ξ))(x), η〉 = 〈x,L(L∗(y)(ξ))(η)〉 = 〈x, η � (L∗(y)(ξ))〉
= 〈x,L(η)((L∗(y)(ξ))〉 = 〈L∗(η)(x), L∗(y)(ξ)〉
= 〈L(L∗(η)(x))(y), ξ〉 = 〈y, L∗(L∗(η)(x))(ξ)〉.

Then equality (6) holds if and only if (7) holds. Therefore the conclusion
holds. �

Theorem 3.6. Let (A, •) be a mock-Lie algebra. Suppose that there is a
mock-Lie algebra structure ” � ” on its dual space A∗ given by a linear map
∆∗ : A∗ ⊗ A∗ → A∗, that is, ξ � η = ∆∗(ξ ⊗ η), for any ξ, η ∈ A∗. Then
(A,A∗;L∗,L∗) is a matched pair of mock-Lie algebras if and only if ∆ : A→
A⊗A satisfies the following condition:

∆(x•y) = −
(
L(x)⊗id+id⊗L(x)

)
∆(y)−

(
L(y)⊗id+id⊗L(y)

)
∆(x), (10)

for any x, y ∈ A.

Proof. Using Proposition 3.5, we can prove that equality (10) is equivalent
to (9). In fact, for any x, y ∈ A, ξ, η ∈ A∗, we have

〈L∗(ξ)(x • y), η〉 = 〈x • y, ξ � η〉 = 〈x • y,∆∗(ξ ⊗ η)〉 = 〈∆(x • y), ξ ⊗ η〉;
〈(L∗(ξ)(x)) • y, η〉 = 〈L(y)(L∗(ξ)(x)), η〉=〈L∗(ξ)(x), L∗(y)(η)〉=〈x,L(ξ)(L∗(y)(η))〉

= 〈x, ξ � (L∗(y)(η))〉 = 〈(id⊗ L(y))∆(x), ξ ⊗ η〉;
〈x • (L∗(ξ)(y)), η〉 = 〈L(x)(L∗(ξ)(y)), η〉=〈L∗(ξ)(y), L∗(x)(η)〉=〈y,L(ξ)(L∗(x)(η))〉

= 〈y, ξ � (L∗(x)(η))〉 = 〈(id⊗ L(x))∆(y), ξ ⊗ η〉;
〈L∗(L∗(x)(ξ))(y), η〉 = 〈y, (L∗(x)(ξ)) � η〉 = 〈(L(x)⊗ id)∆(y), ξ ⊗ η〉;
〈L∗(L∗(y)(ξ))(x), η〉 = 〈x, (L∗(y)(ξ)) � η〉 = 〈(L(y)⊗ id)∆(x), ξ ⊗ η〉.

Then equality (9) is equivalent to (10). Hence the conclusion holds. �

Remark 3.2. From the symmetry of the mock-Lie algebras (A, •) and (A∗, �)
in the standard Manin triple of mock-Lie algebras with respect to ωd, we also
can consider a linear map γ : A∗ → A∗⊗A∗ such that γ∗ : A⊗A→ A gives
the mock-Lie algebra structure ”•” on A. It is straightforward to show that
∆ satisfies equality (10) if and only if γ satisfies

γ(ξ � η) = −
(
L(ξ)⊗ id+ id⊗ L(ξ)

)
γ(η)−

(
L(η)⊗ id+ id⊗ L(η)

)
γ(ξ),

for any ξ, η ∈ A∗.

Definition 3.5. Let (A, •) be a mock-Lie algebra. A mock-Lie bialgebra
structure on A is a symmetric linear map ∆ : A→ A⊗A such that

(1) ∆∗ : A∗ ⊗A∗ → A∗ defines a mock-Lie algebra structure on A∗;
(2) ∆ satifies Eq. (10), called the compatibility condition.

We denote it by (A,∆) or (A,A∗).

We can unwrap the compatibility condition equality (10) as

∆(x • y) = −(x • y1)⊗ y2 − y1 ⊗ (x • y2)− (y • x1)⊗ x2 − x1 ⊗ (y • x2).
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Remark 3.3. The compatibility condition equality (10) is, in fact, a cocycle
condition in the zigzag cohomology of mock-Lie algebra introduced in [15].
Indeed, we can regard A⊗2 as an A-module via the adjoint action (1):

x · (y1 ⊗ y2) = L(x)(y1 ⊗ y2) = (x • y1)⊗ y2 + y1 ⊗ (x • y2),

for x ∈ A and y1⊗ y2 ∈ A⊗2. Then we can think of the linear map ∆ : A→
A⊗2 as a 1-cochain. Then the differential on ∆ is given by

d1∆(x, y) = ∆(x • y) + x ·∆(y) + y ·∆(x)

= ∆(x • y) + L(x)(∆(y)) + L(y)(∆(x)).

Therefore, equality (10) says exactly that ∆ ∈ C1(A,A⊗2) is a 1-cocycle.

Example 3.7. Let (A,A∗) be a mock-Lie bialgebra on a mock-Lie algebra
(A, •). Then (A∗, γ)(or(A∗, A)) is a mock-Lie bialgebra on the mock-Lie
algebra (A∗, �), where γ is given in Remark 3.2.

Definition 3.6. Let (A1, A
∗
1) and (A2, A

∗
2) be two mock-Lie bialgebras. A

linear map ψ : A1 → A2 is a homomorphism of mock-Lie bialgebras if ψ
satifies, for any x, y ∈ A1, the identities

ψ(x •1 y) = ψ(x) •2 ψ(y), (ψ ⊗ ψ) ◦∆1 = ∆2 ◦ ψ.

Now, combining Proposition 3.4 and Theorem 3.6, we have the following
conclusion.

Theorem 3.8. Let (A, •) be a mock-Lie algebra. Suppose that there is a
mock-Lie algebra structure on A∗ denoted by ” � ” which is defined as a
linear map ∆ : A→ A⊗A. Then the following conditions are equivalent.

(1) (A ⊕ A∗, A,A∗) is a standard Manin triple of mock-Lie algebras with
respect to ωd defined by equality (8).

(2) (A,A∗;L∗,L∗) is a matched pair of mock-Lie algebras.
(3) (A,A∗) is a mock-Lie bialgebra.

4. Coboundary mock-Lie bialgebras and the mock-Lie
Yang–Baxter equation

In this section, we consider a special class of mock-Lie bialgebras called
coboundary mock-Lie bialgebras and introduce the notion of mock-Lie Yang–
Baxter equation.

Definition 4.1. A mock-Lie bialgebra (A,A∗) is called coboundary if there
exists an element r ∈ A⊗A such that, for any x ∈ A,

∆(x) =
(
L(x)⊗ id− id⊗ L(x)

)
r. (11)

Lemma 4.1. Let (A, •) be a mock-Lie algebra and r ∈ A⊗A. Suppose that
the linear map ∆ : A→ A⊗A is defined by equality (11). Then ∆ satisfies
the compatibility condition given by equality (10).
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Proof. Let r = r1 ⊗ r2 ∈ A ⊗ A. We use the commutativity and Jacobi
identity for mock-Lie algebras. Then, for any x, y ∈ A, we have

−
(
L(x)⊗ id+ id⊗ L(x)

)
∆(y)−

(
L(y)⊗ id+ id⊗ L(y)

)
∆(x)

=−
(
L(x)⊗ id+ id⊗ L(x)

)(
L(y)⊗ id− id⊗ L(y)

)
r

−
(
L(y)⊗ id+ id⊗ L(y)

)(
L(x)⊗ id− id⊗ L(x)

)
r

=−
(
L(x)⊗ id+ id⊗ L(x)

)(
(y • r1)⊗ r2 − r1 ⊗ (y • r2)

)
−
(
L(y)⊗ id+ id⊗ L(y)

)(
(x • r1)⊗ r2 − r1 ⊗ (x • r2)

)
=−

(
x • (y • r1)⊗ r2 − (x • r1)⊗ (y • r2) + (y • r1)⊗ (x • r2)− r1 ⊗ (x • (y • r2))

)
−
(
y • (x • r1)⊗ r2 − (y • r1)⊗ (x • r2) + (x • r1)⊗ (y • r2)− r1 ⊗ (y • (x • r2))

)
=
(
− x • (y • r1)− y • (x • r1)

)
⊗ r2 + r1 ⊗

(
x • (y • r2) + y • (x • r2)

)
=
(
(x • y) • r1

)
⊗ r2 − r1 ⊗

(
(x • y) • r2

)
=
(
L(x • y)⊗ id− id⊗ L(x • y)

)
r

=∆(x • y).

Hence the proof. �

Let ∆ : A → A ⊗ A be a linear map and σ : A⊗3 → A⊗3 be defined as
σ(x⊗ y ⊗ z) = y ⊗ z ⊗ x, for any x, y, z ∈ A. Let E∆ : A→ A⊗3 be a linear
map given by

E∆(x) = (id+ σ + σ2)
(
(id⊗∆)∆(x)

)
.

Lemma 4.2. Let A be a vector space and ∆ : A→ A⊗ A be a linear map.
Then the product ”�” in A∗ given by ∆∗ : A∗⊗A∗ → A∗ satisfies the Jacobi
identity if and only if E∆ = 0.

Proof. For any ξ, η ∈ A∗, x ∈ A, we have

〈ξ � η, x〉 = 〈∆∗(ξ ⊗ η), x〉 = 〈ξ ⊗ η,∆(x)〉.
Threrefore, for any ξ, η, ν ∈ A∗ and x ∈ A, the Jacobi identity satisfies

〈J(ξ, η, ν), x〉
=〈∆∗(id⊗∆∗)(ξ ⊗ η ⊗ ν) + ∆∗(id⊗∆∗)(η ⊗ ν ⊗ ξ) + ∆∗(id⊗∆∗)(ν ⊗ ξ ⊗ η), x〉
=〈∆∗(id⊗∆∗)

(
id+ σ + σ2

)
(ξ ⊗ η ⊗ ν), x〉

=〈ξ ⊗ η ⊗ ν,
(
id+ σ + σ2

)
((id⊗∆)∆)(x)〉.

Therefore J(ξ, η, ν) = 0, for any ξ, η, ν ∈ A∗, if and only if E∆ = 0. �

Let (A, •) be a mock-Lie algebra and r =
∑

i ai ⊗ bi ∈ A⊗A. Set

r12 =
∑
i

ai ⊗ bi ⊗ 1, r13 =
∑
i

ai ⊗ 1⊗ bi, r23 =
∑
i

1⊗ ai ⊗ bi,

where 1 is a unit element if (A, •) is unital or a symbol playing a similar
role of the unit for the non-unital cases. The operation between two rij is
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defined in an obvious way. For example,

r12 • r13 =
∑
ij

ai • aj ⊗ bi ⊗ bj ,

r13 • r23 =
∑
ij

ai ⊗ aj ⊗ bi • bj ,

r23 • r12 =
∑
ij

aj ⊗ ai • bj ⊗ bi.

Note that the above elements are independent of the existence of the unit.
A tensor r ∈ A ⊗ A is called symmetric (resp. skew-symmetric) if r = τ(r)
( resp. r = −τ(r)). On the other hand, any r ∈ A⊗ A can be identified as
a linear map from the dual space A∗ to A in the following way:

〈ξ, r(η)〉 = 〈ξ ⊗ η, r〉, ∀ξ, η ∈ A∗.

The tensor r ∈ A ⊗ A is called nondegenerate if the above induced linear
map is invertible.

Proposition 4.3. Let (A, •) be a mock-Lie algebra. Define a linear map
∆ : A→ A⊗A by equality (11) with some r ∈ A⊗A satisfying(

L(x)⊗ id− id⊗ L(x)
)(
r + τ(r)

)
= 0, (12)

for all x ∈ A. Then
E∆(x) +Q(x)[[r, r]] = 0,

where
[[r, r]] = r12 • r13 + r13 • r23 − r12 • r23,

and Q(x) =
(
L(x)⊗ id⊗ id+ id⊗L(x)⊗ id+ id⊗ id⊗L(x)

)
for any x ∈ A.

Proof. Let r =
∑

i ai ⊗ bi, the condition (12) is equivalent to∑
i

(x • ai)⊗ bi − ai ⊗ (x • bi) + (x • bi)⊗ ai − bi ⊗ (x • ai) = 0. (13)

Note that E∆(x) is the sum of twelve terms and that Q(x)[[r, r]] is a sum
of nine terms, but two terms appear in both sums up to sign and hence
are cancelled. Thus E∆(x) +Q(x)[[r, r]] is a sum of seventeen terms. After
rearranging the terms suitably, we obtain

E∆(x) +Q(x)[[r, r]]

=
∑
i,j

{
− (x • bi) • aj ⊗ bj ⊗ ai + x • (ai • aj)⊗ bi ⊗ bj + (x • bi) • bj ⊗ ai ⊗ aj

− (bi • bj)⊗ (x • ai)⊗ aj + (ai • aj)⊗ (x • bi)⊗ bj + (bi • aj)⊗ bj ⊗ (x • ai)
+ (ai • aj)⊗ bi ⊗ (x • bj)− ai ⊗ (x • bi) • aj ⊗ bj + ai ⊗ aj ⊗ (x • bi) • bj
+ bj ⊗ (x • ai)⊗ (bi ⊗ aj)− bj ⊗ ai ⊗ (x • bi) • aj − aj ⊗ (bi • bj)⊗ (x • ai)
+ aj ⊗ (x • bi) • bj ⊗ ai − ai ⊗ x • (bi • aj)⊗ bj − ai ⊗ (bi • aj)⊗ (x • bj)
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+ ai ⊗ (x • aj)⊗ (bi • bj) + ai ⊗ aj ⊗ x • (bi • bj)
}
.

Interchanging the indices i and j in the first term and using the Jacobi
identity in A, the first term becomes∑

i,j

x • (bj • ai)⊗ bi ⊗ aj + bj • (ai • x)⊗ bi ⊗ aj .

Using the equality (13), the sum of bj • (ai • x)⊗ bi ⊗ aj and the third and
fourth terms is∑

i,j

(
L(bj)⊗ id

)(
(ai • x)⊗ bi + (x • bi)⊗ ai − bi ⊗ (x • ai)

)
⊗ aj∑

j

(
L(bj)⊗ id

)∑
i

(
(ai • x)⊗ bi + (x • bi)⊗ ai − bi ⊗ (x • ai)

)
⊗ aj

=
∑
i,j

(
L(bj)⊗ id

)(
ai ⊗ (x • bi)

)
⊗ aj

=
∑
i,j

(ai • bj)⊗ (x • bi)⊗ aj .

Similarly, the sum of (ai • bj)⊗ (x • bi)⊗ aj and the fifth term becomes∑
i,j

bj ⊗ (x • bi)⊗ (ai • aj) + aj ⊗ (x • bi)⊗ (ai • bj),

and the sum of the sixth and seventh term is∑
i,j

aj ⊗ bi ⊗ x • (ai • bj) + bj ⊗ bi ⊗ x • (ai • aj).

Finally, the sum of x • (bj • ai)⊗ bi ⊗ aj and the second term in the sum of
the expression of E∆(x) +Q(x)[[r, r]] becomes∑

i,j

bj ⊗ bi ⊗ ai • (x • aj) + aj ⊗ bi ⊗ ai • (x • bj).

Inserting these results, we find that the expression of E∆(x) + Q(x)[[r, r]]
can be written in the form

∑
i

(
ai ⊗ Ui + bi ⊗ Vi

)
: In fact,

Ui =
∑
j

{
− (bj • bi)⊗ (x • aj)− (bi • aj)⊗ (x • bj) + bj ⊗ x • (aj • bi)

+ aj ⊗ x • (bi • bj) + (x • bj)⊗ (aj • bi) + (x • aj)⊗ (bi • bj)
− x • (bi • aj)⊗ bj + (x • bj) • bi ⊗ aj − (x • bi) • aj ⊗ bj
+ aj ⊗ (x • bi) • bj + bj ⊗ (x • bi) • aj

}
.

On the right-hand side, the sum of the first four terms is zero by equality
(13), and the sum of the next three terms becomes

x • (bi • bj)⊗ aj .
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By the Jacobi identity in A, the sum of x • (bi • bj)⊗ aj and the eighth term
is

−bj • (x • bi)⊗ aj .
Finally, the sum of −bj • (x • bi)⊗ aj and the last three terms becomes∑
j

−bj • (x•bi)⊗aj− (x•bi)•aj⊗bj +aj⊗ (x•bi)•bj +bj⊗ (x•bi)•aj = 0,

if we replace x in equality (13) by x • bi. Hence, we get Ui = 0. Similarly,
we can prove that

Vi =
∑
j

{
(x • bj)⊗ (aj • ai) + bj ⊗ x • (aj • ai) + bj ⊗ aj • (x • ai)

+ (x • aj)⊗ (bj • ai)− aj ⊗ (x • bj) • ai
}

=0.

Hence the conclusion holds. �

Using the above discussion, we have the following result.

Theorem 4.4. Let (A, •) be a mock-Lie algebra and r ∈ A ⊗ A. Define a
bilinear map � : A∗ ⊗A∗ → A∗ by

〈ξ � η, x〉 = 〈∆∗(ξ ⊗ η), x〉 = 〈ξ ⊗ η,∆(x)〉,
where ∆ is defined by equality (11). Then (A∗, �) is a mock-Lie algebra if
and only if the following conditions are satisfied:

(i)
(
L(x)⊗ id− id⊗ L(x)

)(
r + τ(r)

)
= 0,

(ii) Q(x)[[r, r]] = 0,

for all x ∈ A. Under these conditions, (A,A∗) is a coboundary mock-Lie
bialgebra.

Proof. The bracket � is determined by the cobracket ∆(x) =
(
L(x)⊗ id−

id⊗L(x)
)
r. Hence (A∗, �) is a mock-Lie algebra if and only if � is symmetric

and satisfies the Jacobi identity.
For any x ∈ A, ξ, η ∈ A∗, we have

〈ξ � η − η � ξ, x〉 = 〈∆∗(ξ ⊗ η)−∆∗(η ⊗ ξ), x〉 = 〈ξ ⊗ η,∆(x)− τ ◦∆(x)〉
= 〈ξ ⊗ η,

(
L(x)⊗ id−id⊗ L(x)

)
r − τ ◦ (

(
L(x)⊗ id−id⊗ L(x)

)
r)〉

= 〈ξ ⊗ η, L(x)r1 ⊗ r2 − r1 ⊗ L(x)r2 − r2 ⊗ L(x)r1 + L(x)r2 ⊗ r1〉
= 〈ξ ⊗ η,

(
L(x)⊗ id− id⊗ L(x)

)(
r + τ(r)

)
〉.

Then r satisfies (i) if and only if � is symmetric. The proof that (ii) holds is
equivalent to the condition that � satisfies the Jacobi identity which follows
from Lemma 4.2 and Proposition 4.3. Since ∆(x) =

(
L(x)⊗id−id⊗L(x)

)
r,
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the compatibility conditions for a mock-Lie bialgebra in Definition 3.5 hold
naturally. Therefore the conclusion follows. �

Remark 4.1. An easy way to satisfy conditions (i) and (ii) in Theorem 4.4
is to assume that r is skew-symmetric and

[[r, r]] = 0 (14)

respectively. equality (14) is the mock-Lie Yang–Baxter equation in the
mock-Lie algebra (A, •). A quasitriangular mock-Lie bialgebra is a cobound-
ary mock-Lie bialgebra, in which r is a solution of the mock-Lie Yang– Baxter
equation. A triangular mock-Lie bialgebra is a coboundary mock-Lie bialge-
bra, in which r is a skew-symmetric solution of the mock-Lie Yang–Baxter
equation.

A direct application of Theorem 4.4 is given as follows.

Theorem 4.5. Let (A,A∗) be a mock-Lie bialgebra. Then there is a canon-
ical coboundary mock-Lie bialgebra structure on A ⊕ A∗ such that both i1 :
A → A ⊕ A∗ and i2 : A∗ → A ⊕ A∗ into the two summands are homomor-
phisms of mock-Lie bialgebras. Here the mock-Lie bialgebra structure on A
is (A,−∆A), where ∆A is given by equality (11).

Proof. Let r ∈ A⊗A∗ ⊂ (A⊕A∗)⊗ (A⊕A∗) correspond to the identity
map id : A → A. Let {e1, · · · , en} be a basis of A and {f1, · · · , fn} be
its dual basis. Then r =

∑
i ei ⊗ fi. Suppose that the mock-Lie algebra

structure ”◦D(A) ” on A⊕A∗ is given by D(A) = A ./ A∗. Then, by equality
(5), we have

x ◦D(A) y = x • y, a∗ ◦D(A) b
∗ = a∗ � b∗, x ◦D(A) a

∗ = L∗(x)a∗ + L∗(a∗)x,
for any x, y ∈ A, a∗, b∗ ∈ A∗. Next we prove that r satisfies the two condi-
tions in Theorem 4.4. If so, then

∆D(A)(u) = (L◦D(A)
(u)⊗ idD(A) − idD(A) ⊗ L◦D(A)

(u))r, ∀u ∈ D(A)

can induce a coboundary mock-Lie bialgebra structure on D(A). Since

〈
∑
i

ei ⊗ fi, fs ⊗ et〉 = 〈et, fs〉,

we have

〈[[r, r]]D(A), (es + ft)⊗ (ek + fl)⊗ (ep + fq)〉

=
∑
ij

〈
ei ◦D(A) ej ⊗ fi ⊗ fj − ei ⊗ fi ◦D(A) ej ⊗ fj + ei ⊗ ej ⊗ fi ◦D(A) fj ,

(es + ft)⊗ (ek + fl)⊗ (ep + fq)
〉

=
∑
ij

〈
ei • ej ⊗ fi ⊗ fj − ei ⊗ (L∗(fi)ej + L∗(ej)fi)⊗ fj + ei ⊗ ej ⊗ fi � fj ,



226 K. BENALI, T. CHTIOUI, A. HAJJAJI, AND S. MABROUK

(es + ft)⊗ (ek + fl)⊗ (ep + fq)
〉

=
∑
ij

(
〈ei • ej , ft〉〈fi, ek〉〈fj , ep〉 − 〈ei, ft〉〈ej , fi � fl〉〈fj , ep〉

− 〈ei, ft〉〈fi, ej • ek〉〈fj , ep〉+ 〈ei, ft〉〈ej , fl〉〈fi � fj , ep〉
)

=〈ek • ep, ft〉 − 〈ep, ft � fl〉 − 〈ft, ep • ek〉+ 〈ft � fl, ep〉
=0,

we get [[r, r]]D(A) = 0. Similarly, we prove that(
L◦D(A)

(u)⊗ idD(A) − idD(A) ⊗ L◦D(A)
(u)
)(
r + τ(r)

)
= 0,

for all u ∈ D(A). Hence there is a coboundary mock-Lie bialgebra structure
on D(A) by Theorem 4.4. For ei ∈ A, we have

∆D(A)(ei) =
∑
j

{
ei • ej ⊗ fj − ej ⊗ ei ◦D(A) fj

}
=
∑
j

{
ei • ej ⊗ fj − ej ⊗

(
L∗(ei)fj + L∗(fj)ei

)}
=
∑
j,m

{
ei • ej ⊗ fj − 〈fj , ei • em〉ej ⊗ fm − 〈fj � fm, ei〉ej ⊗ em

}
= −

∑
j,m

〈fj � fm, ei〉ej ⊗ em

= −∆A(ei).

Therefore i1 : A → A ⊕ A∗ is a homomorphism of mock-Lie bialgebras.
Similarly, i2 : A∗ → A⊕A∗ is also a homomorphism of mock-Lie bialgebras
since ∆D(A)(fi) = ∆A∗(fi). �

Remark 4.2. With the above mock-Lie bialgebra structure given in Theorem
4.5, A⊕A∗ is called the double of A. We denote it by D(A).

5. O-operators of mock-Lie algebras and mock-Lie
Yang–Baxter equation

In this section, we interpret a solution of the mock-Lie Yang–Baxter equa-
tion in terms of O-operators (see [32]). Let V be a vector space. For any
r ∈ V ⊗ V , r can be regarded as a map from V ∗ to V in the following way:

〈u∗, r(v∗)〉 = 〈u∗ ⊗ v∗, r〉, ∀u∗, v∗ ∈ V ∗, (15)

where 〈·, ·〉 is the ordinary pairing between the vector space V and the dual
space V ∗. The tensor r ∈ V ⊗V is called nondegenerate if the above induced
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linear map is invertible. Moreover, any invertible linear map T : V ∗ → V
induces a nondegenerate bilinear form ω(, ) on V by

ω(u, v) = 〈T−1(u), v〉, ∀u, v ∈ V.

Definition 5.1 ([14]). A symplectic form on a mock-Lie algebra (A, ·) is a
skew-symmetric non-degenerate bilinear form ω satisfying

ω(x • y, z) + ω(y • z, x) + ω(z • x, y) = 0, ∀x, y, z ∈ A.

A mock-Lie algebra is called symplectic if it is endowed with a symplectic
form.

Proposition 5.1. Let (A, •) be a mock-Lie algebra and r ∈ A⊗A be skew-
symmetric. Then r is a solution of the mock-Lie YBE in A if and only if r
satisfies

r(ξ) • r(η) = r
(
L∗(r(ξ))η + L∗(r(η))ξ

)
, ∀ξ, η ∈ A∗. (16)

Proof. Let {e1, · · · , en} be a basis of A and {e∗1, · · · , e∗n} be the dual basis.
Since r is skew-symmetric, we can set r =

∑
1≤i,j≤n aijei ⊗ ej , aij = −aji.

Suppose that ei • ej =
∑n

k=1C
k
ijek, where Ckij ’s are the structure coefficients

the of mock-Lie algebra A on the basis {e1, · · · , en}. We get

r12 • r13 =
( ∑

1≤i,j≤n
aijei ⊗ ej ⊗ 1

)
•
( ∑

1≤p,q≤n
apqep ⊗ 1⊗ eq

)
=

∑
1≤i,j,p,q,k≤n

Ckipaijapqek ⊗ ej ⊗ eq;

r13 • r23 =
∑

1≤i,j,p,q,k≤n
Ckjqaijapqei ⊗ ep ⊗ ek;

r12 • r23 =
∑

1≤i,j,p,q,k≤n
Ckjpaijapqei ⊗ ek ⊗ eq.

Then r is a solution of mock-Lie YBE in A if and only if∑
1≤i,p≤n

(
Ckipaijapq + Cqpiakpaji − C

j
ipakiapq

)
ek ⊗ ej ⊗ eq.

On the other hand, by equality (15), we get r(e∗j ) =
∑n

i=1 aijei = −
∑n

i=1 ajiei,

1 ≤ j ≤ n. If we take ξ = e∗j , η = e∗q and use equality (16), we get∑
1≤i,p≤n

(
Ckipaijapq + Cqpiakpaji − C

j
ipakiapq

)
ek = 0.

Therefore, it is easy to see that r is a solution of the mock-Lie YBE in A if
and only if r satisfies equality (16). �
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Example 5.2. Let (A, •) be a mock-Lie algebra. Then a Rota-Baxter op-
erator (of weight zero) is an O-operator of A associated to the adjoint rep-
resentation (A,L) and a skew-symmetric solution of the mock-Lie YBE in
A is an O-operator of A associated to the representation (A∗, L∗).

Corollary 5.3. Let (A, •) be a mock-Lie algebra and r ∈ A ⊗ A be skew-
symmetric. Suppose that there is a symmetric nondegenerate invariant bilin-
ear form ω on A. Let φ : A→ A∗ be a linear map given by 〈φ(x), y〉 = ω(x, y)
for any x, y ∈ A. Then r is a solution of the mock-Lie YBE if and only if
rφ is a Rota–Baxter operator (of weight zero) on A.

Proof. For any x, y ∈ A, we have φ(L(x)y) = L∗(x)φ(y) since

〈φ(L(x)y), z〉 = ω(x • y, z) = ω(y • x, z)
= ω(y, x • z) = 〈L∗(x)φ(y), z〉, ∀x, y, z ∈ A.

That is, the representations (A,L) and (A∗, L∗) are isomorphic. Let ξ =
φ(x), η = φ(y), then by Proposition 5.1, r is a solution of the mock-Lie YBE
in A if and only if

rφ(x) • rφ(y) = r(ξ) • r(η) = r
(
L∗(r(ξ))η + L∗(r(η))ξ

)
= rφ

(
rφ(x) • y + x • rφ(y)

)
.

Therefore the conclusion holds. �

Let (A, •) be a mock-Lie algebra. Let (V, ρ) be a representation of A and
ρ∗ : A → gl(V ∗) be the dual representation. A linear map T : V → A
can be identified as an element in A ⊗ V ∗ ⊂ (A nρ∗ V

∗) ⊗ (A nρ∗ V
∗) as

follows. Let {e1, · · · , en} be a basis of A, let {v1, · · · , vm} be a basis of V
and {v∗1, · · · , v∗m} be its dual space of V ∗. We set

T (vi) =
n∑
k=1

aikek, i = 1, · · · ,m.

Since as a vector space, Hom(V,A) ∼= A⊗ V ∗, we have

T =
m∑
i=1

T (vi)⊗v∗i =
m∑
i=1

n∑
k=1

aikek⊗v∗i ∈ A⊗V ∗ ⊂ (Anρ∗ V
∗)⊗ (Anρ∗ V

∗).

Theorem 5.4. With the above notations, r = T −τ(T ) is a skew-symmetric
solution of the mock-Lie YBE in the semi-direct product mock-Lie algebra
(Anρ∗ V

∗) if and only if T is an O-operator associated to (V, ρ).

Proof. We have

r = T − τ(T ) =
m∑
i=1

T (vi)⊗ v∗i −
m∑
i=1

v∗i ⊗ T (vi),



MOCK-LIE BIALGEBRAS 229

thus we obtain

r12 • r13 =

m∑
i,j=1

Tvi • Tvj ⊗ v∗i ⊗ v∗j − ρ∗(Tvi)v
∗
j ⊗ v∗i ⊗ Tvj − ρ∗(Tvj)v

∗
i ⊗ Tvi ⊗ v∗j ;

r12 • r23 =

m∑
i,j=1

−v∗i ⊗ Tvi • Tvj ⊗ v∗j +Tvi ⊗ ρ∗(Tvj)v
∗
i ⊗ v∗j +v∗i ⊗ ρ∗(Tvi)v

∗
j ⊗ Tvj ;

r13 • r23 =

m∑
i,j=1

v∗i ⊗ v∗j ⊗ Tvi • Tvj − Tvi ⊗ v∗j ⊗ ρ∗(Tvj)v
∗
i − v∗i ⊗ Tvj ⊗ ρ∗(Tvi)v

∗
j .

By the definition of dual representation, we know

ρ∗(Tvj)v
∗
i =

m∑
p=1

〈v∗i , ρ(Tvj)vp〉v∗p.

Therefore∑
1≤i,j≤m

Tvi ⊗ ρ∗(Tvj)v∗i ⊗ v∗j =
∑

1≤i,j,p≤m
〈v∗p, ρ(Tvj)vi〉Tvp ⊗ v∗i ⊗ v∗j

=
∑

1≤i,j≤m
T
(
〈v∗p, ρ(Tvj)vi〉vp

)
⊗ v∗i ⊗ v∗j =

∑
1≤i,j≤m

T
(
ρ(Tvj)vi

)
⊗ v∗i ⊗ v∗j .

Then we get

r12 • r13 =

m∑
i,j=1

Tvi • Tvj ⊗ v∗i ⊗ v∗j−v∗i ⊗ v∗j ⊗ T (ρ(Tvj)vi)−v∗i ⊗ T (ρ(Tvj)vi)⊗ v∗j ;

−r12 • r23 =

m∑
i,j=1

v∗i ⊗ Tvi • Tvj ⊗ v∗j−T (ρ(Tvj)vi)⊗ v∗i ⊗ v∗j−v∗i ⊗ v∗j ⊗ T (ρ(Tvi)vj);

r13 • r23 =

m∑
i,j=1

v∗i ⊗ v∗j ⊗ Tvi • Tvj−T (ρ(Tvi)vj)⊗ v∗i ⊗ v∗j−v∗i ⊗ T (ρ(Tvi)vj)⊗ v∗j .

Hence, we obtain

r12 • r13 + r13 • r23 − r12 • r23

=
∑

1≤i,j≤m

{(
Tvi • Tvj − T (ρ(Tvi)vj)− T (ρ(Tvj)vi)

)
⊗ v∗i ⊗ v∗j

+ v∗i ⊗ v∗j ⊗
(
Tvi • Tvj − T (ρ(Tvi)vj)− T (ρ(Tvj)vi)

)
+ v∗i ⊗

(
Tvi • Tvj − T (ρ(Tvi)vj)− T (ρ(Tvj)vi)

)
⊗ v∗j

}
.

So r is a solution of the mock-Lie YBE in the semi-direct product mock-Lie
algebra (Anρ∗ V

∗) if and only if T is an O-operator associated to (V, ρ). �
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Combining Proposition 5.1 and Theorem 5.4, we have the following con-
clusion.

Corollary 5.5. Let (A, •) be a mock-Lie algebra and (V, ρ) be a represen-

tation of A. Set Â = A nρ∗ V
∗. Let T : V → A be a linear map. Then the

following conditions are equivalent.

(1) T is an O-operator of A associated to (V, ρ).
(2) T−τ(T ) is a skew-symmetric solution of the mock-Lie YBE in the Jordan

algebra Â.

(3) T − τ(T ) is an O-operator of the mock-Lie algebra Â associated to

(Â∗, L∗
Â

).

Remark 5.1. The equivalence between the above (1) and (3) can be ob-
tained by a straightforward proof and then Theorem 5.4 follows from this
equivalence and Proposition 5.1.

The following conclusion reveals the relationship between mock-pre-Lie
algebras and the mock-Lie algebras with a symplectic form:

Proposition 5.6. Let (A, •) be a mock-Lie algebra with a symplectic form
ω. Then there exists a compatible pre-mock-Lie algebra structure ” · ” on A
given by

ω(x · y, z) = ω(y, x • z), ∀x, y, z ∈ A.

Proof. Define a linear map T : A → A∗ by 〈T (x), y〉 = ω(x, y) for any
x, y ∈ A. For any ξ, η, γ ∈ A∗, since T is invertible, there exist x, y, z ∈ A
such that Tx = ξ, Ty = η, Tz = γ. Then T−1 : A∗ → A is an O-operator of
A associated to (A∗, L∗) since for any x, y, z ∈ A, we have

〈T (x • y), z〉 = ω(x • y, z) = ω(y, x • z) + ω(x, y • z)
= 〈L∗(x)T (y), z〉+ 〈L∗(y)T (x), z〉.

By Proposition 2.8, there is a compatible mock-pre-Lie algebra structure ” ·”
on A given by

x · y = T−1
(
L∗(x)T (y)

)
, ∀x, y ∈ A,

which implies that

ω(x · y, z) = 〈T (x · y), z〉 = 〈L∗(x)T (y), z〉
= 〈T (y), x • z〉 = ω(y, x • z), ∀x, y, z ∈ A.

Hence the proof. �

The following conclusion provides a construction of solutions of the mock-
Lie YBE in certain mock-Lie algebras from mock-pre-Lie algebras.
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Corollary 5.7. Let (A, ·) be a mock-pre-Lie algebra. Let {e1, · · · , en} be a
basis of A and {e∗1, · · · , e∗n} be the dual basis. Then

r =
n∑
i=1

(ei ⊗ e∗i − e∗i ⊗ ei)

is a skew-symmetric solution of the mock-Lie YBE in the mock-Lie algebra
(Aac) nΘ∗ (Aac)∗.

Proof. It follows from Theorem 5.4 and the fact that the identity map id
is an O-operator of the sub-adjacent mock-Lie algebra Aac of a mock-pre-Lie
algebra associated to the representation (A,Θ). �

Further discussions

In this paper, we consider the D-bialgebra of mock-Lie type and the
corresponding Yang–Baxter algebras. The category of connected, simply-
connected Poisson–Lie groups is equivalent to the category of Lie bialgebras
[26]. Therefore, a basic problem in the theory of Poisson manifolds is the
classification of Lie bialgebras. A fundamental contribution to this question
is the Theorem of Belavin and Drinfeld [19], which contains the classifica-
tion of all the simple factorizable complex Lie bialgebras. In particular, the
author of [1], uses algebro-geometric methods in order to derive classifica-
tion results for so-called D-bialgebra structures on the power series algebra
g[[z]] for certain central simple Lie (resp. associative) algebras g. These
structures are closely related to a version of the classical (resp. associative)
Yang–Baxter equation (CYBE) over g (for more details see [2, 3]). There-
fore, it is interesting to introduce and classify simple mock-Lie (bi)algebras
using the corresponding Yang–Baxter equation.
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Birkhäuser, Boston, 1995.

[37] C. N. Yang, Some exact results for the many-body problem in one dimension with
replusive delta-function interaction. Phys. Rev. Lett. 19 (1967) 1312–1315.

[38] V. N. Zhelyabin, Jordan bialgebras and their relation to Lie bialgebras, Algebra
Logic 36 (1997), 1–15.

[39] V. N. Zhelyabin, Jordan D-bialgebras and symplectic forms on Jordan algebras,
Siberian Adv. Math. 10 (2000), 142–150.

[40] V. N. Zhelyabin, On a class of Jordan D-bialgebras, St. Petersburg Math. J. 11
(2000), 589–609.

[41] P. Zusmanovich, Special and exceptional mock-Lie algebras, Linear Algebra Appl.
518 (2017), 79–96.

University of Sfax, Faculty of Sciences, BP 1171, 3038 Sfax, Tunisia
E-mail address: karimabenali172@yahoo.fr

E-mail address: atefhajjaji100@gmail.com

University of Gabes, Faculty of Sciences Gabes, City Riadh 6072 Zrig,
Gabes, Tunisia

E-mail address: chtioui.taoufik@yahoo.fr

University of Gafsa, Faculty of Sciences, 2112 Gafsa, Tunisia
E-mail address: mabrouksami00@yahoo.fr

https://doi.org/10.1063/1.4858875
https://doi.org/10.1142/S021949882150064X
https://doi.org/10.48550/arXiv.math-ph/0606053

	1. Introduction
	2. Preliminaries
	3. Matched pairs, Manin triples and mock-Lie bialgebras
	4. Coboundary mock-Lie bialgebras and the mock-Lie Yang–Baxter equation 
	5. O-operators of mock-Lie algebras and mock-Lie Yang–Baxter equation
	Further discussions
	Acknowledgements
	References

