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Second cohomology group and quadratic
extensions of metric Hom-Jacobi–Jordan algebras

Nejib Saadaoui

Abstract. In this paper, we introduce and study the low dimensional
cohomology of metric Hom-Jacobi–Jordan algebras. We establish one-to-
one correspondence between the equivalence classes of abelian quadratic
extensions of a Hom-Jacobi–Jordan algebra and its second cohomology
group.

Introduction

The Jacobi–Jordan algebras were recently introduced in [4] as vector
spaces A over a field K, equipped with a bilinear map · : A × A −→ A,
satisfying the Jacobi identity and instead of the skew-symmetry condition
valid for Lie algebras, the commutativity condition x · y = y · x, for all
x, y ∈ A, is imposed. This class of algebras appears under different names
in the reflecting literature (Jordan–Lie algebras in [18], mock-Lie algebras
in [20], etc.). Wörz-Busekros in [19] relates these types of algebras with
Bernstein algebras. One crucial remark is that Jacobi–Jordan algebras are
examples of the more popular and well-referenced Jordan algebras [1, 15] in-
troduced in order to achieve an axiomatization for the algebra of observables
in quantum mechanics. In [4], the authors achieved the classification of these
algebras up to dimension 6 over an algebraically closed field of characteristic
different from 2 and 3.

Hom-type algebras appeared naturally when studying q-deformations of
some algebras of vector fields, like Witt and Virasoro algebras. It turns out
that the Jacobi identity is no longer satisfied, these new structures involving
a bracket and a linear map satisfy a twisted version of the Jacobi identity
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and define a so called Hom-Lie algebras which form a wider class, see [2, 7,
8, 12, 17].

The quadratic Lie algebras, also called metrizable or orthogonal (see
[9, 10]), are intensively studied. One of the fundamental results of construct-
ing and characterizing quadratic Lie algebras is due to Medina and Revoy
(see [14]) using double extensions, while the concept of T ∗-extension is due
to Bordemann, see [11]. The T*-extension concerns non-associative algebras
with a nondegenerate associative symmetric bilinear form, such algebras are
called metrizable algebras. In [11], the metrizable nilpotent associative alge-
bras and metrizable solvable Lie algebras are described. A study of graded
quadratic Lie algebras can be found in [5]. The Hom-Lie case for quadratic
algebras is introduced and studied by S. Benayadi and A. Makhlouf in [3].
The Hom-Jacobi–Jordan case is introduced by Cyrille in [6]. In this pa-
per, we are interested in studying the second group of cohomology of metric
Hom-Jacobi–Jordan algebras and its relation with quadratic extensions.

This paper is organized as follows. In the first section, we briefly recall
some facts about Hom-Jacobi–Jordan algebras and we give the isomorphism
classification of 2-dimensional multiplicative Hom-Jacobi–Jordan algebras.
Section 2 is devoted to giving some examples of representations of Hom-
Jacobi–Jordan algebras. In section 3, we introduce metric Hom-Jacobi–
Jordan algebras. In section 4, we provide the second cohomology group of
a metric Hom-Jacobi–Jordan algebra with coefficients in a given representa-
tion. Section 5 deals with quadratic extensions of metric Hom-Jacobi–Jordan
algebras. We show that the second cohomology group classifies quadratic ex-
tensions of a metric Hom-Jacobi–Jordan algebra.

Throughout the paper, all considered complex vector spaces are finite-
dimensional.

1. Hom-Jacobi–Jordan algebras

In this section, we recall some facts about Hom-Jacobi–Jordan algebras
and we provide their classifications in a 2-dimensional multiplicative setting.

Definition 1.1 ([6]). A Hom-Jacobi–Jordan algebra is a triple (J, [·, ·], α),
where J is a vector space equipped with a symmetric bilinear map [·, ·] : J ×
J → J and a linear map α : J → J such that

[α(x), [y, z]] + [α(y), [z, x]] + [α(z), [x, y]] = 0 (1)

for all x, y, z in J . This identity is called the Hom-Jacobi identity.
We recover Jacobi–Jordan algebras when the linear map α is the iden-

tity map. A Hom-Jacobi–Jordan-algebra is called multiplicative if α is an
algebraic morphism with

α ([x, y]) = [α(x), α(y)] (2)
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for any x, y ∈ J . Two Hom-Jacobi–Jordan algebras (J, [·, ·], α) and (J ′, [·, ·]′,
α′) are said to be isomorphic if there exists an algebra isomorphism φ : J →
J ′ compatible with α and α′, i.e

φ ([x, y]) = [φ(x), φ(y)]′ and φ ◦ α = α′ ◦ φ. (3)

The center of a Hom-Jacobi–Jordan algebra (J, [·, ·], α) is the subspace

Z(J) = {x ∈ J | [x, y] = 0, ∀y ∈ J}.
A subspace I of J is said to be an ideal if, for x ∈ I and y ∈ J , we have
[x, y] ∈ I and α(x) ∈ I.

The following lemma describes the class of complex 2-dimensional multi-
plicative Hom-Jacobi–Jordan algebras when the matrix of α is of the form(
a 0
0 b

)
.

Lemma 1.1. Let (J, [·, ·], α) be a 2-dimensional multiplicative Hom-Jacobi–
Jordan algebra with ordered basis {u1, u2}. Take α(u1) = au1 and α(u2) =
bu2. Then there exists a basis {e1, e2} of J in which (J, [·, ·], α) has one of
the following forms:

(1) J1
1 (0, b, 0) : [e1, e1] = e1 and α(e1) = 0, α(e2) = be2,

(2) J1
2 (a, a2, 0) : [e1, e1] = e2 and α(e1) = ae1, α(e2) = a2e2,

where the omitted products are zero.

Proof. Let sp be the set of eigenvalues of α. We have α(ui) = aiui, i = 1, 2.
Thus, using (2), we take α([ui, uj ]) = aiaj [ui, uj ]. Then aiaj ∈ sp(α), or
[ui, uj ] = 0.

If a1 = a2, we obtain α = idJ . Then J is the classical 2-dimensional
Jacobi-Jordan algebra given in [4] by [e1, e1] = e2.

If a1 6= a2, the set of eigenvalues of α is given by sp(α) = {a1, a2}. The
eigenspace of the eigenvalue a1 is generated by u1 and the eigenspace of the
eigenvalue a2 is generated by u2. The rest of the proof can be obtained easily
by solving firstly the equation (1) and then using (3). �

The following lemma describes the class of complex 2-dimensional multi-

plicative Hom-Jacobi–Jordan algebras, where α =

(
a 1
0 a

)
.

Lemma 1.2. Let (J, [·, ·], α) be a 2-dimensional multiplicative Hom-Jacobi–
Jordan algebra with ordered basis {u1, u2}. Take α(u1) = au1 and α(u2) =
u1 +au2. Then there exists a basis {e1, e2} of J in which (J, [·, ·], α) has one
of the following forms:

(1) J2
1 (0, 0, 1) : [e2, e2] = e1 and α(e1) = 0, α(e2) = e1,

(2) J2
2 (0, 0, c) : [e2, e1] = [e1, e2] = e1, [e2, e2] = e1 and α(e1)=0, α(e2)=ce1,

(3) J2
3 (0, 0, 1) : [e2, e1] = [e1, e2] = e1 and α(e1) = 0, α(e2) = e1,
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(4) J2
4 (1, 1, 1) : [e2, e2] = e1 and α(e1) = e1, α(e2) = e1 + e2,

where the omitted products are zero.

Proof. The proof follows by straightforward computations similar to the
proof of Lemma 1.1. �

Combining the previous lemmas we get the following theorem.

Theorem 1.3. All the classes of 2-dimensional multiplicative Hom-Jacobi–
Jordan algebra are given in Lemma 1.1 and Lemma 1.2 up to isomorphism.

2. Representation of Hom-Jacobi–Jordan algebras

In this section, we give some examples of representations that we will need
in the remainder of the paper.

Definition 2.1. Let J and V be two vector spaces. A k-linear map f :
J × J . . .× J︸ ︷︷ ︸

k times

→ V is said to be symmetric if

f(xσ(1), · · · , xσ(k)) = f(x1, · · · , xk) for all σ ∈ Sk,

where Sk is the group of permutations of {1, · · · , k}. For k ∈ N, the set of
symmetric k-linear maps is denoted by Sk(J, V ).

Definition 2.2 ([6]). A representation of a Hom-Jacobi–Jordan algebra
(J, [·, ·], α) on a vector space V with respect to β ∈ End(V ) is a linear
map ρ : J → End(V ) satisfying

ρ(α(x)) ◦ β = β ◦ ρ(x), (4)

ρ ([x, y]) ◦ β = −ρ (α(x)) ρ(y)− ρ (α(y)) ◦ ρ(x) (5)

for all x, y ∈ J . We denote such a representation by (V, ρ, β).

Definition 2.3. Let (V, ρ, β) be a representation of a Hom-Jacobi–Jordan
(J, [·, ·], α). The set of k-Hom-cochains on J with coefficients in V , denoted
by Ckα,β(J, V ), is given by

Ckα,β(J, V ) =
{
f ∈ Sk(J, V ) | β ◦ f = f ◦ α

}
.

Definition 2.4. The 1-coboundary operator of a Hom-Jacobi–Jordan alge-
bra J is the map

d1 : C1
α,β(J, V )→ C2

α,β(J, V ), f 7→ d1f,

defined by

d1(f)(x, y) = f([x, y]))− ρ(x)f(y)− ρ(y)f(x). (6)
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Definition 2.5. The 2-coboundary operator of a Hom-Jacobi–Jordan alge-
bra J is the map

d2 : C2
α,β(J, V )→ C3

α,β(J, V ), f 7→ d2f,

defined by

d2(f)(x, y, z) =f ([x, y], α(z)) + f ([x, z], α(y)) + f (α(x), [y, z])

+ ρ (α(x)) f(y, z) + ρ (α(y)) f(x, z) + ρ (α(z)) f(x, y). (7)

Theorem 2.1 ([16]). We have d2 ◦ d1 = 0.

The 2-cocycles space is defined as Z2
α,β(J, V ) = ker(d2), the 2-coboundary

space is defined as B2
α,β(J, V ) = Im(d1) and the 2nd cohomology space is

the quotient H2
α,β(J, V ) = Z2

α,β(J, V )/B2
α,β(J, V ).

Let J and V be two vector spaces and let [·, ·], θ : J2 → V , λ : J ×V → V
be bilinear symmetric maps. Define a bracket [·, ·]M and a morphism αM on
M = J ⊕ V by

[x+ v, y + w]M = [x, y] + λ(x,w) + λ(y, v) + θ(x, y),

αM (x+ v) = α(x) + β(v).

Theorem 2.2 ([16]). With the above notations, (M, [·, ·]M , αM ) is a Hom-
Jacobi–Jordan algebra if and only if the following conditions hold:

(1) (J, [·, ·], α) is a Hom-Jacobi–Jordan algebra;
(2) the linear map ρ : J → End(V ), x 7−→ λ(x, ·), defines a representation

of J on V ;
(3) θ is a 2-cocycle of the Hom-Jacobi–Jordan algebra (J, [·, ·], α) with coef-

ficients in the representation (V, ρ, β) (i.e., θ ∈ Z2
α,β(J, V )).

If, in addition, (M, [·, ·]M , αM ) is multiplicative, then θ is a 2-Hom-cochain
and the Hom-Jacobi–Jordan algebra (J, [·, ·], α) is also multiplicative.

Definition 2.6. Let (V, ρ, β) be a representation of a multiplicative Hom-
Jacobi–Jordan algebra (J, [·, ·], α) and θ be a 2-cocycle of J on V . The mul-
tiplicative Hom-Jacobi–Jordan algebra (M, [·, ·]M , αM ) is called an abelian
extension of J by V by means of θ.

2.1. Representation on V ′ = End(J, V ). Let V ′ = End(J, V ) be the
vector space of linear maps f : J → V . We define the linear maps α′ : V ′ →
V ′ and ρ′ : J → End(V ′) as follows

α′(Z) = Z (α(·)) , (8)

ρ′(x)Z = Z ([x, ·]) . (9)

If we compute the right-hand side of the identity (5), then we obtain

−ρ′ (α(x)) ρ′(y)Z − ρ′ (α(y)) ρ′(x)Z = −Z
(

[y, [α(x), ·]]
)
− Z

(
[x, [α(y), ·]]

)
.
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The left hand side of (5) gives

ρ′ ([x, y])α′(Z) = Z
(
α
(

[[x, y], ·]
))
.

Therefore we obtain the following result.

Proposition 2.3. The triple (V ′, ρ′, α′) is a representation of J if and only
if

α
(

[[x, y], ·]
)

= − [y, [α(x), ·]]− [x, [α(y), ·]] (10)

for all x, y ∈ J . In this case, (V ′, ρ′, α′) is called the generalized coadjoint
representation.

Associated to the generalized coadjoint representation ρ′, the coboundary
operators d1 : C1

α,β → C2
α,β and d2 : C2

α,β → C3
α,β defined in (6) and (7),

respectively, are given by

d′1 : C1
α,α′ → C2

α,α′ ; d
′1(f)(x, y) = f([x, y])− f(y)

(
[x, ·]

)
− f(x)

(
[y, ·]

)
and d′2 : C2

α,α′ → C3
α,α′ ;

d′2g(x, y, z) =g([x, y], α(z)) + g([x, z], α(y)) + g([y, z], α(x))

+ g(x, y)([α(z), ·]) + g(x, z)([α(y), ·]) + g(y, z)([α(x), ·]).

Hence, by Theorem 2.1, we deduce that

d′2 ◦ d′1 = 0. (11)

In the particular case in which V = R, we obtain the dual space J∗ and we
denote

C2
r (J,R) = {f bilinear form | f(x, ·) ∈ C1

α,α′(J, J
∗), ∀x ∈ J};

C3
r (J,R) = {f trilinear form | f(x, y, ·) ∈ C2

α,α′(J, J
∗),∀x, y ∈ J};

C4
r (J,R) = {f 4-linear form | f(x, y, z, ·) ∈ S3(J, J∗),∀x, y, z ∈ J}.

Let us define d2
r : C2

r (J,R)→ C3
r (J,R) and d3

r : C3
r (J,R)→ C4

r (J,R), respec-
tively, by

d2
rf(x, y, t) = f([x, y], t)− f(y, [x, t])− f(x, [y, t]) (12)

and

d3
rγ(x, y, z, t) =γ([x, y], α(z), t) + γ([x, z], α(y), t) + γ([y, z], α(x), t) (13)

+ γ (x, y, [α(z), t]) + γ (y, z, [α(x), t]) + γ (x, z, [α(y), t])

Theorem 2.4. With the above notation, we have d3
r ◦ d2

r = 0.

Proof. We have d2
rf(x, y, t) = d′1f(x, y)(t) and d3

rf(x, y, z, t) =
d′2f(x, y, z)(t). By (11), we obtain d3

r ◦ d2
r = 0. �

The following proposition comes directly from Proposition 2.3.
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Proposition 2.5. Let (V, ρ, β) be a representation of a Hom-Jacobi–Jordan
algebra (J, [·, ·], α) and θ be a 2-cocycle of J on V . Let (M, [·, ·]M , αM ) be the
extension of J by V by means of θ. Then the triple (V ′′, ρ′′, β′′), where V ′′ =
End(M,V ), ρ′′ : M → End(V ′′) is given by ρ′′(x + v)f(·)) = f([x + v, ·]M )
and β′′ : V ′′ → V ′′ is given by β′′(f) = f ◦ αM , defines a representation of
the Hom-Jacobi–Jordan algebra (M, [·, ·]M , αM ) if and only if

α
(

[[x, y], t]
)

= − [y, [α(x), t]]− [x, [α(y), t]] ; (14)

β
(
ρ
(
[x, y]

)
v
)

= −ρ(y)ρ (α(x)) v − ρ(x)ρ (α(y)) v; (15)

β
(
ρ(t)θ(x, y)

)
= −ρ (x) θ(α(y), t)− ρ (y) θ(α(x), t); (16)

β
(
ρ(t)ρ(x)v

)
= −ρ ([α(x), t]) v − ρ (x) ρ (t)β(v). (17)

Let us define d1
c : C1

α,β(J, V ) → S2(J, V ) and d2
c : S2(J, V ) → C3(J, V ),

respectively, by

d1(f)(x, y) =f ([x, y])− ρ(x)f(y)− ρ(y)f(x),

d2
c(θ)(x, y, z) =θ (x, [α(y), z]) + θ (y, [z, α(x)]) + β

(
θ (z, [x, y])

)
+ ρ (x) θ(α(y), z) + ρ (y) θ(z, α(y)) + β

(
ρ (z) θ(x, y)

)
,

where C3(J, V ) = {γ ∈ Hom(J3, V ) | γ (x, y, t) = γ (y, x, t)} .

Theorem 2.6. We have d2
c ◦ d1 = 0.

Proof. It is straightforward. �

2.2. Extensions of Hom-Jacobi–Jordan algebras. Let (J, [·, ·], α) be a
Hom-Jacobi–Jordan algebra, and let (V, ρ, β) be a representation of (J, [·, ·], α).
An abelian extension of a Hom-Jacobi–Jordan algebra J by V is an exact
sequence

0 −→ (V, ρ, β)
i−→ (M, [·, ·]M , αM )

π−→ (J, [·, ·], α) −→ 0

satisfying αM◦i = i◦β and α◦π = π◦αM . We say that the extension is central
if [i(V ),M ]M = 0. A section of an abelian extension (M, [·, ·]M , αM ) of a
Hom-Jacobi–Jordan algebra (J, [·, ·], α) by (V, ρ, β) is a linear map s : J →M
such that π ◦ s = IdJ . Two extensions

0 // (V, ρ, β)

IdV
��

i // (M, [·, ·]M , αM )

Φ
��

π // (J, [·, ·], α) //

idJ
��

0

0 // (V, ρ, β)
i′ // (M ′, [·, ·]M ′ , αM ′)

π′ // (J, [·, ·], α) // 0

are equivalent if there exists an isomorphism of Jacobi–Jordan algebras Φ :
M →M ′, such that Φ ◦ i = i′ and π′ ◦ Φ = π.
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Theorem 2.7 ([16]). Let (V, ρ, β) be a representation of a multiplicative
Hom-Jacobi–Jordan algebra (J, [·, ·], α) and θ be a 2-cocycle of J on V . De-
fine a bracket [·, ·]M and a morphism αM on M = J ⊕ V by

[x+ v, y + w]θ = [x, y] + ρ(x)w + ρ(y)v + θ(x, y),

αM (x+ v) = α(x) + β(v).

Define i0 : V →M by i0(v) = v and π0 : M → J by π0(x) = x. The sequence

0 −→ (V, ρ, β)
i0−→ (M, [·, ·]θ, αM )

π0−→ (J, [·, ·], α) −→ 0

defines an abelian extension of J by V .

Proposition 2.8 ([16]). Let

E : 0 −→ (V, ρ, β)
i−→ (M ′, [·, ·]M ′ , αM ′)

π−→ (J, [·, ·], α) −→ 0

be an abelian extension of J by V and s be a section of E. Then we have
M ′ = s(J)⊕ i(V ) and there exists a 2-cocycle θ ∈ Z2

α,β(J, V ) such that, with
the notation of the above theorem, the extension E is equivalent to

0 −→ (V, ρ, β)
i0−→ (M, [·, ·]θ, αM )

π0−→ (J, [·, ·], α) −→ 0.

Theorem 2.9 ([16]). Let (V, ρ, β) be a representation of a multiplicative
Hom-Jacobi–Jordan algebra (J, [·, ·], α). Then the abelian extensions of J by
V are classified by H2

α,β(J, V ).

3. Metric Hom-Jacobi–Jordan algebras

In this section, we introduce the notion of metric Hom-Jacobi–Jordan
algebras and provide their properties.

Definition 3.1. A metric Hom-Jacobi–Jordan algebra is a 4-tuple (J, [·, ·], α,
B) consisting of a Hom-Jacobi–Jordan algebra (J, [·, ·], α) and a nondegen-
erate symmetric bilinear form B satisfying:

B(x, [y, z])) = B([x, y], z) (invariance of B), (18)

B(α(x), y) = B(x, α(y)) (Hom-invariance of B), (19)

for any x, y, z ∈ J . We recover the metric Jacobi-Jordan algebra when
α = idJ .

We say that two metric Hom-Jacobi–Jordan algebras (J, [·, ·], α,B) and
(J ′, [·, ·]′, α′, B′) are isometrically isomorphic (or i-isomorphic, for short) if
there exists a Hom-Jacobi–Jordan isomorphism f from J onto J ′ satisfying
B′ (f(x), f(y)) = B(x, y) for all x, y ∈ J . In this case, f is called an i-
isomorphism.

Definition 3.2. Let I be an ideal of a metric Hom-Jacobi–Jordan algebra
(J, [·, ·], α,B).
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(1) The orthogonal I⊥ of I, with respect to B, is defined by

I⊥ = {x ∈ J | B(x, y) = 0∀y ∈ I}.

(2) An ideal I is isotropic if I ⊂ I⊥.

Let (J, [·, ·], α,B) be a multiplicative metric Hom-Jacobi–Jordan algebra.
Since B is non-degenerate and invariant, we obtain some properties described
in the following results.

Proposition 3.1. (1) The center Z(J) is an ideal of J .
(2) Z(J) = [J, J ]⊥ and then dim(Z(J)) + dim([J, J ]) = dim(J).

Proposition 3.2. Let I be an ideal of a metric Hom-Jacobi–Jordan algebra
(J, [·, ·], α,B). Then

(1) I⊥ is an ideal of J ,
(2) the centralizer Z(I) of I contains I⊥.

For the rest of this paper, for any metric Hom-Jacobi–Jordan algebra, the
generalized coadjoint representation identity (10) is satisfied.

Proposition 3.3. A 4-tuple (J, [·, ·], α,B) is a metric Hom-Jacobi–Jordan
algebra if and only if B is a nondegenerate symmetric bilinear form satisfying
(19) and d3

rγ = 0 where γ(x, y, z) = B([x, y], z) and d3
r is given by (13).

Proof. Let B be a nondegenerate symmetric bilinear form satisfying (19).
For all x, y, z ∈ J , we have

d3
rγ(x, y, z, t)

=γ([x, y], α(z), t) + γ([x, z], α(y), t) + γ([y, z], α(x), t)

+ γ (x, y, [α(z), t]) + γ (y, z, [α(x), t]) + γ (x, z, [α(y), t])

=B([[x, y], α(z)] , t) +B ([[x, z], α(y)] , t) +B ([α(x), [y, z]] , t) (20)

+B([x, y], [α(z), t]) +B([y, z], [α(x), t]) +B([x, z], [α(y), t]). (21)

If the identity (18) is satisfied, then we have

(21) = B(x, [y, [α(z), t]]) +B([[y, z], t] , α(x)) +B(x, [z, [α(y), t]])

By (19), we have B([[y, z], t] , α(x)) = B (α ([[y, z], t]) , x). Hence

(21) = B(x, [y, [α(z), t]]) +B(x, α ([[y, z], t])) +B(x, [z, [α(y), t]]).

Then, if (18) and (19) are satisfied, we obtain

d3
rγ(x, y, z, t)

=B([[x, y], α(z)] , t) +B ([[x, z], α(y)] , t) +B ([α(x), [y, z]] , t) (22)

+B(x, [y, [α(z), t]]) +B(x, α ([[y, z], t])) +B(x, [z, [α(y), t]]). (23)
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By the Hom-Jacobi identity, we deduce that (22)=0. On the other hand,
by the generalized coadjoint representation identity, we obtain (23)=0. There-
fore d3

rγ = 0.
Now, we aim to show that γ ∈ S3(J,R). For all x, y, z ∈ J , by the equality

(18), [·, ·] and B are symmetric and we have

B([x, y], z) = B([y, x], z) = B (y, [x, z]) = B ([x, z], y) ,

which implies that

γ(x, y, z) = γ(y, x, z) = γ(x, z, y).

So

γ(x, z, y) = γ(z, x, y) = γ(x, y, z)

and

γ(y, z, x) = γ(z, y, x) = γ(y, x, z).

Therefore γ ∈ S3(J,R).

Conversely, we assume that γ ∈ S3(J,R) and d3
rγ = 0. First, we verify the

symmetric condition for [·, ·]. By γ ∈ S3(J,R), we have γ(x, y, z) = γ(y, x, z).
Hence B([x, y], z) = B([y, x], z). Since B is nondegenerate, one can deduce
[x, y] = [y, x].

Next, we verify the equality (18). For any x, y, z ∈ J , we have γ(x, y, z) =
γ(y, z, x), that is, B([x, y], z) = B([y, z], x). Then B([x, y], z) = B(x, [y, z]).
So (18) holds.

Now, we prove the Hom-Jacobi–Jordan identity. For all x, y, z ∈ J , by
the equality (18), we have

(21) = B
(

[[x, y], α(z)] , t
)

+B
(

[[y, z], α(x)] , t
)

+B
(

[[x, z], α(y)] , t
)
.

Thus

d3
rγ(x, y, z, t) = 2

(
B
(

[[x, y], α(z)] , t
)
+B
(

[[y, z], α(x)] , t
)
+B
(

[[x, z], α(y)] , t
))
.

Since d3
rγ = 0 and B is nondegenerate, we get the Hom-Jacobi identity.

Finally, we prove the coadjoint representation identity. Since (18) and (19)
are satisfied, we have d3

rγ(x, y, z, t) = (22) + (23). Since d3
rγ(x, y, z, t) = 0

and (22) = 0, we obtain (23) = 0. This finishes the proof. �

4. The second cohomology group of a metric
Hom-Jacobi–Jordan algebra

The task of this section is to introduce the second cohomology group
of a metric Hom-Jacobi–Jordan algebra, which we will use to describe the
quadratic extensions.
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4.1. Construction of 2-coboundary operators for a metric Hom-
Jacobi–Jordan algebra. Let M = J⊕a be a Hom-Jacobi–Jordan algebra
with structure αM = α + β where α : J → J , β : a → a and [·, ·]M are such
that a is an abelian ideal of M . Then, by Theorem 2.2, [·, ·]M = [·, ·] +ρ+ θ,
where (J, [·, ·], α) is a Hom-Jacobi–Jordan algebra, ρ is a representation of J
on a, and θ is a 2-cocycle of J on a. Let n = M ⊕ J∗, [·, ·]n : n2 → n be a
bilinear symmetric map satisfying [J∗, J∗]n = 0 and αn : n→ n a linear map
given by αn(x+ v + Z) = αM (x+ v) + α′(Z) for all x ∈ J , v ∈ V , Z ∈ J∗.

We assume that (n, [·, ·]n, αn) is a Hom-Jacobi–Jordan algebra. Then (by
Theorem 2.2) [·, ·]n = [·, ·]M +ρ′+γ′ where ρ′ is a representation of M on J∗

and γ′ is a 2-cocycle of M on J∗. Hence, for all x ∈ J, v ∈ V,Z1, Z2 ∈ J∗,

[x, y]n = [x, y] + θ(x, y) + γ′(x, y); (24)

[x, v]n = ρ(x)v + γ′(x, v); (25)

[v, w]n = γ′(v, w); (26)

[Z, x]n = ρ′(x)Z; (27)

[Z, v]n = ρ′(v)Z; (28)

[Z1, Z2]n = 0. (29)

Let B : n2 → R be a bilinear form such that (n, [·, ·]n, αn, B) is a metric
Hom-Jacobi–Jordan algebra, the ideals J and J∗ are isotropic and

B(Z, x+ v) = Z(x) (30)

for all Z ∈ J∗, x ∈ J, v ∈ a.

Lemma 4.1. Under the above notation, we have

[Z, x]n = Z([x, ·]) and [Z, v]n = 0

for all Z ∈ J∗, x ∈ J, v ∈ a.

Proof. Let Z ∈ J∗, x ∈ J, v ∈ a. We have B (Z, v) = Z(v) = 0.
Then B (Z, [x, y]n) = Z([x, y]). Moreover, by invariance of B, we have
B (Z, [x, y]n) = B ([Z, x]n, y). Hence ρ′(x)Z(y) = Z([x, y]), which implies
that [Z, x]n = Z([x, ·]).

Now, we show that [Z, v]n = 0. Since J∗ is an ideal of n, according to
Proposition 3.2, we have (J∗)⊥ ⊂ Z(J∗). Then a ⊂ Z(J∗), since B (Z, v) = 0.
Therefore [Z, v]n = 0. �

Proposition 4.2. For all v, w ∈ a, we have

B (β(v), w) = B (v, β(w)) . (31)

Proof. By (19) we have B ((α+ β + α′)(v), w) = B (v, (α+ β + α′)(w)).
Therefore B (β(v), w) = B (v, β(w)). �
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Theorem 4.3. If (n, [·, ·]n, αn, B) is a metric Hom-Jacobi–Jordan algebra,
then, for all x, y ∈ J , v, w ∈ a, Z ∈ J∗, we have

[x, y]n = [x, y] + θ(x, y) + γ(x, y, ·);
[x, v]n = ρ(x)v +B (θ(·, x), v) ;

[v, w]n = B (ρ(·)v, w) ;

[Z, x]n = Z ([x, ·]) ;

[Z1, v + Z2]n = 0,

(32)

where γ ∈ S3(J,R).

Proof. Assume that (n, [·, ·]n, αn, B) is a metric Hom-Jacobi–Jordan alge-
bra. Let γ(x, y, z) = γ′(x, y)(z). By the equality (18), we haveB ([x, y]n, z) =
B (x, [y, z]n). Thus, using (24), we have γ′(x, y)(z) = γ′(y, z)(x). Hence
γ(x, y, z) = γ(y, z, x). Moreover, since [x, y]n = [y, x]n, we have γ(x, y, z) =
γ(y, x, z). By repeating this process, we obtain that γ ∈ S3(J,R).

Now we aim to prove that γ′(x, v)(y) = B (θ(y, x), v). By the equal-
ity (18), we have B ([y, x]n, v) = B (y, [x, v]n). Thus, using (24), (25) and
(30), we obtain γ′(x, v)(y) = Ba (θ(y, x), v) . For γ′(v, w), by (18), we have
B ([x, v]n, w) = B (x, [v, w]n). Thus, using (25), (26) and (30), we have
γ′(v, w)(x) = Ba(ρ(x)v, w). Hence

γ′(v, w) = B (ρ(·)v, w) . (33)

�

Definition 4.1. A Quadratic representation of a Hom-Jacobi–Jordan alge-
bra (J, [·, ·], α) on a vector space a with respect to β ∈ End(a) consists of a
4-tuple (a, ρ, β,Ba), where ρ : J → End(a) is a representation of the Hom-
Jacobi–Jordan algebra J on a with respect to β ∈ End(a), and Ba : a×a→ R
a symmetric bilinear form, satisfying,

Ba (ρ(x)(v), w) = Ba (v, ρ(x)(w)) (34)

for all x, y ∈ J and v, w ∈ a.

Lemma 4.4. If (n, [·, ·]n, αn, Ba) is a metric Hom-Jacobi–Jordan algebra,
then (a, ρ, β,Ba) is a quadratic representation of J on a.

Proof. Using (33) and the symmetry of the bracket [·, ·]n, we obtain
Ba (ρ(·)v, w) = Ba (ρ(·)w, v), which finishes the proof. �

Proposition 4.5. Let (n, [·, ·]n, αn, Ba) be a metric Hom-Jacobi–Jordan al-
gebra. For f, g ∈ C2

α,β(J, a), we have

Ba (f(α(x), α(y)), g(z, t)) = Ba (f(x, y), g(α(z), α(t)))

for all x, y, z, t ∈ J .
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Proof. Since f, g ∈ C2
α,β(J, a), we have, f ◦ α = β ◦ f and g ◦ α = β ◦ g.

According to Proposition 4.2, we have Ba (β ◦ f(x, y), g(x, z)) = Ba(f(x, y),
β ◦g(x, z)). Thus Ba (f(α(x), α(y)), g(z, t)) = Ba (f(x, y), g(α(z), α(t))). �

Define a bilinear multiplication on Sp(J, a)× Sq(J, a) by

Ba(f ∧ g)(x1, · · · , xp+q) =
∑

σ∈Sh(p,q)

Ba

(
f(xσ(1), · · · , xσ(p)), g(xσ(p+1), · · · , xσ(p+q))

)
,

(35)

where Sh(p, q) are the permutations in Sp+q which are increasing on the
first p and the last q elements.

Proposition 4.6. If (n, [·, ·]n, αn, Ba) is a metric Hom-Jacobi–Jordan alge-
bra, then the pair (θ, γ) satisfies the following properties

d2θ(x, y, z) = 0,

d3
rγ(x, y, z, α(a)) +

1

2
Ba (θ ∧ (θ ◦ α)) (x, y, z, a) = 0

for all x, y, z, a ∈ J .

Proof. We have that (M, [·, ·]M , αM ) is a Hom-Jacobi–Jordan algebra,
(J∗, ρ′, α′) is a representation of the Hom-Jacobi–Jordan algebra M , n =
M ⊕ J∗ and [·, ·]n = [·, ·]M + γ′. By Theorem 2.2, it follows that d2γ′ = 0.
For all x, y, z, a ∈ J , we have

d2γ′(x, y, z)(t)

= γ′([x, y]M , αM (z))(t) + γ′([x, z]M , αM (y))(t) + γ′([y, z]M , αM (x))(t)

+ ρ′(αM (z))γ′(x, y)(t) + ρ′(αM (x))γ′(y, z)(t) + ρ′(αM (y))γ′(x, z)(t),

where t = α(a). Since [x, y]M = [x, y] + θ(x, y), γ′(x, v)(y) = Ba (θ(y, x), v)
and γ′(v, w) = Ba (ρ(·)v, w), we obtain

d2γ′(x, y, z)(t) = γ([x, y], α(z), t) + γ([x, z], α(y), t) + γ([y, z], α(x), t) (36)

+ γ (x, y, [α(z), t]) + γ (y, z, [α(x), t]) + γ (x, z, [α(y), t]) (37)

+Ba (θ(α(a), α(z)), θ(x, y)) +Ba (θ(α(a), α(y)), θ(x, z))

+Ba (θ(α(a), α(x)), θ(y, z)) .

Using (36) + (37) = d3
rγ(x, y, z, t) and Proposition 4.5, we obtain

d2γ′(x, y, z)(t) = d3
rγ(x, y, z, t) +

1

2
Ba (θ ∧ (θ ◦ α)) (x, y, z, a).

Hence d3
rγ(x, y, z, α(a)) + 1

2Ba (θ ∧ (θ ◦ α)) (x, y, z, a) = 0. �

Bringing these results together, we provide the following definitions.
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Definition 4.2. The pair (θ, γ) is called a quadratic 2-cochain if
θ ∈ C2

α,β(J, a) and γ ∈ C3
r (J,R). Denote by C2

Q(J, a) the set of quadratic
2-cochains.
We define a map d2

Q : C2
Q(J, a)→ C3

r (J, a)× C4(J,R) as follows:

d2
Q (θ, γ) (x, y, z)(t)=

(
d2θ(x, y, z), d3

rγ(x, y, z, t)+
1

2
Ba (θ∧(θ◦α)) (x, y, z, a)

)
,

(38)

where t = α(a). (θ, γ) is called a quadratic 2-Hom-cocycle of J on a if and
only if d2

Q(θ, γ) = 0. We denote by Z2
Q(J, a) the set of all quadratic 2-cocycles

on a.

4.2. Construction of 1-coboundary operators of a metric Hom-
Jacobi–Jordan algebra. In this section we aim to construct a map d1

Q

satisfying d2
Q ◦ d1

Q = 0 and then the second cohomology group of a metric
Hom-Jacobi–Jordan algebra.

Proposition 4.7. Let f ∈ C2
α,β(J, a) and g ∈ C1

α,β(J, a). We have

d3
rBa(f ∧ g)(x, y, z, t) =Ba

(
d2f(x, y, z), g(t)

)
+Ba

(
d2
cf(x, y, t), g(z)

)
+Ba

(
d2
cf(x, z, t), g(y)

)
+Ba

(
d2
cf(y, z, t), g(x)

)
+Ba

(
(f ◦ α) ∧ d1g

)
(x, y, z, a)

for any x, y, z, a ∈ J and t = α(a).

Proof. Let f ∈ C2
α,β(J, a) and g ∈ C1

α,β(J, a). We take γ = Ba (f ∧ g).

For any x, y, z, a ∈ J and t = α(a), we have

d3rγ(x, y, z, t)

=γ([x, y], α(z), t) + γ([x, z], α(y), t) + γ([y, z], α(x), t)

+ γ (x, y, [α(z), t]) + γ (y, z, [α(x), t]) + γ (x, z, [α(y), t])

= 	x,y,z
(
γ([x, y], α(z), t)+ 	x,y,z γ (x, y, [α(z), t])

)
= 	x,y,z

(
Ba(f([x, y], α(z)), g(t)) +Ba(f([x, y], t), g(α(z)))

)
+Ba(f(α(a), α(z)), g([x, y]))

(39)

+ 	x,y,z
(
Ba(f(x, y), g([α(z), t])) +Ba (f(x, [α(z), t]), g(y) +Ba (f(y, [α(z), t]), g(x)))

)
,

(40)

where 	x,y,z denotes a summation over the cyclic permutation on x, y, and z.
By Proposition 4.2 and taking into account that g ∈ C1

α,β(J, a), we have

	x,y,z Ba(f([x, y], t), g(α(z))) =	x,y,z Ba (β(f([x, y], t)), g(z)) .

Hence

(39) =Ba

(
d2f(x, y, z), g(t)

)
− 	x,y,z Ba

(
ρ (α(x)) f(y, z), g(t)

)
+ 	x,y,z Ba (β(f([x, y], t)), g(z)) + 	x,y,z Ba(f(α(a), α(z)), g([x, y])).
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For (40), we have

	x,y,z Ba (f(x, y), g([α(z), t])) =	x,y,z Ba (f(α(x)), α(y), g([z, a])) .

Then

(39) + (40)

=Ba

(
d2f(x, y, z), g(t)

)
− 	x,y,z B

(
ρ (α(x)) f(y, z), g(t)

)
+ 	x,y,z

(
Ba (β(f([x, y], t)), g(z)) +Ba (f(x, [α(z), t]), g(y)) +Ba (f(y, [α(z), t]), g(x))

)
+ 	x,y,z Ba(f(α(a), α(z)), g([x, y]))+ 	x,y,z Ba(f(α(x), α(y)), g([z, a])).

On the other hand, we have

β (f([x, y], t)) + f(y, [α(x), t]) + f(x, [α(y), t])

= d2
cf(x, y, t)− ρ(y)f(α(x), t)− ρ(x)f(α(y), t)− β (ρ(t)f(x, y)) ,

and

Ba (ρ(y)f(α(x), t), g(z)) = Ba (f(α(x), t), ρ(y)g(z))

= Ba (f(α(x), α(a)), ρ(y)g(x)) .

Moreover, we have

Ba (β (ρ(t)f(y, z)) , g(x)) = Ba (ρ(α(a))f(y, z), β (g(x)))

= Ba (f(y, z), ρ(α(a))β (g(x)))

= Ba (f(y, z), β (ρ(a)g(x)))

= Ba (β (f(y, z)) , ρ(a)g(x))

= Ba (f(α(y), α(z)), ρ(a)g(x)) .

Therefore, by straightforward computations, we obtain

d3
rγ(x, y, z, t) =Ba(d

2f(x, y, z)), g(t)) +Ba(d
2
cf(x, y, t)), g(z))

+Ba(d
2
cf(x, z, t)), g(y)) +Ba(d

2
cf(y, z, t)), g(x))

+Ba((f ◦ α) ∧ d1
cg)(x, y, z, a).

�

Remark 4.1. If α = idJ and β = ida, we have

d3
r(f ∧ g) = Ba(d

2f ∧ g) +Ba

(
f ∧ d1g

)
.

Lemma 4.8. Let (θ, γ) and (θ′, γ′) be two quadratic 2-cochains. Then
d2
Q(θ, γ) = d2

Q(θ′, γ′) if and only if there exists a 1-Hom-cochain τ such
that the following equalities hold:

θ′ = θ + d1τ, (41)

d3
rγ
′ = d3

rγ −
1

2
d3
rBa(τ ∧ d1τ)− d3

rBa(τ ∧ θ) +Ba(d
′2θ ∧ τ), (42)
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where d′2θ(x, y, z) = d2θ(x, y, z) and d′2θ(x, y, ·) = d2
cθ(x, y, ·).

Proof. Let (θ, γ) and (θ′, γ′) be two quadratic 2-cochain such that
d2
Q(θ, γ) = d2

Q(θ′, γ′). Then

d2θ = d2θ′ (43)

and

d3
rγ +

1

2
Ba(θ ∧ (θ ◦ α)) = d3

rγ
′ +

1

2
Ba(θ

′ ∧ (θ′ ◦ α)). (44)

Equality (43) implies that there exist a 1-Hom-cochain τ which satisfies

θ′ = θ + d1τ. (45)

Thus, using (44), we have

d3
rγ = d3

rγ
′ +

1

2
Ba

( (
θ + d1τ

)
∧ (
(
θ + d1τ

)
◦ α)

)
− 1

2
Ba(θ ∧ (θ ◦ α))

= d3γ′ +
1

2
B
(
θ ∧ (d1τ ◦α)

)
+

1

2
B
(
d1τ ∧ (θ◦α)

)
+

1

2
B
(
d1τ ∧ (d1τ ◦α)

)
.

(46)

Hence, by Proposition 4.5, we obtain Ba

(
θ ∧ (d1τ ◦ α)

)
= Ba

(
d1τ ∧ (θ ◦ α)

)
.

Therefore

d3γ = d3γ′ +B(d1τ ∧ (θ ◦ α)) +
1

2
B(d1τ ∧ (d1τ ◦ α)).

Replacing f , g by d1τ , τ in Proposition 4.7 and since by d2 ◦ d1(τ) = 0, we
have

d3
rBa(d

1
cτ ∧ τ)(x, y, z, t) = Ba((d

1
cτ ◦ α) ∧ d1

cτ)(x, y, z, a). (47)

Replacing f , g by θ, τ in Proposition 4.7, we have

d3
rBa(θ ∧ τ)(x, y, z, t) = Ba((θ ◦ α) ∧ d1

cτ)(x, y, z, a) +Ba(d
′2θ ∧ τ)(x, y, z, t),

where d′2θ(x, y, z) = d2θ(x, y, z) and d′2θ(x, y, t) = d2
cθ(x, y, t). Therefore

d3γ = d3γ′ + d3
rBa(θ ∧ τ) +

1

2
d3
rBa(d

1
cτ ∧ τ)−Ba(d

′2θ ∧ τ)(x, y, z, t).

Hence

d3γ′ = d3γ − 1

2
d3Ba(τ ∧ d1τ)− d3Ba (θ ∧ τ) +Ba(d

′2θ ∧ τ)(x, y, z, t). (48)

�

Using the previous lemma and Proposition 4.7, we obtain the following
result.
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Theorem 4.9. Let (θ, γ) and (θ′, γ′) two quadratic 2-cochains. Then
d2
Q(θ, γ) = d2

Q(θ′, γ′) if and only if there exist τ ∈ C1
α,β(J, a), σ ∈ C2

r (J,R)

and σ′ ∈ C3
r (J,R) such that, the following equalities hold:

θ′ = θ + d1τ, (49)

d3
rσ
′ = −Ba(d

′2θ ∧ τ), (50)

γ′ = γ + d2
rσ + σ′ −B(τ ∧ (θ +

1

2
d1τ)), (51)

where d′2θ(x, y, z) = d2θ(x, y, z) and d′2θ(x, y, ·) = d2
cθ(x, y, ·).

Using the previous observations, we give the following definitions.

Definition 4.3. Define a map d1
Q : C1

Q(J, a)→ C2
Q(J, a) by

d1
Q(τ, σ) =

(
d1τ, d2

rσ −
1

2
B
(
τ ∧ d1τ

) )
.

A quadratic 2-cochain (θ, γ) is called a quadratic 2-cobord if and only if
there exists a quadratic 1-cochain (τ, σ) satisfies d1

Q(τ, σ) = (θ, γ). Denote

by B2
Q (J, a) the space of all quadratic 2-cobords.

Proposition 4.10. Any quadratic 2-cobord is a quadratic 2-cocycle (i.e.,
d2
Q ◦ d1

Q = 0).

Proof. We set θ = d1τ and γ = d2σ − 1
2Ba(d

1τ ∧ τ). Using (47), we have

d3γ = −1
2Ba

(
d1τ ∧ (d1τ ◦ α)

)
. Hence, by (38)

d2
Q(θ, γ) = (d2θ, d3

r ◦ d2
rσ −

1

2
Ba

(
d1τ ∧ (d1τ ◦ α)

)
+

1

2
B
(
d1τ ∧ (d1τ ◦ α)

)
)

= (0, 0).

�

4.3. The second cohomology group. Due to the nonlinearity of d1
Q and

d2
Q we need to construct an equivalence relation in order to define the second

cohomology group. We define a group structure on C1
Q(J, a) by

(f, g) ∗ (f ′, g′) = (f + f ′, g + g′ +
1

2
Ba

(
(f + f ′) ∧ (f + f ′) ∧ α)

)
.

Let (γ, θ) ∈ Z2
Q(J, a) and (τ, σ) ∈ C1

Q(J, a). Then the formula

(θ, γ) • (τ, σ) = (θ + d1τ, γ + d2σ +B

(
(θ +

1

2
d1τ) ∧ (τ ◦ α)

)
defines a right action of the group C1

Q(J, a) on Z2
Q(J, a). We have (θ, γ) ∼=

(θ′, γ′) if and only if there exist (τ, σ) ∈ C1
Q(J, a) such that (γ′, θ′) = (γ, θ) •

(τ, σ).
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Definition 4.4. The 2nd quadratic cohomology group of the metric Hom-
Jacobi–Jordan algebra J on a× J∗, with the action ”•” is the quotient

H•2Q (J, a) = Z2
Q(J, a)/C1

Q(J, a),

where Z2
Q(J, a) = {(θ, γ) | d2

Q((θ, γ)) = 0}.

Proposition 4.11. Let dθ,γ := (n, [·, ·]θ,γ , αn) and dθ′,γ′ :=
(
n, [·, ·]θ′,γ′ , αn

)
be two extensions such that d2

Q(θ, γ) = d2
Q(θ′, γ′). Then the extensions dθ,γ

and dθ′,γ′ are equivalent.

Proof. Using Theorem 4.9, we have

θ′ = θ + d1τ and γ′ = γ + d2
rσ −B

(
τ ∧ (θ +

1

2
d1τ)

)
.

Define the linear map Φ: J ⊕ a⊕ J∗ → J ⊕ a⊕ J∗ by

Φ(x+ v + Z) = x+ v − τ(x)︸ ︷︷ ︸
∈a

−σ(x, ·) + Z − 1

2
Ba

(
τ(x), τ(·)

)
+Ba(v, τ(·))︸ ︷︷ ︸

∈J∗

.

We have

Φ(α(x) + β(v) + α′(Z))

= α(x) + β(v)− τ(α(x))− σ(α(x), ·) + α′(Z)− 1

2
Ba

(
τ(α(x)), τ(·)

)
+Ba(β(v), τ(·))

= α(x) + β(v)− β(τ(x)− σ(x, α(·))) + α′(Z)− 1

2
Ba

(
β(τ(x)), τ(·)

)
+Ba(β(v), τ(·))

= α(x) + β(v)− β(τ(x)) + α′(Z)− α′ (σ(x, ·))− 1

2
Ba

(
τ(x), β(τ(·))

)
+Ba(v, β(τ(·)))

= α(x) + β(v)− β(τ(x))− α′ (σ(x, ·)) + α′(Z)− 1

2
Ba

(
τ(x), τ(α(·))

)
+Ba(v, τ(α(·)))

= α(x) + β (v − τ(x)) + α′
(
−σ(x, ·) + Z − 1

2
Ba

(
τ(x), τ(·)

)
+Ba(v, τ(·))

)
.

Hence Φ ◦ (α+ β + α′) = (α+ β + α′) ◦ Φ.
We have

[x, y]θ,γ = [x, y] + θ(x, y) + γ(x, y, ·);
[x, v]θ,γ = ρ(x)v +Ba (θ(·, x), v) ;

[v, w]θ,γ = Ba (ρ(·)v, w) ;

[Z, x]θ,γ = Z ([x, ·]) ;

[Z1, v + Z2]θ,γ = 0.

Hence the structure [·, ·]θ′,γ′ of the Hom-Jacobi-algebra dθ′,γ′ is given by

[x, y]θ′,γ′ = [x, y] + θ(x, y) + d1τ(x, y) + γ(x, y, ·)

+ d2σ(x, y, ·)−B((θ +
1

2
d1τ) ∧ τ)(x, y, ·);
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[x, v]θ′,γ′ = ρ(x)v +Ba

(
θ(·, x) + d1τ(·, x), v

)
;

[v, w]θ′,γ′ = Ba (ρ(·)v, w) ;

[Z, x]θ′,γ′ = Z ([x, ·]) ;

[Z1, v + Z2]θ′,γ′ = 0.

We have

Φ
(
[x, y]θ′,γ′

)
= [x, y] + θ(x, y) + d1τ(x, y) + γ(x, y, ·)

+ d2σ(x, y, ·)−Ba

(
(θ +

1

2
d1τ) ∧ τ

)
(x, y, ·)

− τ ([x, y])− σ ([x, y], ·) +
1

2
Ba

(
τ([x, y], τ(·)

)
+Ba

(
(θ(x, y) + d1τ(x, y), τ(·)

)
.

Hence, by (12) , (35) and (34), we obtain

Φ
(
[x, y]θ′,γ′

)
= [x, y] + θ(x, y) + γ(x, y, ·)− ρ(x)τ(y)− ρ(y)τ(x)

− σ (y, [x, ·])− σ (x, [y, ·])
−Ba (θ(x, ·), τ(y))−Ba (θ(y, ·), τ(x))

− 1

2
Ba

(
τ ([x, ·]), τ(y)

)
−1

2
Ba

(
τ ([y, ·]), τ(x)

)
+Ba

(
ρ(·)τ(x), τ(y)

)
.

On the other hand, we have

[Φ(x),Φ(y)]θ,γ

=
[
x− τ(x)− σ(x, ·)− 1

2
Ba

(
τ(x), τ(·)

)
, y − τ(y)− σ(y, ·)− 1

2
Ba

(
τ(y), τ(·)

)]
θ,γ

= [x, y] + θ(x, y) + γ(x, y, ·)− ρ(x)τ(y)−Ba (θ(·, x), τ(y))

− σ(y, [x, ·])− 1

2
Ba

(
τ(y), τ([x, ·])

)
− ρ(y)τ(x)−Ba (θ(·, y), τ(x))

+Ba (ρ(·)τ(x), τ(y))− σ(x, [y, ·])− 1

2
Ba

(
τ(x), τ ([y, ·])

)
.

Therefore Φ
(
[x, y]θ′,γ′

)
= [Φ(x),Φ(y)]θ,γ .

Similarly, we show that Φ
(
[x,w]θ′,γ′

)
= [Φ(x),Φ(w)]θ,γ , Φ

(
[x, Z]θ′,γ′

)
=

[Φ(x),Φ(Z)]θ,γ , Φ
(
[v, w]θ′,γ′

)
= [Φ(v),Φ(w)]θ,γ .

�

Remark 4.2. We have B (Φ(x),Φ(y)) = 2σ(x, y) and B(x, y) = 0.

Let G the subgroup of C1
Q(J, a) generated by the set

{(τ, σ) ∈ C1
Q(J, a) | d2σ = 0}.
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Hence, we have a new 2nd quadratic cohomology group of the metric Hom-
Jacobi–Jordan algebra J on a× J∗, with the action ”•”. That is

H2
Q(J, a) = Z2

Q(J, a)/G.

5. Quadratic extensions

In this section, we study quadratic extensions of Hom-Jacobi–Jordan alge-
bras and we show that they are classified by the cohomology group H2

Q(J, a).

Let (J, [·, ·]J, αJ, B) be a metric of Hom-Jacobi–Jordan algebra and I an
isotropic ideal of J. For all x, y ∈ J, we denote [πn(x), πn(y)]J = πn ([x, y]),

αJ(πn(x)) = πn ◦αJ(x) and B(πn(x), πn(y)) = B(x, y) where πn is the natu-
ral projection J→ J/I. If i : a→ J is a homomorphism, we denote i = πn◦i.

Definition 5.1. Let (J, [·, ·], α) be a Hom-Jacobi–Jordan algebra, let I be
an isotropic ideal in J and (a, ρ, β,Ba) a quadratic representation of J . A
quadratic extension (J, I, i, π) of J by a is an exact sequence

0 −→ (a, ρ, β)
i−→
(
J/I, [·, ·]J, αJ, B

)
π−→ (J, [·, ·], α) −→ 0

such that (J, [·, ·]J, αJ, B) is a metric Hom-Jacobi–Jordan algebra, αJ ◦ i =
i ◦ β, α ◦ π = π ◦ αJ, i(a) = I⊥/I and i : a→ I⊥/I is an isometry.

Proposition 5.1. Let

0 −→ a
i−→ J/I

π−→ J −→ 0, (52)

be an extension of J by a such that i : a → i (a) is an isometry. Then the
quadruple (J, I, i, π) defines a quadratic extension if and only if the following
sequence defines an extension of J/I by J∗:

0 −→ J∗
π̃∗−→ J

πn−→ J/I −→ 0, (53)

where πn is the natural projection J→ J/I, π̃ = π ◦ πn, π̃∗ the dual map of
π̃ where we identify J∗ with J .

Proof. We have that

0 −→ a
i−→ J/I

π−→ J −→ 0,

is an extension of J by a such that i : a→ i (a) is an isometry. Then

αJ ◦ i = i ◦ β, (54)

α ◦ π = π ◦ αJ, (55)

i(a) = kerπ, (56)

B(i(v), i(w)) = B(v, w). (57)

We assume that (J, I, i, π) is a quadratic extension. Then Im(i) = I⊥/I.
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First, we show that α∗J ◦ π̃∗ = π̃∗ ◦ α∗. We have

α ◦ π = π ◦ αJ = π ◦ πn ◦ αJ = π̃ ◦ αJ.

Hence (α ◦ π)∗ = (π̃ ◦ αJ)∗. Then π∗ ◦ α∗ = α∗J ◦ π̃∗.

Now, we show that Im(π̃∗) = ker(πn). By kerπ = i(a) = I⊥/I and

π̃ = π ◦ πn we obtain ker(π̃) = I⊥. Since Im(π̃∗) = (ker(π̃))⊥, one can
deduce Im(π̃∗) = I. So Im(π̃∗) = ker(πn) and the sequence

0 −→ J∗
π̃∗−→ J∗ ∼= J

πn−→ J/I −→ 0,

defines an extension of J/I by J∗.
Conversely, we assume that the sequence

0 −→ J∗
π̃∗−→ J∗ ∼= J

πn−→ J/I −→ 0

defines an extension. Then α∗J ◦ π̃∗ = π∗ ◦ α∗, αJ ◦ πn = πn ◦ αJ and

Im(π̃∗) = ker(πn). We have Im(π̃∗) = (ker(π̃))⊥, Im(π̃∗) = ker(πn) and
ker(πn) = I. Hence, ker(π̃) = I⊥ and I ⊂ I⊥. Then ker(π) = I⊥/I. By
(56), we have Im(i) = ker(π) = I⊥/I. Moreover, we have (54), (55) and
(57). Therefore, (J, I, i, π) is a quadratic extension. �

5.1. Twofold extensions. Twofold extensions of Lie algebras were studied
in [10] (also called Standard models in [9]). In the following, we define and
study twofold extensions of Hom-Jacobi–Jordan algebras.

Let (J, [·, ·], α) be a Hom-Jacobi–Jordan algebra and let (a, ρ, β,Ba) be
a quadratic representation of J . For each (θ, γ) ∈ Z2

Q(J, a), we want to
define structures of a metric Hom-Jacobi–Jordan algebra on the vector space
dθ,γ := J ⊕ a⊕ J∗. Let αdθ,γ = α+ β + α∗. We define a bracket on dθ,γ by

[x, y]θ,γ = [x, y] + θ(x, y) + γ(x, y, ·);
[x, v]θ,γ = ρ(x)v +Ba (θ(·, x), v) ;

[v, w]θ,γ = Ba (ρ(·)v, w) ;

[Z, x]θ,γ = Z ([x, ·]) ;

[Z1, v + Z2]θ,γ = 0.

We define a symmetric bilinear form B on dθ,γ by

B(x+ v + Z1, y + w + Z2) = Z1(y) + Z2(x) +Ba (v, w)

for all x, y ∈ J, v, w ∈ a, Z1, Z2 ∈ J∗. We define a linear map i0 : aθ,γ →
dθ,γ/J

∗ by i0(v) = v + J∗ and a linear map π0 : dθ,γ/J
∗ → J by π0(x+ v +

J∗) = x.

Proposition 5.2. With the above notations, the quadruple (dθ,γ , J
∗, i0, π0)

defines a quadratic extension.
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Proof. We only prove that
(
dθ,γ , [·, ·]θ,γ , αdθ,γ , B

)
is a metric Hom-Jordan–

Jacobi algebra. Denote dθ,γ = n and define a trilinear form γn on n by
γn (a, b, c) = B ([a, b]θ,γ , c) for all a, b, c ∈ n. Using Theorem 3.3, it is suffi-
cient to show that γn is symmetric and d3

rγn = 0.
We have

γn(x, y, z) = B ([x, y]θ,γ , z) = B ([x, y] + θ(x, y) + γ(x, y, ·), z) = γ(x, y, z).

Since γ is symmetric, we obtain that the restriction of γn to J3 is symmetric.
For all x, y ∈ J , v ∈ a, we have

γn(x, y, v) = B ([x, y]θ,γ , v) = Ba(θ(x, y), v);

γn(x, v, y) = B ([x, v]θ,γ , y) = Ba(θ(x, y), v).

Therefore, using the fact that [x, y]θ,γ = [y, x]θ,γ and [x, v]θ,γ = [v, x]θ,γ , one
can deduce that the restriction of γn to J2 × V is symmetric.

For all x ∈ J , v, w ∈ a, we have

γn(x, v, w) = B ([x, v]θ,γ , w) = Ba(ρ(x)w, v),

γn(v, w, x) = B ([v, w]θ,γ , x) = Ba (ρ(x)v, w) ,

and since (a, ρ, β,Ba) is a quadratic representation of J on a, the restriction
of γn to J × V 2 is symmetric.

For all u, v, w ∈ a, we have

γn(v, w, u) = B ([v, w]θ,γ , u) = B (Ba (ρ(·)v, w) , u) = 0.

Thus, the restriction of γn to V 3 is symmetric too.
For all x, y, z, a ∈ J and for t = α(a), we have

d3
rγn(x, y, z, t)

=γ ([x, y], α(z), t) + γ ([x, z], α(y), t) + γ ([y, z], α(x), t) (58)

+ γ(x, y, [α(z), t]) + γ(x, z, [α(y), t]) + γ(y, z, [α(x), t]) (59)

+ γ(α(z), t, [x, y]) + γ(α(y), t, [x, z]) + γ(α(x), t, [y, z]) (60)

+ γ ([α(z), t], x, y) + γ ([α(y), t], x, z) + γ ([α(x), t], y, z) (61)

+Ba (θ(y, x), θ(α(z), t)) +Ba (θ(z, x), θ(α(y), t)) +Ba (θ(z, y), θ(α(x), t))
(62)

+Ba (θ(t, α(z)), θ(x, y)) +Ba (θ(t, α(y)), θ(x, z)) +Ba (θ(t, α(x)), θ(y, z)) .
(63)

Since γ is symmetric, we get

(58) + (59) = drγ(x, y, z, t) and (60) + (61) = drγ(x, y, z, t).

Since θ is a 2-Hom-cochain, by Proposition 4.5, we obtain

(62) + (63) = Ba (θ ∧ (θ ◦ α)) (x, y, z, a).
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Thus d3
rγn(x, y, z, t) = 2drγ(x, y, z, t) + Ba (θ ∧ (θ ◦ α)) (x, y, z, a). Then,

since (θ, γ) is a quadratic 2-cocycle, we obtain d3
rγn(x, y, z, t) = 0. By straight-

forward computations, for all x, y, z ∈ J , v ∈ a, we have

1

2
d3
rγn(x, y, z, v)

=Ba (θ([x, y], α(z)), v) +Ba (θ([x, z], α(y)), v) +Ba (θ([y, z], α(x)), v)

+B (ρ(α(z))θ(x, y), v) +B (ρ(α(x))θ(y, z), v) +B (ρ(α(y))θ(x, z), v)

=
1

2
Ba

(
d2θ(x, y, z), v

)
.

Therefore d3γn(x, y, z, v) = 0 by (θ, γ) is a quadratic 2-cocycle.
Similarly, for any x, y ∈ J , u, v ∈ a, we get

1

2
d3
rγn(x, y, u, v)

=Bn

(
u, β(ρ([x, y])v)

)
+Ba (u, ρ(x)ρ(α(y))v) +Ba (u, ρ(y)ρ(α(x))v)

Therefore, by (15), we have d3
rγn(x, y, u, v) = 0. For all x ∈ J , u, v, w, s ∈ a,

Z ∈ J∗, by B (Z, u) = 0, we have d3γn(u, v, w, x) = 0, d3γn(u, v, x, w) = 0
and d3γn(u, v, w, s) = 0. The rest of the proof is straightforward. �

Definition 5.2. We denote the quadratic extension(dθ,γ , J
∗, i0, π0), construc-

ted in Proposition 5.2, by dθ,γ(a, J, ρ) and call it a twofold extension.

5.2. Classification by cohomology. In this subsection, we show that
quadratic extensions are classified by the cohomology group H2

Q(J, a).

Definition 5.3. Two quadratic extensions (J1, I1, i1, π1), (J2, I2, i2, π2) of
J by a are called to be equivalent if there exists an isomorphism of metric
Lie algebras Φ: J1 → J2 which maps i1 onto i2 and satisfies Φ ◦ i1 = i2 and
π2 ◦ Φ = π1, where Φ: J1/I1 → J2/I2 is the induced map.

Proposition 5.3. Any quadratic extension (J, I, i, π) is equivalent to a
twofold extension (dθ,γ , J

∗, i0, π0) .

Proof. Let

E : 0 −→ a
i−→ J/I

π−→ J −→ 0

be the extension of J defined in (52) and s a section of E . Then, by Propo-
sition 2.8, we have J/I = s(J)⊕ i(a) and the extension E is equivalent to

0 −→ (a, ρ, β)
i0−→ (M, [·, ·]θ, αM )

π0−→ (J, [·, ·], α) −→ 0,

where θ is a 2-cocyle of J on a and M = J ⊕ a.
Now, let

E∗ : 0 −→ J∗
π̃∗−→ J

πn−→ J/I −→ 0



292 NEJIB SAADAOUI

be the extension defined in (53) and s′ a section of E∗. Then, by Proposition
2.8, we have J = s′(J/I)⊕ π̃∗(J∗) and the extension E∗ is equivalent to

0 −→
(
J∗, ρ′, β′

) i0−→
(
M ′, [·, ·]γ′ , αM ′

) π0−→
(
J/I, [·, ·]J, αJ

)
−→ 0

where γ′ is a 2-cocycle of J/I on J∗ and M ′ = J/I ⊕ J∗.
We have J = s′(J/I) ⊕ π̃∗(J∗) = s′(s(J) ⊕ i(a)) ⊕ π̃∗(J∗). We can write

πn : s′(J/I)→ J/I and π : s(J)→ J . Hence π̃∗(J∗) = (s′s(J))∗.
Using J = s′(J/I)⊕π̃∗(J∗) and π̃∗(J∗) = (s′s(J))∗, we obtain J = s′s(J)⊕

s′i(a)⊕ (s′s(J))∗. Then, using Proposition 4.3, for all x ∈ J , v ∈ a, Z ∈ J∗,
we have

[s′s(x), s′s(y)]J = [s′s(x), s′s(y)]s′s(J)+θ(s′s(x), s′s(y))+γ(s′s(x), s′s(y), ·);
[s′s(x), s′i(v)]J = ρ(s′s(x))v +Bρ(s

′i(v), θ(s′s(x), ·));
[s′i(v), s′i(w)]J = Ba(ρ(·)(s′i(v)), s′i(w));

[Z, s′s(x)]J = Z([s′s(x), ·]);
[Z1, s

′i(v) + Z2]J = 0.

Now, we define a linear map Ψ: J ⊕ a ⊕ J∗ → J by Ψ(x + v + Z) =
s′s(x) + s′i(v) + (s′s)∗(Z) and a bilinear map [·, ·]d : J ⊕ a⊕J∗ → J ⊕ a⊕J∗
by

[x+v+Z, y+w+Z ′]d = Ψ−1 ([s′s(x)+s′i(v)+(s′s)∗(Z), s′s(y)+s′i(w)+(s′s)∗(Z ′)]J) .

Then [
Ψ(x+ v + Z),Ψ(y + w + Z ′)

]
J

=
[
s′s(x) + s′i(v) + (s′s)∗(Z), s′s(y) + s′i(w) + (s′s)∗(Z ′)

]
J

= Ψ
(
[x+ v + Z, y + w + Z ′]d

)
.

Moreover, we have Ψ ◦ i0(v) = i(v) and π ◦Ψ(x) = π ◦ s(x) = x = π0(x). �

Lemma 5.4. Let dθ,γ := dθ,γ(a, J, ρ) and dθ′,γ′ := dθ′,γ′(a, J, ρ) be two
twofold extensions such that (θ, γ) ∼= (θ′, γ′). Then the twofold extensions
dθ,γ := dθ,γ(a, J, ρ) and dθ′,γ′ := dθ′,γ′(a, J, ρ) are equivalent.

Proof. Using Theorem 4.9, we have θ′ = θ + d1
rτ and γ′ = γ + d2

rσ −
B
(
τ ∧ (θ + 1

2d
1τ)
)

where (τ, σ) ∈ G. Then, d2
rσ = 0. Define a linear map

Φ: J ⊕ a⊕ J∗ → J ⊕ a⊕ J∗ by

Φ(x+ v + Z) = x+ v − τ(x)︸ ︷︷ ︸
∈a

+ Z − 1

2
Ba

(
τ(x), τ(·)

)
+Ba(v, τ(·))︸ ︷︷ ︸

∈J∗

.

Then Φ is an isomorphism of metric Hom-Jacobi-algebras (see the proof of
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Proposition 4.11). Finally, we show that Φ is isometric:

B(Φ(x),Φ(y)) = B

(
x− τ(x)− 1

2
Ba

(
τ(x), τ(·)

)
, y − τ(y)− 1

2
Ba

(
τ(y), τ(·)

))
= Ba (τ(x), τ(y))− 1

2
Ba

(
τ(y), τ(x)

)
− 1

2
Ba

(
τ(x), τ(y)

)
= 0 = B(x, y),

B(Φ(x),Φ(v)) = B(x− τ(x)− 1

2
Ba

(
τ(x), τ(·)

)
, v +Ba(v, τ(·)))

= −Ba(τ(x), v) +Ba(v, τ(x)) = 0

B(Φ(u),Φ(v)) = B(u+Ba(u, τ(·)), v +Ba(v, τ(·)))
= Ba(u, v).

�

Lemma 5.5. Let dα,γ := dθ,γ(a, J, ρ) and dθ′,γ′ := dθ′,γ′(a, J, ρ) be two equiv-
alent twofold extensions. Then the quadratic 2-cocycle (θ − θ′, γ − γ′) is triv-
ial.

Proof. Let Φ(x) = f(x) + τ(x) + ζ(x) where f : J → J , τ : J → a and
ζ : J → J∗. Using π ◦ Φ′ = π, we obtain f(x) = x. Then

Φ(x) = x+ τ(x) + ζ(x).

Let Φ(v) = g(v) + h(v) + η(v), where g : a → J , h : a → a and η : a → J∗.
Using Φ′ ◦ i = i, we obtain g(v) = 0 and h(v) = v. Then Φ(v) = v + η(v).
Using B(v, x) = B(Φ(v),Φ(x)), we obtain η(v)(x) = −Ba(v, τ(x)). Since Φ
is an isometry and Φ(J∗) ⊂ J∗, we obtain Φ(Z) = Z.

Using B(Φ(x),Φ(y)) = B(x, y), we obtain Ba(τ(x), τ(y)) = −ζ(x)(y) −
ζ(y)(x). Since ζ(x)(y) = ζ(y)(x), we obtain ζ(x, y) = −1

2Ba(τ(x), τ(y)).
By Φ(d(x, y)) = d′(Φ(x),Φ(y)), we obtain

θ(x, y) = θ′(x, y)− τ([(x, y]) + ρ(x)τ(y) + ρ(y)τ(x) = θ′(x, y)− d1τ(x, y)

and

γ(x, y, ·) = γ′(x, y, ·)−Ba

(
(θ′ +

1

2
d(−τ)) ∧ (−τ)

)
(x, y, ·).

Hence {
θ = θ′ + d1 (−τ) ,
γ = γ′(x, y, ·)−Ba

(
(α′ + 1

2d(−τ)) ∧ (−τ)
)

(x, y, ·).

Using Proposition 2.2, we have d2
cθ = 0. Therefore, using Proposition 4.9,

we have d2
Q(θ, γ) = d2

Q(θ′, γ′). �

Bringing the previous results together, we have the following result.
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Theorem 5.6. The set Ext(J, a) of equivalence classes of quadratic exten-
sions (J, I, i, π) of J by a is in a one-to-one correspondence with Z2

Q(J, a)/G,
that is,

Ext(J, a) ∼= H2
Q(J, a).
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