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Second cohomology group and quadratic
extensions of metric Hom-Jacobi—Jordan algebras

NEJIB SAADAOUI

ABSTRACT. In this paper, we introduce and study the low dimensional
cohomology of metric Hom-Jacobi-Jordan algebras. We establish one-to-
one correspondence between the equivalence classes of abelian quadratic
extensions of a Hom-Jacobi—Jordan algebra and its second cohomology
group.

Introduction

The Jacobi-Jordan algebras were recently introduced in [4] as vector
spaces A over a field K, equipped with a bilinear map -: A x A — A,
satisfying the Jacobi identity and instead of the skew-symmetry condition
valid for Lie algebras, the commutativity condition z -y = y - z, for all
x,y € A, is imposed. This class of algebras appears under different names
in the reflecting literature (Jordan—Lie algebras in [18], mock-Lie algebras
in [20], etc.). Worz-Busekros in [19] relates these types of algebras with
Bernstein algebras. One crucial remark is that Jacobi—Jordan algebras are
examples of the more popular and well-referenced Jordan algebras [1} [15] in-
troduced in order to achieve an axiomatization for the algebra of observables
in quantum mechanics. In [4], the authors achieved the classification of these
algebras up to dimension 6 over an algebraically closed field of characteristic
different from 2 and 3.

Hom-type algebras appeared naturally when studying ¢-deformations of
some algebras of vector fields, like Witt and Virasoro algebras. It turns out
that the Jacobi identity is no longer satisfied, these new structures involving
a bracket and a linear map satisfy a twisted version of the Jacobi identity
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and define a so called Hom-Lie algebras which form a wider class, see [2, [7,
8, 12, [17].

The quadratic Lie algebras, also called metrizable or orthogonal (see
[9, 10]), are intensively studied. One of the fundamental results of construct-
ing and characterizing quadratic Lie algebras is due to Medina and Revoy
(see [14]) using double extensions, while the concept of T™*-extension is due
to Bordemann, see [I1]. The T*-extension concerns non-associative algebras
with a nondegenerate associative symmetric bilinear form, such algebras are
called metrizable algebras. In [I1], the metrizable nilpotent associative alge-
bras and metrizable solvable Lie algebras are described. A study of graded
quadratic Lie algebras can be found in [5]. The Hom-Lie case for quadratic
algebras is introduced and studied by S. Benayadi and A. Makhlouf in [3].
The Hom-Jacobi—Jordan case is introduced by Cyrille in [6]. In this pa-
per, we are interested in studying the second group of cohomology of metric
Hom-Jacobi—Jordan algebras and its relation with quadratic extensions.

This paper is organized as follows. In the first section, we briefly recall
some facts about Hom-Jacobi—Jordan algebras and we give the isomorphism
classification of 2-dimensional multiplicative Hom-Jacobi-Jordan algebras.
Section 2 is devoted to giving some examples of representations of Hom-
Jacobi-Jordan algebras. In section 3, we introduce metric Hom-Jacobi-
Jordan algebras. In section 4, we provide the second cohomology group of
a metric Hom-Jacobi-Jordan algebra with coefficients in a given representa-
tion. Section 5 deals with quadratic extensions of metric Hom-Jacobi—Jordan
algebras. We show that the second cohomology group classifies quadratic ex-
tensions of a metric Hom-Jacobi-Jordan algebra.

Throughout the paper, all considered complex vector spaces are finite-
dimensional.

1. Hom-Jacobi—Jordan algebras

In this section, we recall some facts about Hom-Jacobi—Jordan algebras
and we provide their classifications in a 2-dimensional multiplicative setting.

Definition 1.1 ([6]). A Hom-Jacobi-Jordan algebra is a triple (J, [+, ], a),
where J is a vector space equipped with a symmetric bilinear map [-,]: J X
J — J and a linear map «: J — J such that

[a(2), [y, 2]] + [e(w), [2, 2]] + [e(2), [2,9]] = O (1)

for all x,y, z in J. This identity is called the Hom-Jacobi identity.

We recover Jacobi—Jordan algebras when the linear map « is the iden-
tity map. A Hom-Jacobi-Jordan-algebra is called multiplicative if o is an
algebraic morphism with

a([z,y]) = [a(z), a(y)] (2)
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for any x, y € J. Two Hom-Jacobi-Jordan algebras (J, [+, -], «) and (J', [-, ]/,
a') are said to be isomorphic if there exists an algebra isomorphism ¢: J —
J' compatible with o and o/, i.e

¢ ([z,9]) = [6(2), 6(y)] and poa =a 0 ¢. (3)
The center of a Hom-Jacobi-Jordan algebra (J, [, -], @) is the subspace
3(J)={z e J|[z,y]=0,Vy e J}.

A subspace I of J is said to be an ideal if, for x € I and y € J, we have
[z,y] € I and a(z) € 1.

The following lemma describes the class of complex 2-dimensional multi-
plicative Hom-Jacobi-Jordan algebras when the matrix of « is of the form

(6 3)

Lemma 1.1. Let (J,[-, ], ) be a 2-dimensional multiplicative Hom-Jacobi—
Jordan algebra with ordered basis {uy,us}. Take a(u1) = auy and a(ug) =
bua. Then there exists a basis {e1,e2} of J in which (J,[-,-],«a) has one of
the following forms:

(1) Ji(0,b,0) : [e1,e1] = e1 and a(er) =0, aes) = bea,

(2) Ji(a,a?0): [e1,e1] = ex and ale1) = aeq, ales) = a’eq,

where the omitted products are zero.

Proof. Let sp be the set of eigenvalues of a. We have a(u;) = au;, i = 1,2.
Thus, using (), we take a([us, uj]) = aia;[ui, uj]. Then aa; € sp(a), or
[ui, Uj} =0.

If a1 = a9, we obtain @ = idy. Then J is the classical 2-dimensional
Jacobi-Jordan algebra given in [4] by [e1,e1] = ea.

If a; # ag, the set of eigenvalues of « is given by sp(a) = {a1,as}. The
eigenspace of the eigenvalue a; is generated by u; and the eigenspace of the
eigenvalue ao is generated by us. The rest of the proof can be obtained easily
by solving firstly the equation and then using . ]

The following lemma describes the class of complex 2-dimensional multi-

plicative Hom-Jacobi—Jordan algebras, where o = <8 clz>

Lemma 1.2. Let (J,[-, ], ) be a 2-dimensional multiplicative Hom-Jacobi—
Jordan algebra with ordered basis {uy,us}. Take a(u1) = auy and a(ug) =
u1 + aug. Then there exists a basis {e1,ea} of J in which (J, |-, -], a) has one
of the following forms:

(1) J7(0,0,1) : [e,ea] = e1 and a(e1) = 0, a(ez) = ey,

(2) J2(0,0,¢) : [e2,e1] = [e1, ea] = e1, [ea, e2] = e1 and a(e1) =0, a(e2) =cer,
(3) J5(0,0,1) : [ea,e1] = [en, e2] = e1 and afer) = 0, a(e2) = e,
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(4) J2(1,1,1) : [e2,e2] = €1 and afer) = e1, afez) = e1 + ea,

where the omitted products are zero.

Proof. The proof follows by straightforward computations similar to the
proof of Lemma, (1.1 O

Combining the previous lemmas we get the following theorem.

Theorem 1.3. All the classes of 2-dimensional multiplicative Hom-Jacobi—
Jordan algebra are given in Lemma[1.1 and Lemma[1.3 up to isomorphism.

2. Representation of Hom-Jacobi—Jordan algebras

In this section, we give some examples of representations that we will need
in the remainder of the paper.

Definition 2.1. Let J and V be two vector spaces. A k-linear map f:
JxJ...xJ—V issaid to be symmetric if
N———

k times
f(xa(l)a to )xa(k)) = f(xlv T ,J,‘k) for all o € Gk,

where &y, is the group of permutations of {1,---,k}. For k € N, the set of
symmetric k-linear maps is denoted by S*(J, V).

Definition 2.2 ([6]). A representation of a Hom-Jacobi-Jordan algebra
(J,[-,-], @) on a vector space V with respect to § € End(V) is a linear
map p: J — End(V) satisfying

pla(z)) o B = Bopx), (4)
p(lz,y]) o B =—p(a(z)) ply) — p(aly)) o p(z) (5)
for all x, y € J. We denote such a representation by (V, p, 3).

Definition 2.3. Let (V,p, 5) be a representation of a Hom-Jacobi-Jordan
(J,[-,-], @). The set of k-Hom-cochains on J with coefficients in V', denoted
by CS’B(J, V), is given by

Ck 57, V):{feSk(J,V) |,Bof:foa}.

Definition 2.4. The 1-coboundary operator of a Hom-Jacobi-Jordan alge-
bra J is the map

d': CL5(J, V) = C2 5(J, V), fdf,
defined by
d'(f)(@,y) = f(z,y) —p(x)f(y) — ply)f(z). (6)



SECOND COHOMOLOGY GROUP AND QUADRATIC EXTENSIONS 273

Definition 2.5. The 2-coboundary operator of a Hom-Jacobi-Jordan alge-
bra J is the map

d*: C2 5(J, V) = C3 5(J, V), f s d?f,
defined by
&(f)(x,y,2) =f ([2, 9], a(2)) + [ ([, 2], a(y) + f (a(2), [y, 2])
+p(a(x)) f(y,2) + p(aly)) f(z,2) + p((2) fz,y). (7)
Theorem 2.1 ([16]). We have d* o d* = 0.

The 2-cocycles space is defined as Zi s(J,V) = ker(d?), the 2-coboundary
space is defined as Bi (V) =1 m(d') and the 2" cohomology space is
the quotient HZ 5(J,V) = Z2 5(J,V)/B2 5(J, V).

Let J and V be two vector spaces and let [,-], 0: J2 =V, X\: JxV =V
be bilinear symmetric maps. Define a bracket [-, -]y and a morphism a,; on
M=J@V by

[z + v,y +wla = [2,y] + Mz, w) + Ay, v) + 0(z, ),
an( +v) = az) + B(v).
Theorem 2.2 ([16]). With the above notations, (M, |-, |a,an) is a Hom-
Jacobi—Jordan algebra if and only if the following conditions hold:
(1) (J,[-,], @) is a Hom-Jacobi-Jordan algebra;
(2) the linear map p: J — End(V), © — A(x,-), defines a representation
of J on'V;
(3) 6 is a 2-cocycle of the Hom-Jacobi—Jordan algebra (J, |-, -], ) with coef-
ficients in the representation (V, p,3) (i.e., 0 € ZiB(J, V).
If, in addition, (M, |-, |ar, anr) is multiplicative, then 0 is a 2-Hom-cochain
and the Hom-Jacobi-Jordan algebra (J,[-, -], ) is also multiplicative.

Definition 2.6. Let (V, p, 3) be a representation of a multiplicative Hom-
Jacobi-Jordan algebra (J, [+, -], a) and 6 be a 2-cocycle of J on V. The mul-
tiplicative Hom-Jacobi-Jordan algebra (M, [, -|ar, aar) is called an abelian
extension of J by V by means of 6.

2.1. Representation on V/ = End(J,V). Let V' = End(J,V) be the
vector space of linear maps f: J — V. We define the linear maps o/: V' —
V'and p': J — End(V') as follows

o (Z)=Z (o)), (8)
p(@)Z =Z([z,]). (9)

If we compute the right-hand side of the identity , then we obtain
—p (@) ' (W) Z — o' () p'(x)Z = = Z([y, [a(@),]]) = Z([2, [e(y),]])-
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The left hand side of gives
P ([z,y]) o (Z) = Z(a([[=, 9], ])).

Therefore we obtain the following result.

Proposition 2.3. The triple (V',p',a’) is a representation of J if and only
if
a([[z,y],-]) = = v [a(@), ] = [z, [a(y), ] (10)

for all x,y € J. In this case, (V' p', ) is called the generalized coadjoint
representation.

Associated to the generalized coadjoint representation p’, the coboundary
operators d': C'éﬂ — C’gﬁ and d?: C’gﬁ — C’g’éﬂ defined in @ and ,
respectively, are given by

dllz Cé,o/ — ng,a’; dll(f)(xvy) = f([xzy]) - f(y)([x, D - f(x)([ya ])
and d’?: C’OQW, = C3 5

dl29($7 Y, Z) :g<[£€, y]? Oé(Z)) + g([.ﬁlf, Z]v a(y)) + g([ya Z]? Od(iL‘))

+ g(x7 y)([a(z)7 ]) + g(.’r, Z)([Oé(y), ]) + g(y? Z)([Od(il)), ])
Hence, by Theorem we deduce that
d?od' =0. (11)

In the particular case in which V' =R, we obtain the dual space J* and we
denote

C?(J,R) = {f bilinear form | f(z,-) € CL ,,(J,J*),Va € J};
CP(J,R) = {f trilinear form | f(z,y,-) € Ca o (J,J*),Vz,y € J};
C(J,R) = {f 4-linear form | f(x,y,2,-) € S*(J,J*),Vz,y,2 € J}.

Let us define d?: C?(J,R) — C3(J,R) and d3: C2(J,R) — C4(J,R), respec-
tively, by

d%f(:z:,y,t) = f([xath) - f(ya [‘Tvt]) - f(.T, [yvt]) (12)
and
iy (x,y, 2,t) =y([2, ), 0(2), 1) + ([, 2], aly). £) +9([y. ], alx), ) (13)
+7 (@, [a(2),t]) +7 (Y, 2, [a(2), 1]) + 7 (2, 2, [a(y), 1])
Theorem 2.4. With the above notation, we have d> o d? = 0.

Proof. We have d?f(x,y,t) = d' f(z,y)(t) and d3f(x,y, z,t) =
d?f(z,y,2)(t). By (1)), we obtain d3 o d? = 0. O

The following proposition comes directly from Proposition [2.3



SECOND COHOMOLOGY GROUP AND QUADRATIC EXTENSIONS 275

Proposition 2.5. Let (V, p, 3) be a representation of a Hom-Jacobi-Jordan
algebra (J, [+, -], &) and 6 be a 2-cocycle of J on' V. Let (M, [-,-|ar, car) be the
extension of J by V' by means of 0. Then the triple (V" p", 8", where V"' =
End(M,V), p": M — End(V") is given by p"(z +v)f(*)) = f([x + v, |m)
and B": V" — V" is given by 8"(f) = f o ay, defines a representation of

the Hom-Jacobi-Jordan algebra (M, [, ]ar, anr) if and only if
a((lzy)1) = =y, [o(@), 1] = [ [a(y), 4] (14)
B(p(lz.4))v) = —p(y)p (a(@)) v = p(@)p (aly)) v; (15)
B(p()0(z.)) = —p (@) 8aly), 1) — p (y) Bla(x), 1); (16)
Bpt)pw)w) = =p(a(2), ) v = p (@) p (1) B(v). (17)
Let us define di: Cj 4(J,V) — S*(J,V) and dz: S*(J,V) — C3(J,V),

respectively, by
d'(f)(x,y) =F ([z,9]) = p(2) f(y) = p(y) f (2),

B (0)(,,2) =0z, [2(), 1) + 0 (1, [z, a(@)]) + 5(0 (2 [ 1)) )

+ (@) 0(a(y). 2) + p (1) 0z, () + 8(p (=) 0l ) ).
where C3(J, V) = {y € Hom(J3, V) | v (z,y,t) = v (y,z,t)} .
Theorem 2.6. We have d? o d' = 0.
Proof. It is straightforward. O

2.2. Extensions of Hom-Jacobi-Jordan algebras. Let (J, [, ], a) be a
Hom-Jacobi-Jordan algebra, and let (V, p, ) be a representation of (J, [-, -], a).
An abelian extension of a Hom-Jacobi—Jordan algebra J by V is an exact
sequence

0— (V7p76) L> (M7 ['a']MaaM) i) (Jv [','],Oé) —0
satisfying ajpsoi = i0f and aom = woaps. We say that the extension is central
if [i(V), M)y = 0. A section of an abelian extension (M, [, |ar, anr) of a
Hom-Jacobi-Jordan algebra (J, [, ], @) by (V, p, §) is a linear map s: J — M
such that mo s = Id;. Two extensions

0 —= (V,p, 8) —— (M, [, ]as, ans) —— (J, -, ], @) —=0
Md % i@l
0 —— (V, p, B) ——= (M, [, s, aonpr) == (J, [, ], @) —=0

are equivalent if there exists an isomorphism of Jacobi—Jordan algebras ®
M — M’, such that ®o i =4 and 7’ o ® = 7.



276 NEJIB SAADAOUI

Theorem 2.7 ([16]). Let (V,p, ) be a representation of a multiplicative
Hom-Jacobi—Jordan algebra (J,[-, -], ) and 6 be a 2-cocycle of J on V. De-
fine a bracket [-,-|pr and a morphism apyr on M = J &V by

[z + v,y +wlp = [z,9] + p(x)w + p(y)o + 0(z, y),
ay(z+v) = ax) + B(v).
Defineig: V. — M byig(v) =v and mo: M — J by mo(xz) = x. The sequence

o

00— (V,p,8) =% (M, [, Jo, anr) = (J, ], 0) — 0
defines an abelian extension of J by V.

Proposition 2.8 ([16]). Let

&:0— (Vapaﬁ) — (M/v ['a']M’aaM’) — (J’ ['7']’0‘) —0

be an abelian extension of J by V and s be a section of £. Then we have
M’ = s(J)@®i(V) and there exists a 2-cocycle 6 € ZCQLB(J, V') such that, with
the notation of the above theorem, the extension & is equivalent to

0— (Vip, B) = (M, [ gy aar) 7 ([ ) a) — 0,
Theorem 2.9 ([I6]). Let (V,p,B) be a representation of a multiplicative
Hom-Jacobi-Jordan algebra (J,[-,-],«). Then the abelian extensions of J by
V' are classified by Hgﬁ(J, V).

3. Metric Hom-Jacobi—Jordan algebras

In this section, we introduce the notion of metric Hom-Jacobi—Jordan
algebras and provide their properties.

Definition 3.1. A metric Hom-Jacobi—Jordan algebra is a 4-tuple (J, [+, -], «,

B) consisting of a Hom-Jacobi-Jordan algebra (J, [, ],«) and a nondegen-
erate symmetric bilinear form B satisfying:

B(z,y,z])) = B([z,y], z) (invariance of B), (18)

B(a(z),y) = B(z,a(y)) (Hom-invariance of B), (19)

for any z, y, 2 € J. We recover the metric Jacobi-Jordan algebra when
a=1d J-

We say that two metric Hom-Jacobi-Jordan algebras (J, [, ], a, B) and
(J',[,-]',d/, B") are isometrically isomorphic (or i-isomorphic, for short) if
there exists a Hom-Jacobi—Jordan isomorphism f from J onto J’ satisfying
B'(f(z), f(y)) = B(z,y) for all z,y € J. In this case, f is called an i-
isomorphism.

Definition 3.2. Let I be an ideal of a metric Hom-Jacobi-Jordan algebra
(Ja ['v ']a «, B)
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(1) The orthogonal I+ of I, with respect to B, is defined by
L={zeJ|Bz,y) =0vyel}
(2) An ideal I is isotropic if I C I+.
Let (J,[,+], @, B) be a multiplicative metric Hom-Jacobi—-Jordan algebra.

Since B is non-degenerate and invariant, we obtain some properties described
in the following results.

Proposition 3.1. (1) The center 3(J) is an ideal of J.

(2) 3(J) =[J,J]* and then dim(3(J)) + dim([J, J]) = dim(J).
Proposition 3.2. Let I be an ideal of a metric Hom-Jacobi—Jordan algebra
(J,[-,"],, B). Then

(1) I+ is an ideal of J,

(2) the centralizer 3(I) of I contains I*.

For the rest of this paper, for any metric Hom-Jacobi—Jordan algebra, the
generalized coadjoint representation identity is satisfied.

Proposition 3.3. A 4-tuple (J,[-,-],a, B) is a metric Hom-Jacobi-Jordan
algebra if and only if B is a nondegenerate symmetric bilinear form satisfying

and d¥y = 0 where v(z,y,z) = B([z,y], 2) and d} is given by (13).

Proof. Let B be a nondegenerate symmetric bilinear form satisfying .
For all x,y,z € J, we have

Ay (x,y, 2, 1)
=y([z,y], a(2), 1) + (7, 2], a(y), 1) + v([y, 2], (), ?)

+ 7 (2,9, [(2),1]) + 7 (y, 2, [a(2),t]) + 7 (2, 2, [a(y), t])
=B([[z,y], a(2)],t) + B ([[z, 2], a(y)] ,t) + B ([(), [y, 2]] , 1) (20)

+ B[z, 9l [a(2),t]) + B(ly, 2], [a(@), 1]) + B([z, 2], [e(y), 1]).  (21)
If the identity is satisfied, then we have
(21) = B(x, [y, [a(2),t]]) + B([ly, 2], 1] , a(x)) + B(x, [2, [a(y), t]])
By (19), we have B([[y, 2],t],a(z)) = B (a([[y, 2],]) , z). Hence
(21) = B(ﬂ% [y, [a(2), t]) + B(x, a([ly, 21, t])) + B(, [z, [a(y), t]])-
Then, if (| and are satisfied, we obtain
d3fy(a; Y, z,t)
=B([[z,y],a(2)],1) + B([[z,2],a(y)] 1) + B ([e(x), [y, 2]] , 1) (22)
+ B(z, [y, [(2), 1)) + Bz, ([[y, 2, 1])) + Bz, [z, [e(y), 1)) (23)
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By the Hom-Jacobi identity, we deduce that :0. On the other hand,
by the generalized coadjoint representation identity, we obtain :O. There-
fore d2vy = 0.

Now, we aim to show that v € S3(J,R). For all z, y, z € .J, by the equality
(118), [-,:] and B are symmetric and we have

B([w,y],z) = B([ya .’II],Z) =B (y7 [.’II,Z]) =B ([:c,z],y),
which implies that

V(z,y,2) =v(y, @, 2) = (2, 2,9).
So

Y(@, 2,y) = (2 2,y) = v(2,y,2)
and

(Y, z,2) = (2, y,2) = (Y, @, 2).
Therefore v € S3(J,R).

Conversely, we assume that v € S3(J,R) and d2v = 0. First, we verify the
symmetric condition for [-,-]. By v € S3(J,R), we have y(z,y, 2) = v(y, z, 2).
Hence B([z,y],2) = B([y, ], 2). Since B is nondegenerate, one can deduce
(%4 = 3]

Next, we verify the equality . For any x,y, z € J, we have y(z,y, z) =
+(y,2,2), that is, B([z,9], 2) = B(y 2], ). Then B([z,y],2) = B(x, [y, 2)).
So holds.

Now, we prove the Hom-Jacobi—Jordan identity. For all z,y,z € J, by
the equality , we have

21) = B([[z,y], a(2)].t) + B([ly, 2], a(@)] . t) + B([[, 2], a(y)] . t).
Thus

@1(w,9,2,) = 2(B( ([, 9}, ()] B (13,2 o)) 01+B ([, 2] aw)] 1))

Since d2y = 0 and B is nondegenerate, we get the Hom-Jacobi identity.
Finally, we prove the coadjoint representation identity. Since and

are satisfied, we have d3vy(x,y,2,t) = + (23). Since d2y(z,y,2,t) =0

and = 0, we obtain = (0. This finishes the proof. ([l

4. The second cohomology group of a metric
Hom-Jacobi—Jordan algebra

The task of this section is to introduce the second cohomology group
of a metric Hom-Jacobi—-Jordan algebra, which we will use to describe the
quadratic extensions.
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4.1. Construction of 2-coboundary operators for a metric Hom-
Jacobi—-Jordan algebra. Let M = J @ a be a Hom-Jacobi-Jordan algebra
with structure aps = o+  where a: J — J, : a — a and [, ]y are such

that a is an abelian ideal of M. Then, by Theorem[2.2] [-,-];s = [,-] + p+6,
where (J, [+, ], @) is a Hom-Jacobi-Jordan algebra, p is a representation of .J
on a, and 6 is a 2-cocycle of J on a. Let n = M @ J*, [,-]a: n> = n be a

bilinear symmetric map satisfying [J*, J*], = 0 and ay: n — n a linear map
given by ap(z + v+ Z) =apy(x+v)+ o/ (Z) forallz € J,v eV, Z € J*.
We assume that (n, [, |n, an) is a Hom-Jacobi-Jordan algebra. Then (by

Theorem[2.2)) [, ]a = [+, ]asr + p' +7' where o’ is a representation of M on J*
and 7/ is a 2-cocycle of M on J*. Hence, for all z € J, v € V, Z1, Zy € J*,

[z, yln = [z, 9] + 02, y) + 7/ (z,y); (24)

[z, v]n = p(2)v + (2, v); (25)

[v, wa =+ (v, w); (26)

(Z,2)0 = p' (%) Z; (27)

Z, v]a = ¢ (v) Z; (28)

[Z1, Za)n = 0. (29)

Let B: n?> — R be a bilinear form such that (n, [, |s, an, B) is a metric
Hom-Jacobi—Jordan algebra, the ideals J and J* are isotropic and

B(Z,x+v)=Z(x) (30)
forall Z e J*, x € J, v €a.
Lemma 4.1. Under the above notation, we have
[Z,z)n = Z([x,]) and [Z,v]y =0
forall Z € J*, x € J,v € a.

Proof. Let Z € J*,x € Jv € a. We have B(Z,v) = Z(v) = 0.
Then B (Z,|z,yln) = Z([z,y]). Moreover, by invariance of B, we have
B (Z,[x,yln) = B([Z,x]n,y). Hence p/'(x)Z(y) = Z(|z,y]), which implies
that [Z, x|, = Z([,]).

Now, we show that [Z,v], = 0. Since J* is an ideal of n, according to
Proposition we have (J*)*+ C 3(J*). Then a C 3(J*), since B (Z,v) = 0.
Therefore [Z,v], = 0. O

Proposition 4.2. For all v,w € a, we have
B (B(v),w) = B (v, B(w)). (31)

Proof. By we have B ((a+ S+ d/)(v),w) = B (v, (a+ S+ ) (w)).
Therefore B (5(v),w) = B (v, B(w)). O
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Theorem 4.3. If (n, [, ]n, an, B) is a metric Hom-Jacobi—-Jordan algebra,
then, for all x,y € J, v,w € a, Z € J*, we have

[z, yln = [2,y] + 0(z, ) + (2,9, );
[z, v]a = p(x)v+ B (6(-, 2),0);

]
]
Jn
]
]

[0,y = B (p(-)o,w) (32)
[Z,l’ n=2 ([‘7:7 ]) )
[Zl,v—i— Zoln =0,
where v € S3(J,R).
Proof. Assume that (n, [+, ]n, an, B) is a metric Hom-Jacobi-Jordan alge-

bra. Let v(z,y, z) = 7/(x,y)(z). By the equality (18), we have B ([z, y]n, 2) =
B(z,[y, 2]n). Thus, using (24), we have +'(z,y)(z) = 7'(y,2)(z). Hence
A(2,,2) = 7(: 7,7). Moreover, since [z, gl = [y, 2], W have 1(z,y, 2) =
v(y, x, z). By repeating this process, we obtain that v € S3(J,R).

Now we aim to prove that +/(z,v)(y) = B(0(y,x),v). By the equal-
ity (18), we have B ([y, z|s,v) = B (y,[z,v]s). Thus, using (24), and

., we obtain +'(z,v)(y) = Bq (0(y,z),v). For v (v, w), by , we have
B([z,v]n,w) = B(x,[v,w],). Thus, using (25), and (30), we have
7' (v,w)(x) = Ba(p(x)v, w). Hence

"(v,w) = B (p(")v,w) . (33)

0

Definition 4.1. A Quadratic representation of a Hom-Jacobi—Jordan alge-
bra (J,[-,:],«) on a vector space a with respect to § € End(a) consists of a
4-tuple (a, p, B, Bq), where p: J — End(a) is a representation of the Hom-
Jacobi—Jordan algebra J on a with respect to 8 € End(a), and By: axa — R
a symmetric bilinear form, satisfying,

By (p(z)(v), w) = Ba (v, p(x)(w)) (34)
for all z,y € J and v,w € a.

Lemma 4.4. If (n, [, ]n, an, Bq) is a metric Hom-Jacobi—Jordan algebra,
then (a, p, B, Bq) is a quadratic representation of J on a.

Proof. Using and the symmetry of the bracket [-, ],, we obtain
By (p(+)v,w) = By (p(-)w,v), which finishes the proof. O

Proposition 4.5. Let (n, [, |n, an, Ba) be a metric Hom-Jacobi-Jordan al-
gebra. For f,g € C? o a) we have

Ba (f(a(z),(y)), 9(2,t)) = Ba (f(z,9), 9(a(2), a(?)))
for all x,y,z,t € J.
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Proof. Since f,g € 026(‘] a), we have, foa = o fand goa = fog.
According to Proposition 4.2} we have By (8o f(z,y), g(z,2)) = Ba(f(z,y),
Bog(z,2)). Thus By (f(a(@), aly)), 9(z 1)) = Ba ((z.y), ga(z),a(f)). O

Define a bilinear multiplication on SP(J,a) x S9(J,a) by

Ba(f/\g)(xla 7xp+q) = Z Ba(f(xa'(l)a"' axd(p))’g(md(p+1)7"' axO'(p+q)>) )
oc€Sh(p,q)
(35)

where Sh(p,q) are the permutations in &,4, which are increasing on the
first p and the last ¢ elements.

Proposition 4.6. If (n, [, ]n, an, Bq) is a metric Hom-Jacobi—Jordan alge-
bra, then the pair (0,7) satisfies the following properties
d29(l‘, Y, Z) =0,

1
dyy(z,y, 2, a(a)) + 3Ba(@A(00a))(z,y,2,a) =0
forall x,y,z,a € J.

Proof. We have that (M, [, -]ax,an) is a Hom-Jacobi-Jordan algebra,
(J*,p',a) is a representation of the Hom-Jacobi-Jordan algebra M, n =
M@ J* and [-,-]n = [, ]m + 7. By Theorem it follows that d?v' = 0.
For all z,y,z,a € J, we have

4> (,y, 2)(t)

=7 ([2, ylar, o (2)) (&) + ([, 2]ar, ans (9)) () + 7 ([y, 2]ar, ane () ()

+ 0 (anr(2))7 (@, 9) (@) + 0 (aar ()7 (y, 2) () + 0 (ane ()7 (2, 2) (2),
where t = a(a). Since [z,y]yp = [z,y] + 0(z,y), ¥ (z,v)(y) = Ba (0(y, x),v)
and v/ (v, w) = By (p(-)v, w), we obtain
d*y (2, y,2)(t) = 1([z, 9], a(2),1) + ([, 2], aly), ) + [y, 2], alz), 1) (36)
+’Y(5U Y la(2), 1) + 7 (y, 2, [ ( ) 1))+ (2, 2, o

By (0(a(a), a(2)), 0(x,y)) + Ba (0(c(a), a(y)), 0(z, 2))

By (0((a), a(x)),0(y, 2)) -
Using + = d3y(z,y, z,t) and Proposition we obtain
B (2,9,2)(8) = (9, 2,1) + 5 Ba (O A (60.0)) (2, 2,0).
Hence d2y(z,y,2,a(a)) + 3B. (0 A (00 @) (z,y, 2,a) = 0. O

Bringing these results together, we provide the following definitions.



282 NEJIB SAADAOUI

Definition 4.2. The pair (0,v) is called a quadratic 2-cochain if
0 e C> op(J,a) and v € C3(J,R). Denote by C%(J, a) the set of quadratic
2—cocha1ns

We define a map dé: C%(J, a) — C2(J,a) x C*(J,R) as follows:

1
(0.7 (5,9 2)(0) = (000,92, (.1, 200+ B (9 (00) (0,3 ,0)),
(38)
where t = a(a). (0,7) is called a quadratic 2-Hom-cocycle of J on a if and

only if d2 (0 ( ,7) = 0. We denote by ZQ(J a) the set of all quadratic 2-cocycles
on a.

4.2. Construction of 1-coboundary operators of a metric Hom-
Jacobi—Jordan algebra. In this section we aim to construct a map db

satisfying d% o db = 0 and then the second cohomology group of a metric
Hom-Jacobi—Jordan algebra.

Proposition 4.7. Let f € C? s(J,a) and g € cl 5(J,a). We have

Ba(f A g)(x,y,2,t) =Bq (d*f(x,y,2),9(t)) + Ba (d2 f(z,y,1),9(2))
+ Ba (d2f (2, 2,1),9(y)) + Ba (d2f(y, 2,1), g )
B ((foa)Ad'g) (z,y,2 a)
for any x,y,z,a € J and t = a(a).

Proof. Let f € CC%”B(J, a)and g € C’CIY’B(J, a). We take v = By (f A g).
For any x,y,z,a € J and t = a(a), we have

Ay (x,y, 2,t)
=7([z,y, a(2), 1) +v([z, 2], a(y), 1) +v([y, 2], a(), )
+7 (2, y, [(2),t]) + 7 (y, 2, [a(z), ])+’Y(fﬂ 2, [a(y), t])
= O,z (V([2,9], 2(2), )+ Oay,z 7 (@, 9, [a(2),1]))
(

= Ozy,z (Ba(f([7, 9], a(2)), 9(1)) + Ba(f ([, y} t), 9(a(2)))) +Ba(f(a(a),a(Z)),g([xal(/])))
39

+ O,z (Ba(f(2,9), 9([0(2),1])) + Ba (f (2, [a(2), ), 9(y) + Ba (f (y, [e(2), 1]), 9($))()4)07)

where O, , . denotes a summation over the cyclic permutation onz,y, and z.
By Proposition 4.2 and taking into account that g € C 5(J,a), we have

Ozy,z Ba(f([l‘,y],t),g(a(Z))) =Oay.z Ba (B(f([2,9],1)),9(2))-

Hence
BY =Ba(d*f(@,9.2). 9(1)) = O Ba(p (a(a)) £(3,2),9(0))
+ O Ba (B ([2,1,0)), 9(2)) + Oue Balf(ala), a2)), g, ).
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For , we have
Oxy,z Ba (f(x,9), 9([(2),1])) =Ou,y,2 Ba (f(a()), a(y), 9([2,a])) -
Then
+
=Ba(d*f(2,,2),9(1)) = Orz B(p (al2)) £(3,2),9(0))
+ Oue (Ba (B (2,41,0)), 9()) + Ba (/@ [a(2), 1), 9(9)) + Ba (f(: [a(2), 1)), 9(2)) )
+ Oayz Balf(a(a),a(2), g([2,y)+ Ory.x Balf(ale), aly)), g((z a)).

On the other hand, we have
B[z, 1) + fy, (=),

D)+ f(z,[a(y),t])
=d2f(z,y,t) — p(y) f (o),

~ <

and

Moreover, we have

Ba (B(p(t)f(y,2)),9(x)) =

= Ba (fa(y), a(2)), pla)g(z)) -
Therefore, by straightforward computations, we obtain
&y (@, y, 2,t) =Ba(d*f(2,y,2)). g(t)) + Ba(dzf (2, y,1)), 9(=))
+ Ba(d2 f(x,2,1)), 9(y)) + Bald2 f(y, 2,1)), 9(x))
+ Ba((f 0 @) Ndeg)(@,y, 2,a).

Remark 4.1. If o« = idy and 8 = id,, we have
d2(f N g) = Ba(d®f Ag)+ Ba (f Nd'g).

Lemma 4.8. Let (6,7) and (6,7') be two quadratic 2-cochains. Then
d%(@,v) = sz(H’,'y’) if and only if there exists a 1-Hom-cochain T such
that the following equalities hold:

0 =0+d'r, (41)

r

1
A}y = djy = 5diBa(T Nd'7) = d}Bo(r NO) + Bo(d®0 A7), (42)
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where d?0(x,y,2) = d*0(x,y,2) and d*0(x,y,") = d*0(x,y,-).

Proof. Let (0,7) and (6',7') be two quadratic 2-cochain such that
dé(&,’y) = dZQ(H’,’y’). Then

d?0 = d*¢’ (43)
and
3 1 3. 1 / /
B+ 5Bal0 A (000) = dSy' + B0/ A (¢ 0 ). (44)
Equality implies that there exist a 1-Hom-cochain 7 which satisfies
0 =6+ d'r. (45)
Thus, using , we have
1 1
3y = d3+ + §Ba( (0 +d'7)A((0+d'T)o a)) - §Ba(0 A (0o a))
1 1 1
_ B 1 - 1 L 1 1
=d’v + 2B(G/\ (d Toa)> + 23(d TA (9004)) + 2B(d TA(d To(o;)6>).

Hence, by Proposition we obtain By (0 A (d'7 o)) = By (d'7 A (00 ).
Therefore

1
A3y =d*> + B(d't A (foa)) + 5B(dlr A (diT o ).

Replacing f, g by d'7, 7 in Proposition and since by d? o d'(7) = 0, we
have

B Bo(dir AT)(2,y, 2,t) = Ba((dim 0 a) AdiT) (2,9, 2, ). (47)
Replacing f, g by 6, 7 in Proposition [£.7] we have
A2Ba(0 AT) (2,9, 2,t) = Ba((0 0 @) AdET) (2, y, 2, a) + Ba(d?0 A7) (2, y, 2, 1),
where d"?0(z,y, 2) = d*0(z,y, 2) and d"*(x,y,t) = d20(x, y,t). Therefore
By =d*y + B (O AT) + %d?Ba(diT AT) — Bo(d?0 A7) (2,9, 2, 1).
Hence
3y = d3y — %dsBa(T ANd'T) — d*Ba (0 AT) + Bo(d?0 A7) (2,y,2,1). (48)
g

Using the previous lemma and Proposition [£.7] we obtain the following
result.
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Theorem 4.9. Let (0,7) and (¢',7') two quadratic 2-cochains. Then
A3 (0,7) = d§(0',7') if and only if there exist T € C}, 4(J,a), o € CZ(J,R)
and o' € C3(J,R) such that, the following equalities hold:

0 =0+d'r, (49)

d30’ = —B(d?0 A T), (50)
1

ry’:7+d20+0'—B(7’/\(0+§d17’)), (51)

where d?0(x,y,z) = d*0(x,y, z) and d?0(x,y,-) = d*0(z,y,-).
Using the previous observations, we give the following definitions.

Definition 4.3. Define a map db: C’é?(fj, a) — Cé(ﬁ, a) by
1
1 1 2 1
do(r,0) = (d'r,d’o — §B (rAd'T)).

A quadratic 2-cochain (0,) is called a quadratic 2-cobord if and only if
there exists a quadratic 1-cochain (7,0) satisfies db(T, o) = (0,7). Denote

by Bg? (3, a) the space of all quadratic 2-cobords.

Proposition 4.10. Any quadratic 2-cobord is a quadratic 2-cocycle (i.e.,
d2Q o db =0).

Proof. We set § = d't and v = d?c — %Ba(le A T). Using , we have
d3y = —1B, (d'7 A (d'T o ). Hence, by
1 1
dé(@) v) = (d?0,d> o d?c — §Ba ('t A (d'Toa)) + §B (d'r A (d'7oa)))
= (0,0).
O

4.3. The second cohomology group. Due to the nonlinearity of db and
d2Q we need to construct an equivalence relation in order to define the second
cohomology group. We define a group structure on Cég (J,a) by

(F.9) % (F0) = (F+ Frg+9 + 3 Ba((F 4 FIA G+ ) Aa).
Let (v,0) € Z%(J, a) and (1,0) € C’é)(ﬁ, a). Then the formula
,7) o (1,0) = (0 +d'r,v+ d?°c + B <(9 + %le) A(To a))

defines a right action of the group C’é(fj, a) on Z% (J,a). We have (0,v) =
(0',~") if and only if there exist (1,0) € Céz(fj, a) such that (7/,6) = (v,0) e

(1,0).
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Definition 4.4. The 2" quadratic cohomology group of the metric Hom-
Jacobi-Jordan algebra J on a x J*, with the action ”e” is the quotient
HQ (157 CL) - ZQ(J? a)/CQ(Ja a)?
where Z3(3,a) = {(0,7) | d3((0,7)) = 0}.
Proposition 4.11. Let g := (n, [, "oy, an) and dp v == (0, [, ]or 4, )

be two extensions such that dé(ﬁ,'y) = d%(ﬁ’,'y’). Then the extensions Vg
and Ogr v are equivalent.

Proof. Using Theorem [£.9] we have
1
0 =0+d'randy =v+d’c—B <T/\(e+ 2d17')) .
Define the linear map ®: JGad J* — JBad J* by

et v+ Z) =2 v 7(@) ~o(e.) + 2~ LBal(r(@).7()) + Bl 7().
ca

eJ*
We have
P(a(z) + B(v) +a'(2))

= a(z) + B(v) — m(a(z)) - o(a(z),-) + O/(Z)*%Ba (7(a(2)),7()) + Ba(B(v), ("))

=a(z) + p(v) = B(r(z) — oz, o)) + O/(Z)—%Ba(ﬁ(T(ff)), 7(-)) + Ba(B(v), 7(-))
= a(@) + B(v) = B(7(x)) + o/ (2) = o' (o(x,)) =5 Ba(7(2), B(7 (")) + Ba(v, B(7(-)))
= a(z) + B(v) = B(r(z)) - (o(x,")) + &/ (Z) = 5 Ba(7(2), 7(a())) + Balv, 7(ax()))
=a(z)+Bw—-7(x)+d (a(ac, )+ Z = =Ba(r(2),7(")) + Ba(v,7(~))> .
Hence ®o (a++d) =(a+ B+ )0 d.

We have

[l’,y 0y = [:an] + e(x’y) + 7(x7y7 ');
07 = (90)“+Bu(9( ),v);

<

Hence the structure [+, -]g/ ,+ of the Hom-Jacobi-algebra 4 ./ is given by
[z, 9l = [, y] + 0(2,y) + d'7 (2, y) + (2,9, )
1
+ d20'(1‘, Y, ) - B((e + 5d17—) N 7—)('7:7 Y, ');



SECOND COHOMOLOGY GROUP AND QUADRATIC EXTENSIONS 287

[z, v]er v = p(z)v+ Ba (6(-, ) —i—le(-,x),v) ;
[v, wler (p(-)v,w);

T]or

Jor

Ba
Z ([z,]);
0.

2,

[Zl v+ 2o

QQQQ

We have
®© ([2,9)o ) = [o,y] + 0(z,y) + d'7(2,y) + 7(z,y,")
+ d*o(z,y,-) — Ba(( + %le) AT)(z,y,")
7 ([o) — o (i3], ) + 5 Ba(r(fw, 91, 7))
+ Bq ((0(z,y) + dlr(x,y),T(-)) .

Hence, by , and , we obtain

D ([z,9lo ) = [, 9] + 0(z,9) +y(z,y,-) — p(x)7(y) — p(y)7(x)
—oyfe, )~ o (@ ly, )
— Ba (8, ), 7(y)) — Ba (03, ), 7(x))
— 5 Ba( (D), 70) )5 Ba( ([, 1), 7)) + Ba (0 (), 7(0) ).

On the other hand, we have

@), ®(y)]o
=[5 = 7(0) = o,) = 3 Ba(r(@),7()) 5 = 7(0) — (3 ) — 5 Balr(0).70)]
= [z, y]+0(z,y) +7(z,y,") — p(2)7(y) — Ba (0(, 2), 7(y))

oyl ]) ~ 5 Ba(rw), ([, ) — ply)r(a) — Ba (6, 9),7(x))

+ By (p()(a), 7(0) ~ oz v, 1) — 2 Ba(r(a), 7 (@, ) ).

Therefore @ ([z,yo ) = [®(z), P(y)]o,--
Similarly, we show that ® (

[@(2), 2(Z)]o,5, © ([, wlor
O

Remark 4.2. We have B (®(z), ®(y)) = 20(z,y) and B(z,y) = 0.

Let G the subgroup of C}Q (J,a) generated by the set

{(r,0) € C’Clg(ﬁ, a) | d’c = 0}.
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Hence, we have a new 2" quadratic cohomology group of the metric Hom-
Jacobi—-Jordan algebra J on a x J*, with the action ”e”. That is

H3(3.0) = Z3(3,0)/C.

5. Quadratic extensions

In this section, we study quadratic extensions of Hom-Jacobi-Jordan alge-
bras and we show that they are classified by the cohomology group H % (T, a).
Let (3,[,]3, a3, B) be a metric of Hom-Jacobi-Jordan algebra and I an
isotropic ideal of J. For all z,y € J, we denote [m,(z), mn(y)]5 = T ([z,y]),

a5 (mn (7)) = myoaz(x) and B(m,(x), 7, (y)) = B(x,y) where 7, is the natu-
ral projection J — J/I. If i: a — J is a homomorphism, we denote i = 7, 01.

Definition 5.1. Let (J, [, -], a) be a Hom-Jacobi-Jordan algebra, let I be
an isotropic ideal in J and (a, p, 3, By) a quadratic representation of J. A
quadratic extension (J,1,i,m) of J by a is an exact sequence

0— (a,p.8) = (I/L.[, 55, B) = (1.1 ].a) — 0
such that (3, [, ]3, a3, B) is a metric Hom-Jacobi-Jordan algebra, az oi =
iof,aom=moag,i(a)=1I1"/I andi: a — I+/I is an isometry.
Proposition 5.1. Let
0—a—3/1-"5J—0, (52)

be an extension of J by a such that i: a — i(a) is an isometry. Then the
quadruple (J,1,i,7) defines a quadratic extension if and only if the following
sequence defines an extension of J/I by J*:

0— J* 253 ™ 3/1 — 0, (53)

where T, is the natural projection § — J/I, T = womy,, T the dual map of
T where we identify J* with J.

Proof. We have that
0—sa—53/1-"57J o0,

is an extension of J by a such that ¢: a — i (a) is an isometry. Then

azoi=1io0f, (54)
aom=Tmoag, (55)

i(a) = kerm, (56)
B(i(v),i(w)) = B(v,w). (57)

We assume that (J, 1,4, ) is a quadratic extension. Then I'm(i) = I+/I.



SECOND COHOMOLOGY GROUP AND QUADRATIC EXTENSIONS 289

First, we show that a‘ijofr* =7 o ™. We have
QOMT =TMOQy=TOT, 00y =T O Q3.

Hence (@ om)* = (7 o ay)*. Then 7* o a* = af o 7*.

Now, we show that Im(7*) = ker(m,). By kerm = i(a) = I+/I and
7 = mom, we obtain ker(7) = I+. Since Im(7*) = (ker())", one can
deduce Im(7*) = I. So Im(7*) = ker(m,) and the sequence

ﬁ-* ~ "~ Tn

0— J" = J =353/ —0,

defines an extension of J/I by J*.
Conversely, we assume that the sequence

0— J" 53 2y 3/T—0

defines an extension. Then aj o7 = 7" o a*, azom, = m o ay and

Im(7*) = ker(m,). We have Im(7*) = (ker(7))", Im(7*) = ker(m,) and
ker(r,) = I. Hence, ker(7) = I+ and I C I*. Then ker(n) = I*+/I. By
, we have Im(i) = ker(m) = I+/I. Moreover, we have (54), and
57} O

57). Therefore, (J,1,i,7) is a quadratic extension.

5.1. Twofold extensions. Twofold extensions of Lie algebras were studied
n [10] (also called Standard models in [9]). In the following, we define and
study twofold extensions of Hom-Jacobi-Jordan algebras.

Let (J,[,],«) be a Hom-Jacobi-Jordan algebra and let (a,p, 5, Bs) be
a quadratic representation of J. For each (6,7v) € Zé(J7 a), we want to
define structures of a metric Hom-Jacobi-Jordan algebra on the vector space
09 :=JDad® J". Let i, = a+ +a". We define a bracket on 9y by

[z, yloy = [z, y] + 0(z,y) +v(z,y,);
[z, v]0y = ()U+B 0(,2),v);
[v, wlo,y = Ba (p(-)v, w);
(Z,z]g = ([ 1)

[Z1,v+ Zalg, =

We define a symmetric bilinear form B on 09, by
B(z+v+Z1,y+w+ Z3) = Z1(y) + Za(z) + Ba (v, w)

for all z,y € J,v,w € a, Z1,Z2 € J*. We define a linear map ig: ag, —
09,,/J* by ig(v) = v+ J* and a linear map mo: 99/J* — J by mo(z + v +
J*) = x.

Proposition 5.2. With the above notations, the quadruple (3¢, J*, 9, T0)
defines a quadratic extension.
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Proof. We only prove that (09’7, [ o,y Qg 5 B) is a metric Hom-Jordan—
Jacobi algebra. Denote 09, = n and define a trilinear form v, on n by
T (@, b,¢) = B ([a,blg,c) for all a,b,c € n. Using Theorem it is suffi-
cient to show that 7, is symmetric and d>v, = 0.

We have

7“(1:73/7 Z) = B ([Cﬁ,y]g,fy,Z) = B (["I"ay} =+ G(x,y) + ’7(1'7?43 ')72) = v(x,y,z).

Since 7 is symmetric, we obtain that the restriction of 7, to J? is symmetric.
For all z,y € J, v € a, we have

r}/n(xa Y, U) =B ([:Ea y}97y7 U) = Ba(e(x> y)? U);
r}/n(xa v, y) =B ([:E’ U]@ Y y) = Ba(e(x> y)? U)'
Therefore, using the fact that [x,y]s, = [y, xlg and [z,v]g = [v,x]g, One
can deduce that the restriction of v, to J? x V is symmetric.
For all x € J, v,w € a, we have
'711(33’ v, w) =B ([3}, 0]9,% w) = Ba(p(x)wv 'U)7
'711(@’ w, x) =B ([Uv w]tgryv .CI}) = By (p(w)% w) >
and since (a, p, 3, By) is a quadratic representation of J on a, the restriction

of y, to J x V2 is symmetric.
For all u,v,w € a, we have

7ﬂ(va w, u) =B ([Uv w]ﬁ',’yv u) =B (Ba (p(~)U, w) 7“) = 0.

Thus, the restriction of 4, to V3 is symmetric too.
For all z,y,z,a € J and for t = a(a), we have

df%(w,y, th)

= ([, 9], (2), ) + v ([, 2], aly), 1) + 7 ([y, 2], (), 1) (58)
+7(@,y, [a(2),1]) + (2, [a(y), 1]) +7(y, 2, [e(2), 1]) (59)
+(al2), 8, [z, 9]) +v(aly), b, [z, 2]) + (@), 1, [y, 2]) (60)

7 ([e(2), 1], 2, y) + 7 ([aly ), t]x,2) + 7 ([a(2), 1], y, 2) (61)
Bq (0(y, x),0(a(2),t)) + Ba (0(z, ), 0(a (y)at))+Ba(9(z,y)79(a(w)7(t6)%)
+ Ba (0(t, (2)), 0(,y)) + Ba (0(t, (y)), 0(x, 2)) + Ba (0(t, (), 9(3/,(26)2))))-

Since v is symmetric, we get

+ B9 = dy(2,y, 2,1) and @) + (1) = dry(x,y, 2,1).

Since 0 is a 2-Hom-cochain, by Proposition we obtain

62 + ©3) = Ba (0 A (00 ) (2,9, 2,0).
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Thus d3ya(z,y,2,t) = 2d.7v(x,y,2,t) + Ba (O A (0oa))(x,y,2,a). Then,
since (0, v) is a quadratic 2-cocycle, we obtain d>v,(z,y, z,t) = 0. By straight-
forward computations, for all x,y,z € J, v € a, we have

m(@,y,2,0)

((M] a(2)),v) + Ba (0([2, 2], (y)), v) + Ba (0(ly, 2], a()), v)
B (p(a(2))0(z,y),v) + B (p(a(x))0(y, 2),v) + B (p(a(y))0(z, 2),v)

(d2933y, ), )

Therefore d*v,(x,y,z,v) = 0 by (0,7) is a quadratic 2-cocycle.
Simﬂarly, for any z,y € J, u,v € a, we get

dr'Yn(x Y, u, U)

=Bu (1, Bp([,4])0) ) + Ba (u, p(w)p(a(y))0) + Ba (u, ply)pla(a))0)

Therefore, by (15]), we have yn(z,y,u,v) = 0. For all x € J, u,v,w, s € a,
Z € J*, by B(Z,u) = 0, we have d®*v,(u,v,w,z) = 0, d®va(u,v,z,w) = 0
and d3v,(u,v,w, s) = 0. The rest of the proof is straightforward. O

Definition 5.2. We denote the quadratic extension (94, J*, i, 7o), construc-
ted in Proposition by 0g.~(a, J, p) and call it a twofold extension.

5.2. Classification by cohomology. In this subsection, we show that
quadratic extensions are classified by the cohomology group H, é (J,a).

Definition 5.3. Two quadratic extensions (J1, I1,i1,71), (J2, I2,i2,m2) of
J by a are called to be equivalent if there exists an isomorphism of metric
Lie algebras ®: J; — Jo which maps i onto iy and satisfies ® 031 = 45 and
g 0 ® = 71, where ®: J1/I1 — J2/I> is the induced map.

Proposition 5.3. Any quadratic extension (J,1,i,m) is equivalent to a
twofold extension (9g,,J*, io, T0) -
Proof. Let
£:0—a-3/1-"5J—0
be the extension of J defined in and s a section of £. Then, by Propo-
sition we have J/I = s(J) @ i(a) and the extension £ is equivalent to

10 0

0— (a,p,8) — (M, [,-]o,ans) — (J,[,"], ) — 0,

where 6 is a 2-cocyle of Jonaand M = J ® a.
Now, let

50— J T3 I3/ —0
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be the extension defined in and s” a section of £*. Then, by Proposition
we have J = s’(J/I) @ 7*(J*) and the extension £* is equivalent to

0 — (J%,0,8) =2 (M, [ Ly cnr) = (I/T, [ J5,05) — 0

where 7/ is a 2-cocycle of J/I on J* and M' = J/1 & J*.

We have § = §'(J/I) ® 7*(J*) = §'(s(J) @ i(a)) ® ﬁ'*(J*). We can write
7t 8 (J/I) — J/1 and 7: s(J) — J. Hence 7*(J*) = (s's(J))".

Using J = §/(J/I)®7*(J*) and 7*(J*) = (s's(J))", we obtain J = s's(J)&
s'i(a) @ (s's(J))". Then, using Proposition [4.3] for all x € J, v € a, Z € J*,
we have

[s's(@), 8's(y)]y = [s's(2), 8's(Y)] sy +0('s(x), 8's(y)) +7(s's(x), s's(y), );
[s's(), /(U)] = p(s's(z))v + B ( ( ), 0(s's(x),));
[si(v), s"i(w)]y = Ba(p(-)(s"i(v)), s"i(w));
Z,8's(2)]y = Z([s's(2), ]);
[Z1,5"i(v) + Zs]5 = 0.

Now, we define a linear map ¥: J & ad J* — J by Y(z +v+ 2) =
§'s(x) +s'i(v) + (s's)*(Z) and a bilinear map [, [p: JGad J* — JDad J*
by

[tv+Z, ytw+Z'Te = U7 ([s's(2) +5"i(v) +(5'5)" (Z), 8's(y) +5"i(w) +(5's)" (Z)])
Then

[U(z+v+2),(y+w+ 2],

= [s's(2) + s'i(v) + (5's)"(2), 8's(y) + s"i(w) + (s's)"(Z)]

=V (z+v+Zy+w+2).
Moreover, we have W oig(v) = i(v) and 7o ¥(Z) = mos(x) =z = mo(x). O

Lemma 5.4. Let 0, = 09,(a,J,p) and 39 = 0y (a,J,p) be two
twofold extensions such that (6,7) = (6',+'). Then the twofold extensions
09, 1= 09~(a,J,p) and dgr o := g v (a, J, p) are equivalent.

Proof. Using Theorem we have 6/ = 0 + dlr and v = v + d%c —
B (1 A (0+ 3d'7)) where (1,0) € G. Then, d?c = 0. Define a linear map
P JPadJ - JDad J" by

1
Pz+v+2Z)=x+v—7(x)+ Z — =Bs(7(2),7(-)) + Ba(v,7(-)) -
A/ 2

ca

eJ*

Then @ is an isomorphism of metric Hom-Jacobi-algebras (see the proof of
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Proposition [4.11)). Finally, we show that ® is isometric:

B@(a). (1)) = B (2 = 7(0) = 3 Ba(r(). 7))oy = 700) ~ 3Ba(r ). 70)
= By (r(2). (1) — 2 Ba(r(®). 7(@) ~ 3Ba(r(z).7(2)
= 0= B(z,y),
B(8(@). $(0)) = Bl —7(z) — +Ba(r(@). 7)) v + Bafo,7()

B(®(u), ®(v)) = B(u+ Ba(u,7(+)),v + Ba(v,7(+)))

0

Lemma 5.5. Let 0o 1= 0g(a, J, p) and 0y o := 09/ 4/(a, J, p) be two equiv-
alent twofold extensions. Then the quadratic 2-cocycle (0 — 0", —+') is triv-
tal.

Proof. Let ®(z) = f(z) + 7(z) + ((z) where f: J — J, 7: J — a and
¢:J— J*. Using m o ® =7, we obtain f(z) = z. Then
O(z) =a+7(z) + ((x).

Let ®(v) = g(v) + h(v) + n(v
Using ®’ o i = i, we obtain g(v
Using B(v,) = B(®(v), d(x)
is an isometry and ®(J*) C J*,
Using B(®(x), ®(y)) = B(
((y)(x). Since ¢(z)(y) = C(y))
)

), where g:a — J, h:a - a and n: a — J*.
(v) =0 and h(v) = v. Then ®(v) = v+ n(v).
), we obtain n(v)(x) = —Bq(v, 7(z)). Since @
*, we obtain ®(Z) =
2.y), we obtain B(r(z),7(y)) = —¢(x)(y) —
<)x> we obtain () = 1 Bulr(2).7(0)

we obtain

Z.

By ®(d(z,y)) = d'(®(x), (
0(z,y) = 0 (z,y) — 7([(z,9]) + p(2)7(y) + p(y)7(x) = 0'(x,y) — d'7(z, )
and
7(337:% ) = 7,(1"a Y, ) — Bq ((0, + %d(_T)) A (_T)> (I,y, )
Hence
{ =0 +d (-7),
Y= fyl(x7y7 ) — B, ((a/ + %d(_T)) N (_7—)) (1:)?/7 )

Using Proposition we have d20 = 0. Therefore, using Proposition
we have dQQ(H,v) = d(0','). O

Bringing the previous results together, we have the following result.
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Theorem 5.6. The set Ext(J,a) of equivalence classes of quadratic exten-
sions (J,1,i,m) of J by a is in a one-to-one correspondence with Zé(J, a)/G,

that is,
Ext(J,a) = Hj(J, a).
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