Second cohomology group and quadratic extensions of metric Hom-Jacobi-Jordan algebras

Nejib SaAdaoui

Abstract

In this paper, we introduce and study the low dimensional cohomology of metric Hom-Jacobi-Jordan algebras. We establish one-toone correspondence between the equivalence classes of abelian quadratic extensions of a Hom-Jacobi-Jordan algebra and its second cohomology group.

Introduction

The Jacobi-Jordan algebras were recently introduced in [4] as vector spaces A over a field \mathbb{K}, equipped with a bilinear map $\cdot: A \times A \longrightarrow A$, satisfying the Jacobi identity and instead of the skew-symmetry condition valid for Lie algebras, the commutativity condition $x \cdot y=y \cdot x$, for all $x, y \in A$, is imposed. This class of algebras appears under different names in the reflecting literature (Jordan-Lie algebras in [18], mock-Lie algebras in 20, etc.). Wörz-Busekros in [19] relates these types of algebras with Bernstein algebras. One crucial remark is that Jacobi-Jordan algebras are examples of the more popular and well-referenced Jordan algebras [1, 15] introduced in order to achieve an axiomatization for the algebra of observables in quantum mechanics. In [4], the authors achieved the classification of these algebras up to dimension 6 over an algebraically closed field of characteristic different from 2 and 3.

Hom-type algebras appeared naturally when studying q-deformations of some algebras of vector fields, like Witt and Virasoro algebras. It turns out that the Jacobi identity is no longer satisfied, these new structures involving a bracket and a linear map satisfy a twisted version of the Jacobi identity

[^0]and define a so called Hom-Lie algebras which form a wider class, see [2, 7, 8, 12, 17.

The quadratic Lie algebras, also called metrizable or orthogonal (see [9, 10]), are intensively studied. One of the fundamental results of constructing and characterizing quadratic Lie algebras is due to Medina and Revoy (see [14]) using double extensions, while the concept of T^{*}-extension is due to Bordemann, see [11]. The T^{*}-extension concerns non-associative algebras with a nondegenerate associative symmetric bilinear form, such algebras are called metrizable algebras. In [11], the metrizable nilpotent associative algebras and metrizable solvable Lie algebras are described. A study of graded quadratic Lie algebras can be found in [5]. The Hom-Lie case for quadratic algebras is introduced and studied by S. Benayadi and A. Makhlouf in [3]. The Hom-Jacobi-Jordan case is introduced by Cyrille in [6]. In this paper, we are interested in studying the second group of cohomology of metric Hom-Jacobi-Jordan algebras and its relation with quadratic extensions.

This paper is organized as follows. In the first section, we briefly recall some facts about Hom-Jacobi-Jordan algebras and we give the isomorphism classification of 2-dimensional multiplicative Hom-Jacobi-Jordan algebras. Section 2 is devoted to giving some examples of representations of Hom-Jacobi-Jordan algebras. In section 3, we introduce metric Hom-JacobiJordan algebras. In section 4, we provide the second cohomology group of a metric Hom-Jacobi-Jordan algebra with coefficients in a given representation. Section 5 deals with quadratic extensions of metric Hom-Jacobi-Jordan algebras. We show that the second cohomology group classifies quadratic extensions of a metric Hom-Jacobi-Jordan algebra.

Throughout the paper, all considered complex vector spaces are finitedimensional.

1. Hom-Jacobi-Jordan algebras

In this section, we recall some facts about Hom-Jacobi-Jordan algebras and we provide their classifications in a 2-dimensional multiplicative setting.
Definition 1.1 ([6]). A Hom-Jacobi-Jordan algebra is a triple $(J,[\cdot, \cdot], \alpha)$, where J is a vector space equipped with a symmetric bilinear map $[\cdot, \cdot]: J \times$ $J \rightarrow J$ and a linear map $\alpha: J \rightarrow J$ such that

$$
\begin{equation*}
[\alpha(x),[y, z]]+[\alpha(y),[z, x]]+[\alpha(z),[x, y]]=0 \tag{1}
\end{equation*}
$$

for all x, y, z in J. This identity is called the Hom-Jacobi identity.
We recover Jacobi-Jordan algebras when the linear map α is the identity map. A Hom-Jacobi-Jordan-algebra is called multiplicative if α is an algebraic morphism with

$$
\begin{equation*}
\alpha([x, y])=[\alpha(x), \alpha(y)] \tag{2}
\end{equation*}
$$

for any $x, y \in J$. Two Hom-Jacobi-Jordan algebras $(J,[\cdot, \cdot], \alpha)$ and $\left(J^{\prime},[\cdot, \cdot]^{\prime}\right.$, α^{\prime}) are said to be isomorphic if there exists an algebra isomorphism $\phi: J \rightarrow$ J^{\prime} compatible with α and α^{\prime}, i.e

$$
\begin{equation*}
\phi([x, y])=[\phi(x), \phi(y)]^{\prime} \text { and } \phi \circ \alpha=\alpha^{\prime} \circ \phi . \tag{3}
\end{equation*}
$$

The center of a Hom-Jacobi-Jordan algebra $(J,[\cdot, \cdot], \alpha)$ is the subspace

$$
\mathfrak{Z}(J)=\{x \in J \mid[x, y]=0, \forall y \in J\} .
$$

A subspace I of J is said to be an ideal if, for $x \in I$ and $y \in J$, we have $[x, y] \in I$ and $\alpha(x) \in I$.

The following lemma describes the class of complex 2-dimensional multiplicative Hom-Jacobi-Jordan algebras when the matrix of α is of the form $\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$.

Lemma 1.1. Let ($J,[\cdot, \cdot], \alpha)$ be a 2-dimensional multiplicative Hom-JacobiJordan algebra with ordered basis $\left\{u_{1}, u_{2}\right\}$. Take $\alpha\left(u_{1}\right)=a u_{1}$ and $\alpha\left(u_{2}\right)=$ $b u_{2}$. Then there exists a basis $\left\{e_{1}, e_{2}\right\}$ of J in which $(J,[\cdot, \cdot], \alpha)$ has one of the following forms:
(1) $J_{1}^{1}(0, b, 0):\left[e_{1}, e_{1}\right]=e_{1}$ and $\alpha\left(e_{1}\right)=0, \alpha\left(e_{2}\right)=b e_{2}$,
(2) $J_{2}^{1}\left(a, a^{2}, 0\right):\left[e_{1}, e_{1}\right]=e_{2}$ and $\alpha\left(e_{1}\right)=a e_{1}, \alpha\left(e_{2}\right)=a^{2} e_{2}$,
where the omitted products are zero.
Proof. Let $s p$ be the set of eigenvalues of α. We have $\alpha\left(u_{i}\right)=a_{i} u_{i}, i=1,2$. Thus, using (2), we take $\alpha\left(\left[u_{i}, u_{j}\right]\right)=a_{i} a_{j}\left[u_{i}, u_{j}\right]$. Then $a_{i} a_{j} \in \operatorname{sp}(\alpha)$, or $\left[u_{i}, u_{j}\right]=0$.

If $a_{1}=a_{2}$, we obtain $\alpha=i d_{J}$. Then J is the classical 2-dimensional Jacobi-Jordan algebra given in [4] by $\left[e_{1}, e_{1}\right]=e_{2}$.
If $a_{1} \neq a_{2}$, the set of eigenvalues of α is given by $\operatorname{sp}(\alpha)=\left\{a_{1}, a_{2}\right\}$. The eigenspace of the eigenvalue a_{1} is generated by u_{1} and the eigenspace of the eigenvalue a_{2} is generated by u_{2}. The rest of the proof can be obtained easily by solving firstly the equation (1) and then using (3).

The following lemma describes the class of complex 2-dimensional multiplicative Hom-Jacobi-Jordan algebras, where $\alpha=\left(\begin{array}{ll}a & 1 \\ 0 & a\end{array}\right)$.
Lemma 1.2. Let $(J,[\cdot, \cdot], \alpha)$ be a 2-dimensional multiplicative Hom-JacobiJordan algebra with ordered basis $\left\{u_{1}, u_{2}\right\}$. Take $\alpha\left(u_{1}\right)=a u_{1}$ and $\alpha\left(u_{2}\right)=$ $u_{1}+a u_{2}$. Then there exists a basis $\left\{e_{1}, e_{2}\right\}$ of J in which $(J,[\cdot, \cdot], \alpha)$ has one of the following forms:
(1) $J_{1}^{2}(0,0,1):\left[e_{2}, e_{2}\right]=e_{1}$ and $\alpha\left(e_{1}\right)=0, \alpha\left(e_{2}\right)=e_{1}$,
(2) $J_{2}^{2}(0,0, c):\left[e_{2}, e_{1}\right]=\left[e_{1}, e_{2}\right]=e_{1},\left[e_{2}, e_{2}\right]=e_{1}$ and $\alpha\left(e_{1}\right)=0, \alpha\left(e_{2}\right)=c e_{1}$,
(3) $J_{3}^{2}(0,0,1):\left[e_{2}, e_{1}\right]=\left[e_{1}, e_{2}\right]=e_{1}$ and $\alpha\left(e_{1}\right)=0, \alpha\left(e_{2}\right)=e_{1}$,
(4) $J_{4}^{2}(1,1,1):\left[e_{2}, e_{2}\right]=e_{1}$ and $\alpha\left(e_{1}\right)=e_{1}, \alpha\left(e_{2}\right)=e_{1}+e_{2}$, where the omitted products are zero.

Proof. The proof follows by straightforward computations similar to the proof of Lemma 1.1.

Combining the previous lemmas we get the following theorem.
Theorem 1.3. All the classes of 2-dimensional multiplicative Hom-JacobiJordan algebra are given in Lemma 1.1 and Lemma 1.2 up to isomorphism.

2. Representation of Hom-Jacobi-Jordan algebras

In this section, we give some examples of representations that we will need in the remainder of the paper.

Definition 2.1. Let J and V be two vector spaces. A k-linear map f : $\underbrace{J \times J \ldots \times J}_{k \text { times }} \rightarrow V$ is said to be symmetric if

$$
f\left(x_{\sigma(1)}, \cdots, x_{\sigma(k)}\right)=f\left(x_{1}, \cdots, x_{k}\right) \text { for all } \sigma \in \mathfrak{S}_{k}
$$

where \mathfrak{S}_{k} is the group of permutations of $\{1, \cdots, k\}$. For $k \in \mathbb{N}$, the set of symmetric k-linear maps is denoted by $S^{k}(J, V)$.

Definition 2.2 (6). A representation of a Hom-Jacobi-Jordan algebra $(J,[\cdot, \cdot], \alpha)$ on a vector space V with respect to $\beta \in \operatorname{End}(V)$ is a linear map $\rho: J \rightarrow \operatorname{End}(V)$ satisfying

$$
\begin{align*}
\rho(\alpha(x)) \circ \beta & =\beta \circ \rho(x), \tag{4}\\
\rho([x, y]) \circ \beta & =-\rho(\alpha(x)) \rho(y)-\rho(\alpha(y)) \circ \rho(x) \tag{5}
\end{align*}
$$

for all $x, y \in J$. We denote such a representation by (V, ρ, β).
Definition 2.3. Let (V, ρ, β) be a representation of a Hom-Jacobi-Jordan $(J,[\cdot, \cdot], \alpha)$. The set of k-Hom-cochains on J with coefficients in V, denoted by $C_{\alpha, \beta}^{k}(J, V)$, is given by

$$
C_{\alpha, \beta}^{k}(J, V)=\left\{f \in S^{k}(J, V) \mid \beta \circ f=f \circ \alpha\right\} .
$$

Definition 2.4. The 1-coboundary operator of a Hom-Jacobi-Jordan algebra J is the map

$$
d^{1}: C_{\alpha, \beta}^{1}(J, V) \rightarrow C_{\alpha, \beta}^{2}(J, V), \quad f \mapsto d^{1} f,
$$

defined by

$$
\begin{equation*}
\left.d^{1}(f)(x, y)=f([x, y])\right)-\rho(x) f(y)-\rho(y) f(x) . \tag{6}
\end{equation*}
$$

Definition 2.5. The 2-coboundary operator of a Hom-Jacobi-Jordan algebra J is the map

$$
d^{2}: C_{\alpha, \beta}^{2}(J, V) \rightarrow C_{\alpha, \beta}^{3}(J, V), \quad f \mapsto d^{2} f
$$

defined by

$$
\begin{align*}
d^{2}(f)(x, y, z)= & f([x, y], \alpha(z))+f([x, z], \alpha(y))+f(\alpha(x),[y, z]) \\
& +\rho(\alpha(x)) f(y, z)+\rho(\alpha(y)) f(x, z)+\rho(\alpha(z)) f(x, y) \tag{7}
\end{align*}
$$

Theorem 2.1 ([16]). We have $d^{2} \circ d^{1}=0$.
The 2-cocycles space is defined as $Z_{\alpha, \beta}^{2}(J, V)=\operatorname{ker}\left(d^{2}\right)$, the 2-coboundary space is defined as $B_{\alpha, \beta}^{2}(J, V)=\operatorname{Im}\left(d^{1}\right)$ and the $2^{n d}$ cohomology space is the quotient $H_{\alpha, \beta}^{2}(J, V)=Z_{\alpha, \beta}^{2}(J, V) / B_{\alpha, \beta}^{2}(J, V)$.

Let J and V be two vector spaces and let $[\cdot, \cdot], \theta: J^{2} \rightarrow V, \lambda: J \times V \rightarrow V$ be bilinear symmetric maps. Define a bracket $[\cdot, \cdot]_{M}$ and a morphism α_{M} on $M=J \oplus V$ by

$$
\begin{aligned}
{[x+v, y+w]_{M} } & =[x, y]+\lambda(x, w)+\lambda(y, v)+\theta(x, y) \\
\alpha_{M}(x+v) & =\alpha(x)+\beta(v) .
\end{aligned}
$$

Theorem 2.2 ([16]). With the above notations, $\left(M,[\cdot, \cdot]_{M}, \alpha_{M}\right)$ is a Hom-Jacobi-Jordan algebra if and only if the following conditions hold:
(1) $(J,[\cdot, \cdot], \alpha)$ is a Hom-Jacobi-Jordan algebra;
(2) the linear map $\rho: J \rightarrow \operatorname{End}(V), x \longmapsto \lambda(x, \cdot)$, defines a representation of J on V;
(3) θ is a 2-cocycle of the Hom-Jacobi-Jordan algebra $(J,[\cdot, \cdot], \alpha)$ with coefficients in the representation (V, ρ, β) (i.e., $\left.\theta \in Z_{\alpha, \beta}^{2}(J, V)\right)$.
If, in addition, $\left(M,[\cdot, \cdot]_{M}, \alpha_{M}\right)$ is multiplicative, then θ is a 2 -Hom-cochain and the Hom-Jacobi-Jordan algebra $(J,[\cdot, \cdot], \alpha)$ is also multiplicative.

Definition 2.6. Let (V, ρ, β) be a representation of a multiplicative Hom-Jacobi-Jordan algebra $(J,[\cdot, \cdot], \alpha)$ and θ be a 2-cocycle of J on V. The multiplicative Hom-Jacobi-Jordan algebra $\left(M,[\cdot, \cdot]_{M}, \alpha_{M}\right)$ is called an abelian extension of J by V by means of θ.
2.1. Representation on $\boldsymbol{V}^{\prime}=\boldsymbol{\operatorname { E n d }}(\boldsymbol{J}, \boldsymbol{V})$. Let $V^{\prime}=\operatorname{End}(J, V)$ be the vector space of linear maps $f: J \rightarrow V$. We define the linear maps $\alpha^{\prime}: V^{\prime} \rightarrow$ V^{\prime} and $\rho^{\prime}: J \rightarrow \operatorname{End}\left(V^{\prime}\right)$ as follows

$$
\begin{align*}
\alpha^{\prime}(Z) & =Z(\alpha(\cdot)), \tag{8}\\
\rho^{\prime}(x) Z & =Z([x, \cdot]) \tag{9}
\end{align*}
$$

If we compute the right-hand side of the identity (5), then we obtain $-\rho^{\prime}(\alpha(x)) \rho^{\prime}(y) Z-\rho^{\prime}(\alpha(y)) \rho^{\prime}(x) Z=-Z([y,[\alpha(x), \cdot]])-Z([x,[\alpha(y), \cdot]])$.

The left hand side of (5) gives

$$
\rho^{\prime}([x, y]) \alpha^{\prime}(Z)=Z(\alpha([[x, y], \cdot])) .
$$

Therefore we obtain the following result.
Proposition 2.3. The triple $\left(V^{\prime}, \rho^{\prime}, \alpha^{\prime}\right)$ is a representation of J if and only if

$$
\begin{equation*}
\alpha([[x, y], \cdot])=-[y,[\alpha(x), \cdot]]-[x,[\alpha(y), \cdot]] \tag{10}
\end{equation*}
$$

for all $x, y \in J$. In this case, $\left(V^{\prime}, \rho^{\prime}, \alpha^{\prime}\right)$ is called the generalized coadjoint representation.

Associated to the generalized coadjoint representation ρ^{\prime}, the coboundary operators $d^{1}: C_{\alpha, \beta}^{1} \rightarrow C_{\alpha, \beta}^{2}$ and $d^{2}: C_{\alpha, \beta}^{2} \rightarrow C_{\alpha, \beta}^{3}$ defined in (6) and (7), respectively, are given by

$$
d^{\prime 1}: C_{\alpha, \alpha^{\prime}}^{1} \rightarrow C_{\alpha, \alpha^{\prime}}^{2} ; d^{\prime 1}(f)(x, y)=f([x, y])-f(y)([x, \cdot])-f(x)([y, \cdot])
$$

and $d^{\prime 2}: C_{\alpha, \alpha^{\prime}}^{2} \rightarrow C_{\alpha, \alpha^{\prime}}^{3}$;

$$
\begin{aligned}
d^{\prime 2} g(x, y, z)= & g([x, y], \alpha(z))+g([x, z], \alpha(y))+g([y, z], \alpha(x)) \\
& +g(x, y)([\alpha(z), \cdot])+g(x, z)([\alpha(y), \cdot])+g(y, z)([\alpha(x), \cdot]) .
\end{aligned}
$$

Hence, by Theorem 2.1, we deduce that

$$
\begin{equation*}
d^{\prime 2} \circ d^{11}=0 \tag{11}
\end{equation*}
$$

In the particular case in which $V=\mathbb{R}$, we obtain the dual space J^{*} and we denote

$$
\begin{aligned}
& C_{r}^{2}(J, \mathbb{R})=\left\{f \text { bilinear form } \mid f(x, \cdot) \in C_{\alpha, \alpha^{\prime}}^{1}\left(J, J^{*}\right), \forall x \in J\right\} ; \\
& C_{r}^{3}(J, \mathbb{R})=\left\{f \text { trilinear form } \mid f(x, y, \cdot) \in C_{\alpha, \alpha^{\prime}}^{2}\left(J, J^{*}\right), \forall x, y \in J\right\} ; \\
& C_{r}^{4}(J, \mathbb{R})=\left\{f \text { 4-linear form } \mid f(x, y, z, \cdot) \in S^{3}\left(J, J^{*}\right), \forall x, y, z \in J\right\} .
\end{aligned}
$$

Let us define $d_{r}^{2}: C_{r}^{2}(J, \mathbb{R}) \rightarrow C_{r}^{3}(J, \mathbb{R})$ and $d_{r}^{3}: C_{r}^{3}(J, \mathbb{R}) \rightarrow C_{r}^{4}(J, \mathbb{R})$, respectively, by

$$
\begin{equation*}
d_{r}^{2} f(x, y, t)=f([x, y], t)-f(y,[x, t])-f(x,[y, t]) \tag{12}
\end{equation*}
$$

and

$$
\begin{align*}
d_{r}^{3} \gamma(x, y, z, t)= & \gamma([x, y], \alpha(z), t)+\gamma([x, z], \alpha(y), t)+\gamma([y, z], \alpha(x), t) \tag{13}\\
& +\gamma(x, y,[\alpha(z), t])+\gamma(y, z,[\alpha(x), t])+\gamma(x, z,[\alpha(y), t])
\end{align*}
$$

Theorem 2.4. With the above notation, we have $d_{r}^{3} \circ d_{r}^{2}=0$.
Proof. We have $d_{r}^{2} f(x, y, t)=d^{11} f(x, y)(t)$ and $d_{r}^{3} f(x, y, z, t)=$ $d^{\prime 2} f(x, y, z)(t)$. By (11), we obtain $d_{r}^{3} \circ d_{r}^{2}=0$.

The following proposition comes directly from Proposition 2.3.

Proposition 2.5. Let (V, ρ, β) be a representation of a Hom-Jacobi-Jordan algebra $(J,[\cdot, \cdot], \alpha)$ and θ be a 2-cocycle of J on V. Let $\left(M,[\cdot, \cdot]_{M}, \alpha_{M}\right)$ be the extension of J by V by means of θ. Then the triple $\left(V^{\prime \prime}, \rho^{\prime \prime}, \beta^{\prime \prime}\right)$, where $V^{\prime \prime}=$ $\operatorname{End}(M, V), \rho^{\prime \prime}: M \rightarrow \operatorname{End}\left(V^{\prime \prime}\right)$ is given by $\left.\rho^{\prime \prime}(x+v) f(\cdot)\right)=f\left([x+v, \cdot]_{M}\right)$ and $\beta^{\prime \prime}: V^{\prime \prime} \rightarrow V^{\prime \prime}$ is given by $\beta^{\prime \prime}(f)=f \circ \alpha_{M}$, defines a representation of the Hom-Jacobi-Jordan algebra $\left(M,[\cdot, \cdot]_{M}, \alpha_{M}\right)$ if and only if

$$
\begin{align*}
\alpha([[x, y], t]) & =-[y,[\alpha(x), t]]-[x,[\alpha(y), t]] \tag{14}\\
\beta(\rho([x, y]) v) & =-\rho(y) \rho(\alpha(x)) v-\rho(x) \rho(\alpha(y)) v \tag{15}\\
\beta(\rho(t) \theta(x, y)) & =-\rho(x) \theta(\alpha(y), t)-\rho(y) \theta(\alpha(x), t) \tag{16}\\
\beta(\rho(t) \rho(x) v) & =-\rho([\alpha(x), t]) v-\rho(x) \rho(t) \beta(v) \tag{17}
\end{align*}
$$

Let us define $d_{c}^{1}: C_{\alpha, \beta}^{1}(J, V) \rightarrow S^{2}(J, V)$ and $d_{c}^{2}: S^{2}(J, V) \rightarrow C^{3}(J, V)$, respectively, by

$$
\begin{aligned}
d^{1}(f)(x, y)= & f([x, y])-\rho(x) f(y)-\rho(y) f(x) \\
d_{c}^{2}(\theta)(x, y, z)= & \theta(x,[\alpha(y), z])+\theta(y,[z, \alpha(x)])+\beta(\theta(z,[x, y])) \\
& +\rho(x) \theta(\alpha(y), z)+\rho(y) \theta(z, \alpha(y))+\beta(\rho(z) \theta(x, y))
\end{aligned}
$$

where $C^{3}(J, V)=\left\{\gamma \in \operatorname{Hom}\left(J^{3}, V\right) \mid \gamma(x, y, t)=\gamma(y, x, t)\right\}$.
Theorem 2.6. We have $d_{c}^{2} \circ d^{1}=0$.
Proof. It is straightforward.
2.2. Extensions of Hom-Jacobi-Jordan algebras. Let $(J,[\cdot, \cdot], \alpha)$ be a Hom-Jacobi-Jordan algebra, and let (V, ρ, β) be a representation of $(J,[\cdot, \cdot], \alpha)$. An abelian extension of a Hom-Jacobi-Jordan algebra J by V is an exact sequence

$$
0 \longrightarrow(V, \rho, \beta) \xrightarrow{i}\left(M,[\cdot, \cdot]_{M}, \alpha_{M}\right) \xrightarrow{\pi}(J,[\cdot, \cdot], \alpha) \longrightarrow 0
$$

satisfying $\alpha_{M} \circ i=i \circ \beta$ and $\alpha \circ \pi=\pi \circ \alpha_{M}$. We say that the extension is central if $[i(V), M]_{M}=0$. A section of an abelian extension $\left(M,[\cdot, \cdot]_{M}, \alpha_{M}\right)$ of a Hom-Jacobi-Jordan algebra $(J,[\cdot, \cdot], \alpha)$ by (V, ρ, β) is a linear map $s: J \rightarrow M$ such that $\pi \circ s=I d_{J}$. Two extensions

are equivalent if there exists an isomorphism of Jacobi-Jordan algebras Φ : $M \rightarrow M^{\prime}$, such that $\Phi \circ i=i^{\prime}$ and $\pi^{\prime} \circ \Phi=\pi$.

Theorem 2.7 ([16]). Let (V, ρ, β) be a representation of a multiplicative Hom-Jacobi-Jordan algebra $(J,[\cdot, \cdot], \alpha)$ and θ be a 2 -cocycle of J on V. Define a bracket $[\cdot, \cdot]_{M}$ and a morphism α_{M} on $M=J \oplus V$ by

$$
\begin{aligned}
{[x+v, y+w]_{\theta} } & =[x, y]+\rho(x) w+\rho(y) v+\theta(x, y) \\
\alpha_{M}(x+v) & =\alpha(x)+\beta(v)
\end{aligned}
$$

Define $i_{0}: V \rightarrow M$ by $i_{0}(v)=v$ and $\pi_{0}: M \rightarrow J$ by $\pi_{0}(x)=x$. The sequence

$$
0 \longrightarrow(V, \rho, \beta) \xrightarrow{i_{0}}\left(M,[\cdot, \cdot]_{\theta}, \alpha_{M}\right) \xrightarrow{\pi_{0}}(J,[\cdot, \cdot], \alpha) \longrightarrow 0
$$

defines an abelian extension of J by V.
Proposition 2.8 ([16]). Let

$$
\mathcal{E}: 0 \longrightarrow(V, \rho, \beta) \xrightarrow{i}\left(M^{\prime},[\cdot, \cdot]_{M^{\prime}}, \alpha_{M^{\prime}}\right) \xrightarrow{\pi}(J,[\cdot, \cdot], \alpha) \longrightarrow 0
$$

be an abelian extension of J by V and s be a section of \mathcal{E}. Then we have $M^{\prime}=s(J) \oplus i(V)$ and there exists a 2-cocycle $\theta \in Z_{\alpha, \beta}^{2}(J, V)$ such that, with the notation of the above theorem, the extension \mathcal{E} is equivalent to

$$
0 \longrightarrow(V, \rho, \beta) \xrightarrow{i_{0}}\left(M,[\cdot, \cdot]_{\theta}, \alpha_{M}\right) \xrightarrow{\pi_{0}}(J,[\cdot, \cdot], \alpha) \longrightarrow 0 .
$$

Theorem 2.9 ([16]). Let (V, ρ, β) be a representation of a multiplicative Hom-Jacobi-Jordan algebra $(J,[\cdot, \cdot], \alpha)$. Then the abelian extensions of J by V are classified by $H_{\alpha, \beta}^{2}(J, V)$.

3. Metric Hom-Jacobi-Jordan algebras

In this section, we introduce the notion of metric Hom-Jacobi-Jordan algebras and provide their properties.

Definition 3.1. A metric Hom-Jacobi-Jordan algebra is a 4-tuple $(J,[\cdot, \cdot], \alpha$, $B)$ consisting of a Hom-Jacobi-Jordan algebra ($J,[\cdot, \cdot], \alpha$) and a nondegenerate symmetric bilinear form B satisfying:

$$
\begin{align*}
B(x,[y, z])) & =B([x, y], z)(\text { invariance of } B) \tag{18}\\
B(\alpha(x), y) & =B(x, \alpha(y))(\text { Hom-invariance of } B) \tag{19}
\end{align*}
$$

for any $x, y, z \in J$. We recover the metric Jacobi-Jordan algebra when $\alpha=i d_{J}$.

We say that two metric Hom-Jacobi-Jordan algebras $(J,[\cdot, \cdot], \alpha, B)$ and $\left(J^{\prime},[\cdot, \cdot]^{\prime}, \alpha^{\prime}, B^{\prime}\right)$ are isometrically isomorphic (or i-isomorphic, for short) if there exists a Hom-Jacobi-Jordan isomorphism f from J onto J^{\prime} satisfying $B^{\prime}(f(x), f(y))=B(x, y)$ for all $x, y \in J$. In this case, f is called an i isomorphism.

Definition 3.2. Let I be an ideal of a metric Hom-Jacobi-Jordan algebra $(J,[\cdot, \cdot], \alpha, B)$.
(1) The orthogonal I^{\perp} of I, with respect to B, is defined by

$$
I^{\perp}=\{x \in \mathfrak{J} \mid B(x, y)=0 \forall y \in I\}
$$

(2) An ideal I is isotropic if $I \subset I^{\perp}$.

Let $(J,[\cdot, \cdot], \alpha, B)$ be a multiplicative metric Hom-Jacobi-Jordan algebra. Since B is non-degenerate and invariant, we obtain some properties described in the following results.

Proposition 3.1. (1) The center $\mathfrak{Z}(J)$ is an ideal of J.
(2) $\mathfrak{Z}(J)=[J, J]^{\perp}$ and then $\operatorname{dim}(\mathfrak{Z}(J))+\operatorname{dim}([J, J])=\operatorname{dim}(J)$.

Proposition 3.2. Let I be an ideal of a metric Hom-Jacobi-Jordan algebra $(J,[\cdot, \cdot], \alpha, B)$. Then
(1) I^{\perp} is an ideal of J,
(2) the centralizer $\mathfrak{Z}(I)$ of I contains I^{\perp}.

For the rest of this paper, for any metric Hom-Jacobi-Jordan algebra, the generalized coadjoint representation identity (10) is satisfied.

Proposition 3.3. A 4-tuple $(J,[\cdot, \cdot], \alpha, B)$ is a metric Hom-Jacobi-Jordan algebra if and only if B is a nondegenerate symmetric bilinear form satisfying (19) and $d_{r}^{3} \gamma=0$ where $\gamma(x, y, z)=B([x, y], z)$ and d_{r}^{3} is given by (13).

Proof. Let B be a nondegenerate symmetric bilinear form satisfying (19). For all $x, y, z \in J$, we have

$$
\begin{align*}
& d_{r}^{3} \gamma(x, y, z, t) \\
= & \gamma([x, y], \alpha(z), t)+\gamma([x, z], \alpha(y), t)+\gamma([y, z], \alpha(x), t) \\
& +\gamma(x, y,[\alpha(z), t])+\gamma(y, z,[\alpha(x), t])+\gamma(x, z,[\alpha(y), t]) \\
= & B([[x, y], \alpha(z)], t)+B([[x, z], \alpha(y)], t)+B([\alpha(x),[y, z]], t) \tag{20}\\
& +B([x, y],[\alpha(z), t])+B([y, z],[\alpha(x), t])+B([x, z],[\alpha(y), t]) . \tag{21}
\end{align*}
$$

If the identity (18) is satisfied, then we have

$$
21)=B(x,[y,[\alpha(z), t]])+B([[y, z], t], \alpha(x))+B(x,[z,[\alpha(y), t]])
$$

By (19), we have $B([[y, z], t], \alpha(x))=B(\alpha([[y, z], t]), x)$. Hence

$$
21)=B(x,[y,[\alpha(z), t]])+B(x, \alpha([[y, z], t]))+B(x,[z,[\alpha(y), t]])
$$

Then, if 18 and (19) are satisfied, we obtain

$$
\begin{align*}
& d_{r}^{3} \gamma(x, y, z, t) \\
= & B([[x, y], \alpha(z)], t)+B([[x, z], \alpha(y)], t)+B([\alpha(x),[y, z]], t) \tag{22}\\
& +B(x,[y,[\alpha(z), t]])+B(x, \alpha([[y, z], t]))+B(x,[z,[\alpha(y), t]]) . \tag{23}
\end{align*}
$$

By the Hom-Jacobi identity, we deduce that $22=0$. On the other hand, by the generalized coadjoint representation identity, we obtain $23=0$. Therefore $d_{r}^{3} \gamma=0$.

Now, we aim to show that $\gamma \in S^{3}(J, \mathbb{R})$. For all $x, y, z \in J$, by the equality (18), $[\cdot, \cdot]$ and B are symmetric and we have

$$
B([x, y], z)=B([y, x], z)=B(y,[x, z])=B([x, z], y),
$$

which implies that

$$
\gamma(x, y, z)=\gamma(y, x, z)=\gamma(x, z, y)
$$

So

$$
\gamma(x, z, y)=\gamma(z, x, y)=\gamma(x, y, z)
$$

and

$$
\gamma(y, z, x)=\gamma(z, y, x)=\gamma(y, x, z)
$$

Therefore $\gamma \in S^{3}(J, \mathbb{R})$.
Conversely, we assume that $\gamma \in S^{3}(J, \mathbb{R})$ and $d_{r}^{3} \gamma=0$. First, we verify the symmetric condition for $[\cdot, \cdot]$. By $\gamma \in S^{3}(J, \mathbb{R})$, we have $\gamma(x, y, z)=\gamma(y, x, z)$. Hence $B([x, y], z)=B([y, x], z)$. Since B is nondegenerate, one can deduce $[x, y]=[y, x]$.

Next, we verify the equality (18). For any $x, y, z \in J$, we have $\gamma(x, y, z)=$ $\gamma(y, z, x)$, that is, $B([x, y], z)=B([y, z], x)$. Then $B([x, y], z)=B(x,[y, z])$. So (18) holds.

Now, we prove the Hom-Jacobi-Jordan identity. For all $x, y, z \in J$, by the equality (18), we have

$$
21)=B([[x, y], \alpha(z)], t)+B([[y, z], \alpha(x)], t)+B([[x, z], \alpha(y)], t) .
$$

Thus
$d_{r}^{3} \gamma(x, y, z, t)=2(B([[x, y], \alpha(z)], t)+B([[y, z], \alpha(x)], t)+B([[x, z], \alpha(y)], t))$.
Since $d_{r}^{3} \gamma=0$ and B is nondegenerate, we get the Hom-Jacobi identity.
Finally, we prove the coadjoint representation identity. Since $(\sqrt{18})$ and (19) are satisfied, we have $\left.d_{r}^{3} \gamma(x, y, z, t)=(22)+23\right)$. Since $d_{r}^{3} \gamma(x, y, z, t)=0$ and $22=0$, we obtain $23=0$. This finishes the proof.

4. The second cohomology group of a metric Hom-Jacobi-Jordan algebra

The task of this section is to introduce the second cohomology group of a metric Hom-Jacobi-Jordan algebra, which we will use to describe the quadratic extensions.
4.1. Construction of 2-coboundary operators for a metric Hom-Jacobi-Jordan algebra. Let $M=J \oplus \mathfrak{a}$ be a Hom-Jacobi-Jordan algebra with structure $\alpha_{M}=\alpha+\beta$ where $\alpha: J \rightarrow J, \beta: \mathfrak{a} \rightarrow \mathfrak{a}$ and $[\cdot, \cdot]_{M}$ are such that \mathfrak{a} is an abelian ideal of M. Then, by Theorem 2.2, $[\cdot, \cdot]_{M}=[\cdot, \cdot]+\rho+\theta$, where $(J,[\cdot, \cdot], \alpha)$ is a Hom-Jacobi-Jordan algebra, ρ is a representation of J on \mathfrak{a}, and θ is a 2 -cocycle of J on \mathfrak{a}. Let $\mathfrak{n}=M \oplus J^{*},[\cdot, \cdot]_{\mathfrak{n}}: \mathfrak{n}^{2} \rightarrow \mathfrak{n}$ be a bilinear symmetric map satisfying $\left[J^{*}, J^{*}\right]_{\mathfrak{n}}=0$ and $\alpha_{\mathfrak{n}}: \mathfrak{n} \rightarrow \mathfrak{n}$ a linear map given by $\alpha_{\mathfrak{n}}(x+v+Z)=\alpha_{M}(x+v)+\alpha^{\prime}(Z)$ for all $x \in J, v \in V, Z \in J^{*}$.

We assume that $\left(\mathfrak{n},[\cdot, \cdot]_{\mathfrak{n}}, \alpha_{\mathfrak{n}}\right)$ is a Hom-Jacobi-Jordan algebra. Then (by Theorem 2.2 $[\cdot, \cdot]_{\mathfrak{n}}=[\cdot, \cdot]_{M}+\rho^{\prime}+\gamma^{\prime}$ where ρ^{\prime} is a representation of M on J^{*} and γ^{\prime} is a 2-cocycle of M on J^{*}. Hence, for all $x \in J, v \in V, Z_{1}, Z_{2} \in J^{*}$,

$$
\begin{align*}
{[x, y]_{\mathfrak{n}} } & =[x, y]+\theta(x, y)+\gamma^{\prime}(x, y) \tag{24}\\
{[x, v]_{\mathfrak{n}} } & =\rho(x) v+\gamma^{\prime}(x, v) \tag{25}\\
{[v, w]_{\mathfrak{n}} } & =\gamma^{\prime}(v, w) \tag{26}\\
{[Z, x]_{\mathfrak{n}} } & =\rho^{\prime}(x) Z \tag{27}\\
{[Z, v]_{\mathfrak{n}} } & =\rho^{\prime}(v) Z \tag{28}\\
{\left[Z_{1}, Z_{2}\right]_{\mathfrak{n}} } & =0 \tag{29}
\end{align*}
$$

Let $B: \mathfrak{n}^{2} \rightarrow \mathbb{R}$ be a bilinear form such that $\left(\mathfrak{n},[\cdot, \cdot]_{\mathfrak{n}}, \alpha_{\mathfrak{n}}, B\right)$ is a metric Hom-Jacobi-Jordan algebra, the ideals J and J^{*} are isotropic and

$$
\begin{equation*}
B(Z, x+v)=Z(x) \tag{30}
\end{equation*}
$$

for all $Z \in J^{*}, x \in J, v \in \mathfrak{a}$.
Lemma 4.1. Under the above notation, we have

$$
[Z, x]_{\mathfrak{n}}=Z([x, \cdot]) \text { and }[Z, v]_{\mathfrak{n}}=0
$$

for all $Z \in J^{*}, x \in J, v \in \mathfrak{a}$.
Proof. Let $Z \in J^{*}, x \in J, v \in \mathfrak{a}$. We have $B(Z, v)=Z(v)=0$. Then $B\left(Z,[x, y]_{\mathfrak{n}}\right)=Z([x, y])$. Moreover, by invariance of B, we have $B\left(Z,[x, y]_{\mathfrak{n}}\right)=B\left([Z, x]_{\mathfrak{n}}, y\right)$. Hence $\rho^{\prime}(x) Z(y)=Z([x, y])$, which implies that $[Z, x]_{\mathfrak{n}}=Z([x, \cdot])$.

Now, we show that $[Z, v]_{\mathfrak{n}}=0$. Since J^{*} is an ideal of \mathfrak{n}, according to Proposition 3.2, we have $\left(J^{*}\right)^{\perp} \subset \mathfrak{Z}\left(J^{*}\right)$. Then $\mathfrak{a} \subset \mathfrak{Z}\left(J^{*}\right)$, since $B(Z, v)=0$. Therefore $[\overline{Z, v}]_{\mathfrak{n}}=0$.

Proposition 4.2. For all $v, w \in \mathfrak{a}$, we have

$$
\begin{equation*}
B(\beta(v), w)=B(v, \beta(w)) \tag{31}
\end{equation*}
$$

Proof. By 19) we have $B\left(\left(\alpha+\beta+\alpha^{\prime}\right)(v), w\right)=B\left(v,\left(\alpha+\beta+\alpha^{\prime}\right)(w)\right)$. Therefore $B(\beta(v), w)=B(v, \beta(w))$.

Theorem 4.3. If $\left(\mathfrak{n},[\cdot, \cdot]_{\mathfrak{n}}, \alpha_{\mathfrak{n}}, B\right)$ is a metric Hom-Jacobi-Jordan algebra, then, for all $x, y \in J, v, w \in \mathfrak{a}, Z \in J^{*}$, we have

$$
\begin{align*}
{[x, y]_{\mathfrak{n}} } & =[x, y]+\theta(x, y)+\gamma(x, y, \cdot) \\
{[x, v]_{\mathfrak{n}} } & =\rho(x) v+B(\theta(\cdot, x), v) \\
{[v, w]_{\mathfrak{n}} } & =B(\rho(\cdot) v, w) \tag{32}\\
{[Z, x]_{\mathfrak{n}} } & =Z([x, \cdot]) \\
{\left[Z_{1}, v+Z_{2}\right]_{\mathfrak{n}} } & =0
\end{align*}
$$

where $\gamma \in S^{3}(J, \mathbb{R})$.
Proof. Assume that $\left(\mathfrak{n},[\cdot, \cdot]_{\mathfrak{n}}, \alpha_{\mathfrak{n}}, B\right)$ is a metric Hom-Jacobi-Jordan algebra. Let $\gamma(x, y, z)=\gamma^{\prime}(x, y)(z)$. By the equality (18), we have $B\left([x, y]_{\mathfrak{n}}, z\right)=$ $B\left(x,[y, z]_{\mathfrak{n}}\right)$. Thus, using (24), we have $\gamma^{\prime}(x, y)(z)=\gamma^{\prime}(y, z)(x)$. Hence $\gamma(x, y, z)=\gamma(y, z, x)$. Moreover, since $[x, y]_{\mathfrak{n}}=[y, x]_{\mathfrak{n}}$, we have $\gamma(x, y, z)=$ $\gamma(y, x, z)$. By repeating this process, we obtain that $\gamma \in S^{3}(J, \mathbb{R})$.

Now we aim to prove that $\gamma^{\prime}(x, v)(y)=B(\theta(y, x), v)$. By the equality (18), we have $B\left([y, x]_{\mathfrak{n}}, v\right)=B\left(y,[x, v]_{\mathfrak{n}}\right)$. Thus, using (24), (25) and (30), we obtain $\gamma^{\prime}(x, v)(y)=B_{\mathfrak{a}}(\theta(y, x), v)$. For $\gamma^{\prime}(v, w)$, by (18), we have $B\left([x, v]_{\mathfrak{n}}, w\right)=B\left(x,[v, w]_{\mathfrak{n}}\right)$. Thus, using (25), 26) and (30), we have $\gamma^{\prime}(v, w)(x)=B_{\mathfrak{a}}(\rho(x) v, w)$. Hence

$$
\begin{equation*}
\gamma^{\prime}(v, w)=B(\rho(\cdot) v, w) \tag{33}
\end{equation*}
$$

Definition 4.1. A Quadratic representation of a Hom-Jacobi-Jordan alge$\operatorname{bra}(J,[\cdot, \cdot], \alpha)$ on a vector space \mathfrak{a} with respect to $\beta \in \operatorname{End}(\mathfrak{a})$ consists of a 4-tuple ($\mathfrak{a}, \rho, \beta, B_{\mathfrak{a}}$), where $\rho: J \rightarrow \operatorname{End}(\mathfrak{a})$ is a representation of the Hom-Jacobi-Jordan algebra J on \mathfrak{a} with respect to $\beta \in \operatorname{End}(\mathfrak{a})$, and $B_{\mathfrak{a}}: \mathfrak{a} \times \mathfrak{a} \rightarrow \mathbb{R}$ a symmetric bilinear form, satisfying,

$$
\begin{equation*}
B_{\mathfrak{a}}(\rho(x)(v), w)=B_{\mathfrak{a}}(v, \rho(x)(w)) \tag{34}
\end{equation*}
$$

for all $x, y \in J$ and $v, w \in \mathfrak{a}$.
Lemma 4.4. If $\left(\mathfrak{n},[\cdot, \cdot]_{\mathfrak{n}}, \alpha_{\mathfrak{n}}, B_{\mathfrak{a}}\right)$ is a metric Hom-Jacobi-Jordan algebra, then $\left(\mathfrak{a}, \rho, \beta, B_{\mathfrak{a}}\right)$ is a quadratic representation of J on \mathfrak{a}.

Proof. Using (33) and the symmetry of the bracket $[\cdot, \cdot]_{\mathfrak{n}}$, we obtain $B_{\mathfrak{a}}(\rho(\cdot) v, w)=\overline{B_{\mathfrak{a}}}(\rho(\cdot) w, v)$, which finishes the proof.

Proposition 4.5. Let $\left(\mathfrak{n},[\cdot, \cdot]_{\mathfrak{n}}, \alpha_{\mathfrak{n}}, B_{\mathfrak{a}}\right)$ be a metric Hom-Jacobi-Jordan algebra. For $f, g \in C_{\alpha, \beta}^{2}(J, \mathfrak{a})$, we have

$$
B_{\mathfrak{a}}(f(\alpha(x), \alpha(y)), g(z, t))=B_{\mathfrak{a}}(f(x, y), g(\alpha(z), \alpha(t)))
$$

for all $x, y, z, t \in J$.

Proof. Since $f, g \in C_{\alpha, \beta}^{2}(J, \mathfrak{a})$, we have, $f \circ \alpha=\beta \circ f$ and $g \circ \alpha=\beta \circ g$. According to Proposition 4.2, we have $B_{\mathfrak{a}}(\beta \circ f(x, y), g(x, z))=B_{\mathfrak{a}}(f(x, y)$, $\beta \circ g(x, z))$. Thus $B_{\mathfrak{a}}(f(\alpha(x), \alpha(y)), g(z, t))=B_{\mathfrak{a}}(f(x, y), g(\alpha(z), \alpha(t)))$.

Define a bilinear multiplication on $S^{p}(J, \mathfrak{a}) \times S^{q}(J, \mathfrak{a})$ by

$$
\begin{equation*}
B_{\mathfrak{a}}(f \wedge g)\left(x_{1}, \cdots, x_{p+q}\right)=\sum_{\sigma \in \operatorname{Sh}(p, q)} B_{\mathfrak{a}}\left(f\left(x_{\sigma(1)}, \cdots, x_{\sigma(p)}\right), g\left(x_{\sigma(p+1)}, \cdots, x_{\sigma(p+q)}\right)\right), \tag{35}
\end{equation*}
$$

where $\operatorname{Sh}(p, q)$ are the permutations in \mathfrak{S}_{p+q} which are increasing on the first p and the last q elements.

Proposition 4.6. If $\left(\mathfrak{n},[\cdot, \cdot]_{\mathfrak{n}}, \alpha_{\mathfrak{n}}, B_{\mathfrak{a}}\right)$ is a metric Hom-Jacobi-Jordan algebra, then the pair (θ, γ) satisfies the following properties

$$
\begin{aligned}
d^{2} \theta(x, y, z) & =0, \\
d_{r}^{3} \gamma(x, y, z, \alpha(a))+\frac{1}{2} B_{\mathfrak{a}}(\theta \wedge(\theta \circ \alpha))(x, y, z, a) & =0
\end{aligned}
$$

for all $x, y, z, a \in J$.
Proof. We have that $\left(M,[\cdot, \cdot]_{M}, \alpha_{M}\right)$ is a Hom-Jacobi-Jordan algebra, $\left(J^{*}, \rho^{\prime}, \alpha^{\prime}\right)$ is a representation of the Hom-Jacobi-Jordan algebra $M, \mathfrak{n}=$ $M \oplus J^{*}$ and $[\cdot, \cdot]_{\mathfrak{n}}=[\cdot, \cdot]_{M}+\gamma^{\prime}$. By Theorem 2.2, it follows that $d^{2} \gamma^{\prime}=0$. For all $x, y, z, a \in J$, we have

$$
\begin{aligned}
& d^{2} \gamma^{\prime}(x, y, z)(t) \\
= & \gamma^{\prime}\left([x, y]_{M}, \alpha_{M}(z)\right)(t)+\gamma^{\prime}\left([x, z]_{M}, \alpha_{M}(y)\right)(t)+\gamma^{\prime}\left([y, z]_{M}, \alpha_{M}(x)\right)(t) \\
& +\rho^{\prime}\left(\alpha_{M}(z)\right) \gamma^{\prime}(x, y)(t)+\rho^{\prime}\left(\alpha_{M}(x)\right) \gamma^{\prime}(y, z)(t)+\rho^{\prime}\left(\alpha_{M}(y)\right) \gamma^{\prime}(x, z)(t),
\end{aligned}
$$

where $t=\alpha(a)$. Since $[x, y]_{M}=[x, y]+\theta(x, y), \gamma^{\prime}(x, v)(y)=B_{\mathfrak{a}}(\theta(y, x), v)$ and $\gamma^{\prime}(v, w)=B_{\mathfrak{a}}(\rho(\cdot) v, w)$, we obtain

$$
\begin{align*}
d^{2} \gamma^{\prime}(x, y, z) & (t)=\gamma([x, y], \alpha(z), t)+\gamma([x, z], \alpha(y), t)+\gamma([y, z], \alpha(x), t) \tag{36}\\
+ & \gamma(x, y,[\alpha(z), t])+\gamma(y, z,[\alpha(x), t])+\gamma(x, z,[\alpha(y), t]) \tag{37}\\
+ & B_{\mathfrak{a}}(\theta(\alpha(a), \alpha(z)), \theta(x, y))+B_{\mathfrak{a}}(\theta(\alpha(a), \alpha(y)), \theta(x, z)) \\
& +B_{\mathfrak{a}}(\theta(\alpha(a), \alpha(x)), \theta(y, z)) .
\end{align*}
$$

Using (36) +37) $=d_{r}^{3} \gamma(x, y, z, t)$ and Proposition 4.5, we obtain

$$
d^{2} \gamma^{\prime}(x, y, z)(t)=d_{r}^{3} \gamma(x, y, z, t)+\frac{1}{2} B_{\mathfrak{a}}(\theta \wedge(\theta \circ \alpha))(x, y, z, a) .
$$

Hence $d_{r}^{3} \gamma(x, y, z, \alpha(a))+\frac{1}{2} B_{\mathfrak{a}}(\theta \wedge(\theta \circ \alpha))(x, y, z, a)=0$.
Bringing these results together, we provide the following definitions.

Definition 4.2. The pair (θ, γ) is called a quadratic 2 -cochain if $\theta \in C_{\alpha, \beta}^{2}(J, \mathfrak{a})$ and $\gamma \in C_{r}^{3}(J, \mathbb{R})$. Denote by $C_{Q}^{2}(J, \mathfrak{a})$ the set of quadratic 2-cochains.
We define a $\operatorname{map} d_{Q}^{2}: C_{Q}^{2}(J, \mathfrak{a}) \rightarrow C_{r}^{3}(J, \mathfrak{a}) \times C^{4}(J, \mathbb{R})$ as follows:
$d_{Q}^{2}(\theta, \gamma)(x, y, z)(t)=\left(d^{2} \theta(x, y, z), d_{r}^{3} \gamma(x, y, z, t)+\frac{1}{2} B_{\mathfrak{a}}(\theta \wedge(\theta \circ \alpha))(x, y, z, a)\right)$,
where $t=\alpha(a) .(\theta, \gamma)$ is called a quadratic 2 -Hom-cocycle of J on \mathfrak{a} if and only if $d_{Q}^{2}(\theta, \gamma)=0$. We denote by $Z_{Q}^{2}(J, \mathfrak{a})$ the set of all quadratic 2-cocycles on \mathfrak{a}.
4.2. Construction of 1-coboundary operators of a metric Hom-Jacobi-Jordan algebra. In this section we aim to construct a map d_{Q}^{1} satisfying $d_{Q}^{2} \circ d_{Q}^{1}=0$ and then the second cohomology group of a metric Hom-Jacobi-Jordan algebra.
Proposition 4.7. Let $f \in C_{\alpha, \beta}^{2}(J, \mathfrak{a})$ and $g \in C_{\alpha, \beta}^{1}(J, \mathfrak{a})$. We have

$$
\begin{aligned}
d_{r}^{3} B_{\mathfrak{a}}(f \wedge g)(x, y, z, t)= & B_{\mathfrak{a}}\left(d^{2} f(x, y, z), g(t)\right)+B_{\mathfrak{a}}\left(d_{c}^{2} f(x, y, t), g(z)\right) \\
& +B_{\mathfrak{a}}\left(d_{c}^{2} f(x, z, t), g(y)\right)+B_{\mathfrak{a}}\left(d_{c}^{2} f(y, z, t), g(x)\right) \\
& +B_{\mathfrak{a}}\left((f \circ \alpha) \wedge d^{1} g\right)(x, y, z, a)
\end{aligned}
$$

for any $x, y, z, a \in J$ and $t=\alpha(a)$.
Proof. Let $f \in C_{\alpha, \beta}^{2}(J, \mathfrak{a})$ and $g \in C_{\alpha, \beta}^{1}(J, \mathfrak{a})$. We take $\gamma=B_{\mathfrak{a}}(f \wedge g)$.
For any $x, y, z, a \in J$ and $t=\alpha(a)$, we have

$$
\begin{align*}
& d_{r}^{3} \gamma(x, y, z, t) \\
= & \gamma([x, y], \alpha(z), t)+\gamma([x, z], \alpha(y), t)+\gamma([y, z], \alpha(x), t) \\
& +\gamma(x, y,[\alpha(z), t])+\gamma(y, z,[\alpha(x), t])+\gamma(x, z,[\alpha(y), t]) \\
= & \circlearrowleft_{x, y, z}\left(\gamma([x, y], \alpha(z), t)+\circlearrowleft_{x, y, z} \gamma(x, y,[\alpha(z), t])\right) \\
= & \circlearrowleft_{x, y, z}\left(B_{\mathfrak{a}}(f([x, y], \alpha(z)), g(t))+B_{\mathfrak{a}}(f([x, y], t), g(\alpha(z)))\right)+B_{\mathfrak{a}}(f(\alpha(a), \alpha(z)), g([x, y])) \tag{39}\\
& +\circlearrowleft_{x, y, z}\left(B_{\mathfrak{a}}(f(x, y), g([\alpha(z), t]))+B_{\mathfrak{a}}\left(f(x,[\alpha(z), t]), g(y)+B_{\mathfrak{a}}(f(y,[\alpha(z), t]), g(x))\right)\right), \tag{40}
\end{align*}
$$

where $\circlearrowleft_{x, y, z}$ denotes a summation over the cyclic permutation on x, y, and z.
By Proposition 4.2 and taking into account that $g \in C_{\alpha, \beta}^{1}(J, \mathfrak{a})$, we have

$$
\circlearrowleft_{x, y, z} B_{\mathfrak{a}}(f([x, y], t), g(\alpha(z)))=\circlearrowleft_{x, y, z} B_{\mathfrak{a}}(\beta(f([x, y], t)), g(z)) .
$$

Hence

$$
\begin{aligned}
(39)= & B_{\mathfrak{a}}\left(d^{2} f(x, y, z), g(t)\right)-\circlearrowleft_{x, y, z} B_{\mathfrak{a}}(\rho(\alpha(x)) f(y, z), g(t)) \\
& +\circlearrowleft_{x, y, z} B_{\mathfrak{a}}(\beta(f([x, y], t)), g(z))+\circlearrowleft_{x, y, z} B_{\mathfrak{a}}(f(\alpha(a), \alpha(z)), g([x, y])) .
\end{aligned}
$$

For 40), we have

$$
\circlearrowleft_{x, y, z} B_{\mathfrak{a}}(f(x, y), g([\alpha(z), t]))=\circlearrowleft_{x, y, z} B_{\mathfrak{a}}(f(\alpha(x)), \alpha(y), g([z, a])) .
$$

Then

$$
\begin{aligned}
& \\
&= B_{\mathfrak{a}}\left(d^{2} f(x, y, z), g(t)\right)-\circlearrowleft_{x, y, z} B(\rho(\alpha(x)) f(y, z), g(t)) \\
&+\circlearrowleft_{x, y, z}\left(B_{\mathfrak{a}}(\beta(f([x, y], t)), g(z))+B_{\mathfrak{a}}(f(x,[\alpha(z), t]), g(y))+B_{\mathfrak{a}}(f(y,[\alpha(z), t]), g(x))\right) \\
&+\circlearrowleft_{x, y, z} B_{\mathfrak{a}}(f(\alpha(a), \alpha(z)), g([x, y]))+\circlearrowleft_{x, y, z} B_{\mathfrak{a}}(f(\alpha(x), \alpha(y)), g([z, a])) .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
& \beta(f([x, y], t))+f(y,[\alpha(x), t])+f(x,[\alpha(y), t]) \\
& \quad=d_{c}^{2} f(x, y, t)-\rho(y) f(\alpha(x), t)-\rho(x) f(\alpha(y), t)-\beta(\rho(t) f(x, y)),
\end{aligned}
$$

and

$$
\begin{aligned}
B_{\mathfrak{a}}(\rho(y) f(\alpha(x), t), g(z)) & =B_{\mathfrak{a}}(f(\alpha(x), t), \rho(y) g(z)) \\
& =B_{\mathfrak{a}}(f(\alpha(x), \alpha(a)), \rho(y) g(x))
\end{aligned}
$$

Moreover, we have

$$
\begin{aligned}
B_{\mathfrak{a}}(\beta(\rho(t) f(y, z)), g(x)) & =B_{\mathfrak{a}}(\rho(\alpha(a)) f(y, z), \beta(g(x))) \\
& =B_{\mathfrak{a}}(f(y, z), \rho(\alpha(a)) \beta(g(x))) \\
& =B_{\mathfrak{a}}(f(y, z), \beta(\rho(a) g(x))) \\
& =B_{\mathfrak{a}}(\beta(f(y, z)), \rho(a) g(x)) \\
& =B_{\mathfrak{a}}(f(\alpha(y), \alpha(z)), \rho(a) g(x)) .
\end{aligned}
$$

Therefore, by straightforward computations, we obtain

$$
\begin{aligned}
d_{r}^{3} \gamma(x, y, z, t)= & \left.\left.B_{\mathfrak{a}}\left(d^{2} f(x, y, z)\right), g(t)\right)+B_{\mathfrak{a}}\left(d_{c}^{2} f(x, y, t)\right), g(z)\right) \\
& \left.\left.+B_{\mathfrak{a}}\left(d_{c}^{2} f(x, z, t)\right), g(y)\right)+B_{\mathfrak{a}}\left(d_{c}^{2} f(y, z, t)\right), g(x)\right) \\
& +B_{\mathfrak{a}}\left((f \circ \alpha) \wedge d_{c}^{1} g\right)(x, y, z, a) .
\end{aligned}
$$

Remark 4.1. If $\alpha=i d_{J}$ and $\beta=i d_{\mathfrak{a}}$, we have

$$
d_{r}^{3}(f \wedge g)=B_{\mathfrak{a}}\left(d^{2} f \wedge g\right)+B_{\mathfrak{a}}\left(f \wedge d^{1} g\right)
$$

Lemma 4.8. Let (θ, γ) and $\left(\theta^{\prime}, \gamma^{\prime}\right)$ be two quadratic 2-cochains. Then $d_{Q}^{2}(\theta, \gamma)=d_{Q}^{2}\left(\theta^{\prime}, \gamma^{\prime}\right)$ if and only if there exists a 1 -Hom-cochain τ such that the following equalities hold:

$$
\begin{align*}
\theta^{\prime} & =\theta+d^{1} \tau \tag{41}\\
d_{r}^{3} \gamma^{\prime} & =d_{r}^{3} \gamma-\frac{1}{2} d_{r}^{3} B_{\mathfrak{a}}\left(\tau \wedge d^{1} \tau\right)-d_{r}^{3} B_{\mathfrak{a}}(\tau \wedge \theta)+B_{\mathfrak{a}}\left(d^{\prime 2} \theta \wedge \tau\right) \tag{42}
\end{align*}
$$

where $d^{\prime 2} \theta(x, y, z)=d^{2} \theta(x, y, z)$ and $d^{\prime 2} \theta(x, y, \cdot)=d_{c}^{2} \theta(x, y, \cdot)$.
Proof. Let (θ, γ) and $\left(\theta^{\prime}, \gamma^{\prime}\right)$ be two quadratic 2-cochain such that $d_{Q}^{2}(\theta, \gamma)=d_{Q}^{2}\left(\theta^{\prime}, \gamma^{\prime}\right)$. Then

$$
\begin{equation*}
d^{2} \theta=d^{2} \theta^{\prime} \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{r}^{3} \gamma+\frac{1}{2} B_{\mathfrak{a}}(\theta \wedge(\theta \circ \alpha))=d_{r}^{3} \gamma^{\prime}+\frac{1}{2} B_{\mathfrak{a}}\left(\theta^{\prime} \wedge\left(\theta^{\prime} \circ \alpha\right)\right) . \tag{44}
\end{equation*}
$$

Equality (43) implies that there exist a 1 -Hom-cochain τ which satisfies

$$
\begin{equation*}
\theta^{\prime}=\theta+d^{1} \tau \tag{45}
\end{equation*}
$$

Thus, using (44), we have

$$
\begin{align*}
d_{r}^{3} \gamma & =d_{r}^{3} \gamma^{\prime}+\frac{1}{2} B_{\mathfrak{a}}\left(\left(\theta+d^{1} \tau\right) \wedge\left(\left(\theta+d^{1} \tau\right) \circ \alpha\right)\right)-\frac{1}{2} B_{\mathfrak{a}}(\theta \wedge(\theta \circ \alpha)) \\
& =d^{3} \gamma^{\prime}+\frac{1}{2} B\left(\theta \wedge\left(d^{1} \tau \circ \alpha\right)\right)+\frac{1}{2} B\left(d^{1} \tau \wedge(\theta \circ \alpha)\right)+\frac{1}{2} B\left(d^{1} \tau \wedge\left(d^{1} \tau \circ \alpha\right)\right) \tag{46}
\end{align*}
$$

Hence, by Proposition4.5, we obtain $B_{\mathfrak{a}}\left(\theta \wedge\left(d^{1} \tau \circ \alpha\right)\right)=B_{\mathfrak{a}}\left(d^{1} \tau \wedge(\theta \circ \alpha)\right)$. Therefore

$$
d^{3} \gamma=d^{3} \gamma^{\prime}+B\left(d^{1} \tau \wedge(\theta \circ \alpha)\right)+\frac{1}{2} B\left(d^{1} \tau \wedge\left(d^{1} \tau \circ \alpha\right)\right)
$$

Replacing f, g by $d^{1} \tau, \tau$ in Proposition 4.7 and since by $d^{2} \circ d^{1}(\tau)=0$, we have

$$
\begin{equation*}
d_{r}^{3} B_{\mathfrak{a}}\left(d_{c}^{1} \tau \wedge \tau\right)(x, y, z, t)=B_{\mathfrak{a}}\left(\left(d_{c}^{1} \tau \circ \alpha\right) \wedge d_{c}^{1} \tau\right)(x, y, z, a) . \tag{47}
\end{equation*}
$$

Replacing f, g by θ, τ in Proposition 4.7, we have
$d_{r}^{3} B_{\mathfrak{a}}(\theta \wedge \tau)(x, y, z, t)=B_{\mathfrak{a}}\left((\theta \circ \alpha) \wedge d_{c}^{1} \tau\right)(x, y, z, a)+B_{\mathfrak{a}}\left(d^{\prime 2} \theta \wedge \tau\right)(x, y, z, t)$, where $d^{\prime 2} \theta(x, y, z)=d^{2} \theta(x, y, z)$ and $d^{\prime 2} \theta(x, y, t)=d_{c}^{2} \theta(x, y, t)$. Therefore

$$
d^{3} \gamma=d^{3} \gamma^{\prime}+d_{r}^{3} B_{\mathfrak{a}}(\theta \wedge \tau)+\frac{1}{2} d_{r}^{3} B_{\mathfrak{a}}\left(d_{c}^{1} \tau \wedge \tau\right)-B_{\mathfrak{a}}\left(d^{\prime 2} \theta \wedge \tau\right)(x, y, z, t)
$$

Hence

$$
\begin{equation*}
d^{3} \gamma^{\prime}=d^{3} \gamma-\frac{1}{2} d^{3} B_{\mathfrak{a}}\left(\tau \wedge d^{1} \tau\right)-d^{3} B_{\mathfrak{a}}(\theta \wedge \tau)+B_{\mathfrak{a}}\left(d^{\prime 2} \theta \wedge \tau\right)(x, y, z, t) \tag{48}
\end{equation*}
$$

Using the previous lemma and Proposition 4.7, we obtain the following result.

Theorem 4.9. Let (θ, γ) and $\left(\theta^{\prime}, \gamma^{\prime}\right)$ two quadratic 2 -cochains. Then $d_{Q}^{2}(\theta, \gamma)=d_{Q}^{2}\left(\theta^{\prime}, \gamma^{\prime}\right)$ if and only if there exist $\tau \in C_{\alpha, \beta}^{1}(J, \mathfrak{a}), \sigma \in C_{r}^{2}(J, \mathbb{R})$ and $\sigma^{\prime} \in C_{r}^{3}(J, \mathbb{R})$ such that, the following equalities hold:

$$
\begin{align*}
\theta^{\prime} & =\theta+d^{1} \tau \tag{49}\\
d_{r}^{3} \sigma^{\prime} & =-B_{\mathfrak{a}}\left(d^{\prime 2} \theta \wedge \tau\right) \tag{50}\\
\gamma^{\prime} & =\gamma+d_{r}^{2} \sigma+\sigma^{\prime}-B\left(\tau \wedge\left(\theta+\frac{1}{2} d^{1} \tau\right)\right) \tag{51}
\end{align*}
$$

where $d^{\prime 2} \theta(x, y, z)=d^{2} \theta(x, y, z)$ and $d^{2} \theta(x, y, \cdot)=d_{c}^{2} \theta(x, y, \cdot)$.
Using the previous observations, we give the following definitions.
Definition 4.3. Define a $\operatorname{map} d_{Q}^{1}: C_{Q}^{1}(\mathfrak{J}, \mathfrak{a}) \rightarrow C_{Q}^{2}(\mathfrak{J}, \mathfrak{a})$ by

$$
d_{Q}^{1}(\tau, \sigma)=\left(d^{1} \tau, d_{r}^{2} \sigma-\frac{1}{2} B\left(\tau \wedge d^{1} \tau\right)\right)
$$

A quadratic 2 -cochain (θ, γ) is called a quadratic 2 -cobord if and only if there exists a quadratic 1-cochain (τ, σ) satisfies $d_{Q}^{1}(\tau, \sigma)=(\theta, \gamma)$. Denote by $B_{Q}^{2}(\mathfrak{J}, \mathfrak{a})$ the space of all quadratic 2 -cobords.

Proposition 4.10. Any quadratic 2-cobord is a quadratic 2-cocycle (i.e., $\left.d_{Q}^{2} \circ d_{Q}^{1}=0\right)$.

Proof. We set $\theta=d^{1} \tau$ and $\gamma=d^{2} \sigma-\frac{1}{2} B_{\mathfrak{a}}\left(d^{1} \tau \wedge \tau\right)$. Using (47), we have $d^{3} \gamma=-\frac{1}{2} B_{\mathfrak{a}}\left(d^{1} \tau \wedge\left(d^{1} \tau \circ \alpha\right)\right)$. Hence, by 38)

$$
\begin{aligned}
d_{Q}^{2}(\theta, \gamma) & =\left(d^{2} \theta, d_{r}^{3} \circ d_{r}^{2} \sigma-\frac{1}{2} B_{\mathfrak{a}}\left(d^{1} \tau \wedge\left(d^{1} \tau \circ \alpha\right)\right)+\frac{1}{2} B\left(d^{1} \tau \wedge\left(d^{1} \tau \circ \alpha\right)\right)\right) \\
& =(0,0)
\end{aligned}
$$

4.3. The second cohomology group. Due to the nonlinearity of d_{Q}^{1} and d_{Q}^{2} we need to construct an equivalence relation in order to define the second cohomology group. We define a group structure on $C_{Q}^{1}(\mathfrak{J}, \mathfrak{a})$ by

$$
(f, g) *\left(f^{\prime}, g^{\prime}\right)=\left(f+f^{\prime}, g+g^{\prime}+\frac{1}{2} B_{\mathfrak{a}}\left(\left(f+f^{\prime}\right) \wedge\left(f+f^{\prime}\right) \wedge \alpha\right)\right)
$$

Let $(\gamma, \theta) \in Z_{Q}^{2}(\mathfrak{J}, \mathfrak{a})$ and $(\tau, \sigma) \in C_{Q}^{1}(\mathfrak{J}, \mathfrak{a})$. Then the formula

$$
(\theta, \gamma) \bullet(\tau, \sigma)=\left(\theta+d^{1} \tau, \gamma+d^{2} \sigma+B\left(\left(\theta+\frac{1}{2} d^{1} \tau\right) \wedge(\tau \circ \alpha)\right)\right.
$$

defines a right action of the group $C_{Q}^{1}(\mathfrak{J}, \mathfrak{a})$ on $Z_{Q}^{2}(\mathfrak{J}, \mathfrak{a})$. We have $(\theta, \gamma) \cong$ $\left(\theta^{\prime}, \gamma^{\prime}\right)$ if and only if there exist $(\tau, \sigma) \in C_{Q}^{1}(\mathfrak{J}, \mathfrak{a})$ such that $\left(\gamma^{\prime}, \theta^{\prime}\right)=(\gamma, \theta) \bullet$ (τ, σ).

Definition 4.4. The $2^{\text {nd }}$ quadratic cohomology group of the metric Hom-Jacobi-Jordan algebra \mathfrak{J} on $\mathfrak{a} \times \mathfrak{J}^{*}$, with the action " \bullet " is the quotient

$$
H_{Q}^{\bullet 2}(\mathfrak{J}, \mathfrak{a})=Z_{Q}^{2}(\mathfrak{J}, \mathfrak{a}) / C_{Q}^{1}(\mathfrak{J}, \mathfrak{a})
$$

where $Z_{Q}^{2}(\mathfrak{J}, \mathfrak{a})=\left\{(\theta, \gamma) \mid d_{Q}^{2}((\theta, \gamma))=0\right\}$.
Proposition 4.11. Let $\mathfrak{d}_{\theta, \gamma}:=\left(\mathfrak{n},[\cdot, \cdot]_{\theta, \gamma}, \alpha_{\mathfrak{n}}\right)$ and $\mathfrak{d}_{\theta^{\prime}, \gamma^{\prime}}:=\left(\mathfrak{n},[\cdot, \cdot]_{\theta^{\prime}, \gamma^{\prime}}, \alpha_{\mathfrak{n}}\right)$ be two extensions such that $d_{Q}^{2}(\theta, \gamma)=d_{Q}^{2}\left(\theta^{\prime}, \gamma^{\prime}\right)$. Then the extensions $\mathfrak{d}_{\theta, \gamma}$ and $\mathfrak{d}_{\theta^{\prime}, \gamma^{\prime}}$ are equivalent.

Proof. Using Theorem 4.9, we have

$$
\theta^{\prime}=\theta+d^{1} \tau \text { and } \gamma^{\prime}=\gamma+d_{r}^{2} \sigma-B\left(\tau \wedge\left(\theta+\frac{1}{2} d^{1} \tau\right)\right)
$$

Define the linear map $\Phi: J \oplus \mathfrak{a} \oplus J^{*} \rightarrow J \oplus \mathfrak{a} \oplus J^{*}$ by

$$
\Phi(x+v+Z)=x+\underbrace{v-\tau(x)}_{\in \mathfrak{a}} \underbrace{-\sigma(x, \cdot)+Z-\frac{1}{2} B_{\mathfrak{a}}(\tau(x), \tau(\cdot))+B_{\mathfrak{a}}(v, \tau(\cdot))}_{\in J^{*}} .
$$

We have

$$
\begin{aligned}
& \Phi\left(\alpha(x)+\beta(v)+\alpha^{\prime}(Z)\right) \\
& =\alpha(x)+\beta(v)-\tau(\alpha(x))-\sigma(\alpha(x), \cdot)+\alpha^{\prime}(Z)-\frac{1}{2} B_{\mathfrak{a}}(\tau(\alpha(x)), \tau(\cdot))+B_{\mathfrak{a}}(\beta(v), \tau(\cdot)) \\
& =\alpha(x)+\beta(v)-\beta(\tau(x)-\sigma(x, \alpha(\cdot)))+\alpha^{\prime}(Z)-\frac{1}{2} B_{\mathfrak{a}}(\beta(\tau(x)), \tau(\cdot))+B_{\mathfrak{a}}(\beta(v), \tau(\cdot)) \\
& =\alpha(x)+\beta(v)-\beta(\tau(x))+\alpha^{\prime}(Z)-\alpha^{\prime}(\sigma(x, \cdot))-\frac{1}{2} B_{\mathfrak{a}}(\tau(x), \beta(\tau(\cdot)))+B_{\mathfrak{a}}(v, \beta(\tau(\cdot))) \\
& =\alpha(x)+\beta(v)-\beta(\tau(x))-\alpha^{\prime}(\sigma(x, \cdot))+\alpha^{\prime}(Z)-\frac{1}{2} B_{\mathfrak{a}}(\tau(x), \tau(\alpha(\cdot)))+B_{\mathfrak{a}}(v, \tau(\alpha(\cdot))) \\
& =\alpha(x)+\beta(v-\tau(x))+\alpha^{\prime}\left(-\sigma(x, \cdot)+Z-\frac{1}{2} B_{\mathfrak{a}}(\tau(x), \tau(\cdot))+B_{\mathfrak{a}}(v, \tau(\cdot))\right) .
\end{aligned}
$$

Hence $\Phi \circ\left(\alpha+\beta+\alpha^{\prime}\right)=\left(\alpha+\beta+\alpha^{\prime}\right) \circ \Phi$.
We have

$$
\begin{aligned}
{[x, y]_{\theta, \gamma} } & =[x, y]+\theta(x, y)+\gamma(x, y, \cdot) \\
{[x, v]_{\theta, \gamma} } & =\rho(x) v+B_{\mathfrak{a}}(\theta(\cdot, x), v) \\
{[v, w]_{\theta, \gamma} } & =B_{\mathfrak{a}}(\rho(\cdot) v, w) \\
{[Z, x]_{\theta, \gamma} } & =Z([x, \cdot]) \\
{\left[Z_{1}, v+Z_{2}\right]_{\theta, \gamma} } & =0
\end{aligned}
$$

Hence the structure $[\cdot, \cdot]_{\theta^{\prime}, \gamma^{\prime}}$ of the Hom-Jacobi-algebra $\mathfrak{d}_{\theta^{\prime}, \gamma^{\prime}}$ is given by

$$
\begin{aligned}
{[x, y]_{\theta^{\prime}, \gamma^{\prime}}=} & {[x, y]+\theta(x, y)+d^{1} \tau(x, y)+\gamma(x, y, \cdot) } \\
& +d^{2} \sigma(x, y, \cdot)-B\left(\left(\theta+\frac{1}{2} d^{1} \tau\right) \wedge \tau\right)(x, y, \cdot)
\end{aligned}
$$

$$
\begin{aligned}
{[x, v]_{\theta^{\prime}, \gamma^{\prime}} } & =\rho(x) v+B_{\mathfrak{a}}\left(\theta(\cdot, x)+d^{1} \tau(\cdot, x), v\right) ; \\
{[v, w]_{\theta^{\prime}, \gamma^{\prime}} } & =B_{\mathfrak{a}}(\rho(\cdot) v, w) ; \\
{[Z, x]_{\theta^{\prime}, \gamma^{\prime}} } & =Z([x, \cdot]) ; \\
{\left[Z_{1}, v+Z_{2}\right]_{\theta^{\prime}, \gamma^{\prime}} } & =0 .
\end{aligned}
$$

We have

$$
\begin{aligned}
\Phi\left([x, y]_{\theta^{\prime}, \gamma^{\prime}}\right)= & {[x, y]+\theta(x, y)+d^{1} \tau(x, y)+\gamma(x, y, \cdot) } \\
& +d^{2} \sigma(x, y, \cdot)-B_{\mathfrak{a}}\left(\left(\theta+\frac{1}{2} d^{1} \tau\right) \wedge \tau\right)(x, y, \cdot) \\
& -\tau([x, y])-\sigma([x, y], \cdot)+\frac{1}{2} B_{\mathfrak{a}}(\tau([x, y], \tau(\cdot)) \\
& +B_{\mathfrak{a}}\left(\left(\theta(x, y)+d^{1} \tau(x, y), \tau(\cdot)\right) .\right.
\end{aligned}
$$

Hence, by (12), (35) and (34), we obtain
$\Phi\left([x, y]_{\theta^{\prime}, \gamma^{\prime}}\right)=[x, y]+\theta(x, y)+\gamma(x, y, \cdot)-\rho(x) \tau(y)-\rho(y) \tau(x)$

$$
-\sigma(y,[x, \cdot])-\sigma(x,[y, \cdot])
$$

$$
-B_{\mathfrak{a}}(\theta(x, \cdot), \tau(y))-B_{\mathfrak{a}}(\theta(y, \cdot), \tau(x))
$$

$$
-\frac{1}{2} B_{\mathfrak{a}}(\tau([x, \cdot]), \tau(y))-\frac{1}{2} B_{\mathfrak{a}}(\tau([y, \cdot]), \tau(x))+B_{\mathfrak{a}}(\rho(\cdot) \tau(x), \tau(y)) .
$$

On the other hand, we have

$$
\begin{aligned}
& {[\Phi(x), \Phi(y)]_{\theta, \gamma} } \\
= & {\left[x-\tau(x)-\sigma(x, \cdot)-\frac{1}{2} B_{\mathfrak{a}}(\tau(x), \tau(\cdot)), y-\tau(y)-\sigma(y, \cdot)-\frac{1}{2} B_{\mathfrak{a}}(\tau(y), \tau(\cdot))\right]_{\theta, \gamma} } \\
= & {[x, y]+\theta(x, y)+\gamma(x, y, \cdot)-\rho(x) \tau(y)-B_{\mathfrak{a}}(\theta(\cdot, x), \tau(y)) } \\
& -\sigma(y,[x, \cdot])-\frac{1}{2} B_{\mathfrak{a}}(\tau(y), \tau([x, \cdot]))-\rho(y) \tau(x)-B_{\mathfrak{a}}(\theta(\cdot, y), \tau(x)) \\
& +B_{\mathfrak{a}}(\rho(\cdot) \tau(x), \tau(y))-\sigma(x,[y, \cdot])-\frac{1}{2} B_{\mathfrak{a}}(\tau(x), \tau([y, \cdot])) .
\end{aligned}
$$

Therefore $\Phi\left([x, y]_{\theta^{\prime}, \gamma^{\prime}}\right)=[\Phi(x), \Phi(y)]_{\theta, \gamma}$.
Similarly, we show that $\Phi\left([x, w]_{\theta^{\prime}, \gamma^{\prime}}\right)=[\Phi(x), \Phi(w)]_{\theta, \gamma}, \Phi\left([x, Z]_{\theta^{\prime}, \gamma^{\prime}}\right)=$ $[\Phi(x), \Phi(Z)]_{\theta, \gamma}, \Phi\left([v, w]_{\theta^{\prime}, \gamma^{\prime}}\right)=[\Phi(v), \Phi(w)]_{\theta, \gamma}$.

Remark 4.2. We have $B(\Phi(x), \Phi(y))=2 \sigma(x, y)$ and $B(x, y)=0$.
Let G the subgroup of $C_{Q}^{1}(\mathfrak{J}, \mathfrak{a})$ generated by the set

$$
\left\{(\tau, \sigma) \in C_{Q}^{1}(\mathfrak{J}, \mathfrak{a}) \mid d^{2} \sigma=0\right\} .
$$

Hence, we have a new $2^{n d}$ quadratic cohomology group of the metric Hom-Jacobi-Jordan algebra \mathfrak{J} on $\mathfrak{a} \times \mathfrak{J}^{*}$, with the action " \bullet ". That is

$$
H_{Q}^{2}(\mathfrak{J}, \mathfrak{a})=Z_{Q}^{2}(\mathfrak{J}, \mathfrak{a}) / G
$$

5. Quadratic extensions

In this section, we study quadratic extensions of Hom-Jacobi-Jordan algebras and we show that they are classified by the cohomology group $H_{Q}^{2}(\mathfrak{J}, \mathfrak{a})$. Let $\left(\mathfrak{J},[\cdot, \cdot]_{\mathfrak{J}}, \alpha_{\mathfrak{J}}, B\right)$ be a metric of Hom-Jacobi-Jordan algebra and I an isotropic ideal of \mathfrak{J}. For all $x, y \in \mathfrak{J}$, we denote $\left[\pi_{n}(x), \pi_{n}(y)\right]_{\widehat{\mathfrak{J}}}=\pi_{n}([x, y])$, $\overline{\alpha_{\mathfrak{J}}}\left(\pi_{n}(x)\right)=\pi_{n} \circ \alpha_{\mathfrak{J}}(x)$ and $\bar{B}\left(\pi_{n}(x), \pi_{n}(y)\right)=B(x, y)$ where π_{n} is the natural projection $\mathfrak{J} \rightarrow \mathfrak{J} / I$. If $i: \mathfrak{a} \rightarrow \mathfrak{J}$ is a homomorphism, we denote $\bar{i}=\pi_{n} \circ i$.

Definition 5.1. Let $(J,[\cdot, \cdot], \alpha)$ be a Hom-Jacobi-Jordan algebra, let I be an isotropic ideal in J and $\left(\mathfrak{a}, \rho, \beta, B_{\mathfrak{a}}\right)$ a quadratic representation of $J . \quad A$ quadratic extension $(\mathfrak{J}, I, i, \pi)$ of J by \mathfrak{a} is an exact sequence

$$
0 \longrightarrow(\mathfrak{a}, \rho, \beta) \xrightarrow{\bar{i}}\left(\tilde{J} / I,\left[\cdot, \cdot, \sqrt{\mathfrak{J}}^{,} \overline{\alpha_{\mathfrak{J}}}, \bar{B}\right) \xrightarrow{\pi}(J,[\cdot, \cdot], \alpha) \longrightarrow 0\right.
$$

such that $\left(\mathfrak{J},[\cdot, \cdot]_{\mathfrak{J}}, \alpha_{\mathfrak{J}}, B\right)$ is a metric Hom-Jacobi-Jordan algebra, $\overline{\alpha_{\mathfrak{J}}} \circ \bar{i}=$ $\bar{i} \circ \beta, \alpha \circ \pi=\pi \circ \overline{\alpha_{\mathfrak{J}}}, \bar{i}(\mathfrak{a})=I^{\perp} / I$ and $\bar{i}: \mathfrak{a} \rightarrow I^{\perp} / I$ is an isometry.

Proposition 5.1. Let

$$
\begin{equation*}
0 \longrightarrow \mathfrak{a} \xrightarrow{\bar{i}} \mathfrak{J} / I \xrightarrow{\pi} J \longrightarrow 0 \tag{52}
\end{equation*}
$$

be an extension of J by \mathfrak{a} such that $i: \mathfrak{a} \rightarrow i(\mathfrak{a})$ is an isometry. Then the quadruple ($\mathfrak{J}, I, i, \pi)$ defines a quadratic extension if and only if the following sequence defines an extension of \mathfrak{J} / I by J^{*} :

$$
\begin{equation*}
0 \longrightarrow J^{*} \xrightarrow{\tilde{\pi}^{*}} \mathfrak{J} \xrightarrow{\pi_{n}} \mathfrak{J} / I \longrightarrow 0 \tag{53}
\end{equation*}
$$

where π_{n} is the natural projection $\mathfrak{J} \rightarrow \mathfrak{J} / I, \tilde{\pi}=\pi \circ \pi_{n}$, $\tilde{\pi}^{*}$ the dual map of $\tilde{\pi}$ where we identify J^{*} with J.

Proof. We have that

$$
0 \longrightarrow \mathfrak{a} \xrightarrow{\bar{i}} \mathfrak{J} / I \xrightarrow{\pi} J \longrightarrow 0
$$

is an extension of J by \mathfrak{a} such that $i: \mathfrak{a} \rightarrow i(\mathfrak{a})$ is an isometry. Then

$$
\begin{align*}
\overline{\alpha_{\mathfrak{J}}} \circ \bar{i} & =\bar{i} \circ \beta, \tag{54}\\
\alpha \circ \pi & =\pi \circ \overline{\alpha_{\mathfrak{J}}}, \tag{55}\\
\bar{i}(\mathfrak{a}) & =\operatorname{ker} \pi, \tag{56}\\
B(i(v), i(w)) & =B(v, w) . \tag{57}
\end{align*}
$$

We assume that $(\mathfrak{J}, I, i, \pi)$ is a quadratic extension. Then $\operatorname{Im}(i)=I^{\perp} / I$.

First, we show that $\alpha_{\mathfrak{J}}^{*} \circ \tilde{\pi}^{*}=\tilde{\pi}^{*} \circ \alpha^{*}$. We have

$$
\alpha \circ \pi=\pi \circ \overline{\alpha_{\mathfrak{J}}}=\pi \circ \pi_{n} \circ \alpha_{\mathfrak{J}}=\tilde{\pi} \circ \alpha_{\mathfrak{J}} .
$$

Hence $(\alpha \circ \pi)^{*}=\left(\tilde{\pi} \circ \alpha_{\mathfrak{J}}\right)^{*}$. Then $\pi^{*} \circ \alpha^{*}=\alpha_{\mathfrak{J}}^{*} \circ \tilde{\pi}^{*}$.
Now, we show that $\operatorname{Im}\left(\tilde{\pi}^{*}\right)=\operatorname{ker}\left(\pi_{n}\right)$. By $\operatorname{ker} \pi=i(\mathfrak{a})=I^{\perp} / I$ and $\tilde{\pi}=\pi \circ \pi_{n}$ we obtain $\operatorname{ker}(\tilde{\pi})=I^{\perp}$. Since $\operatorname{Im}\left(\tilde{\pi}^{*}\right)=(\operatorname{ker}(\tilde{\pi}))^{\perp}$, one can deduce $\operatorname{Im}\left(\tilde{\pi}^{*}\right)=I$. So $\operatorname{Im}\left(\tilde{\pi}^{*}\right)=\operatorname{ker}\left(\pi_{n}\right)$ and the sequence

$$
0 \longrightarrow J^{*} \xrightarrow{\tilde{\pi}^{*}} \mathfrak{J}^{*} \cong \mathfrak{J} \xrightarrow{\pi_{n}} \mathfrak{J} / I \longrightarrow 0
$$

defines an extension of \mathfrak{J} / I by J^{*}.
Conversely, we assume that the sequence

$$
0 \longrightarrow J^{*} \xrightarrow{\tilde{\pi}^{*}} \mathfrak{J}^{*} \cong \mathfrak{J} \xrightarrow{\pi_{n}} \mathfrak{J} / I \longrightarrow 0
$$

defines an extension. Then $\alpha_{\mathfrak{J}}^{*} \circ \tilde{\pi}^{*}=\pi^{*} \circ \alpha^{*}, \overline{\alpha_{\mathfrak{J}}} \circ \pi_{n}=\pi_{n} \circ \alpha_{\mathfrak{J}}$ and $\operatorname{Im}\left(\tilde{\pi}^{*}\right)=\operatorname{ker}\left(\pi_{n}\right)$. We have $\operatorname{Im}\left(\tilde{\pi}^{*}\right)=(\operatorname{ker}(\tilde{\pi}))^{\perp}, \operatorname{Im}\left(\tilde{\pi}^{*}\right)=\operatorname{ker}\left(\pi_{n}\right)$ and $\operatorname{ker}\left(\pi_{n}\right)=I$. Hence, $\operatorname{ker}(\tilde{\pi})=I^{\perp}$ and $I \subset I^{\perp}$. Then $\operatorname{ker}(\pi)=I^{\perp} / I$. By (56), we have $\operatorname{Im}(\bar{i})=\operatorname{ker}(\pi)=I^{\perp} / I$. Moreover, we have (54), (55) and (57). Therefore, $(\mathfrak{J}, I, i, \pi)$ is a quadratic extension.
5.1. Twofold extensions. Twofold extensions of Lie algebras were studied in [10] (also called Standard models in [9). In the following, we define and study twofold extensions of Hom-Jacobi-Jordan algebras.

Let $(J,[\cdot, \cdot], \alpha)$ be a Hom-Jacobi-Jordan algebra and let $\left(\mathfrak{a}, \rho, \beta, B_{\mathfrak{a}}\right)$ be a quadratic representation of J. For each $(\theta, \gamma) \in Z_{Q}^{2}(J, \mathfrak{a})$, we want to define structures of a metric Hom-Jacobi-Jordan algebra on the vector space $\mathfrak{d}_{\theta, \gamma}:=J \oplus \mathfrak{a} \oplus J^{*}$. Let $\alpha_{\mathfrak{d}_{\theta, \gamma}}=\alpha+\beta+\alpha^{*}$. We define a bracket on $\mathfrak{d}_{\theta, \gamma}$ by

$$
\begin{aligned}
{[x, y]_{\theta, \gamma} } & =[x, y]+\theta(x, y)+\gamma(x, y, \cdot) ; \\
{[x, v]_{\theta, \gamma} } & =\rho(x) v+B_{\mathfrak{a}}(\theta(\cdot, x), v) ; \\
{[v, w]_{\theta, \gamma} } & =B_{\mathfrak{a}}(\rho(\cdot) v, w) ; \\
{[Z, x]_{\theta, \gamma} } & =Z([x, \cdot]) ; \\
{\left[Z_{1}, v+Z_{2}\right]_{\theta, \gamma} } & =0 .
\end{aligned}
$$

We define a symmetric bilinear form B on $\mathfrak{d}_{\theta, \gamma}$ by

$$
B\left(x+v+Z_{1}, y+w+Z_{2}\right)=Z_{1}(y)+Z_{2}(x)+B_{\mathfrak{a}}(v, w)
$$

for all $x, y \in J, v, w \in \mathfrak{a}, Z_{1}, Z_{2} \in J^{*}$. We define a linear map $i_{0}: \mathfrak{a}_{\theta, \gamma} \rightarrow$ $\mathfrak{d}_{\theta, \gamma} / J^{*}$ by $i_{0}(v)=v+J^{*}$ and a linear map $\pi_{0}: \mathfrak{d}_{\theta, \gamma} / J^{*} \rightarrow J$ by $\pi_{0}(x+v+$ $\left.J^{*}\right)=x$.

Proposition 5.2. With the above notations, the quadruple ($\left.\mathfrak{d}_{\theta, \gamma}, J^{*}, i_{0}, \pi_{0}\right)$ defines a quadratic extension.

Proof. We only prove that $\left(\mathfrak{d}_{\theta, \gamma},[, \cdot,]_{\theta, \gamma}, \alpha_{\boldsymbol{o}_{\theta, \gamma}}, B\right)$ is a metric Hom-JordanJacobi algebra. Denote $\mathfrak{d}_{\theta, \gamma}=\mathfrak{n}$ and define a trilinear form $\gamma_{\mathfrak{n}}$ on \mathfrak{n} by $\gamma_{\mathfrak{n}}(a, b, c)=B\left([a, b]_{\theta, \gamma}, c\right)$ for all $a, b, c \in \mathfrak{n}$. Using Theorem [3.3, it is sufficient to show that γ_{n} is symmetric and $d_{r}^{3} \gamma_{\mathfrak{n}}=0$.

We have

$$
\gamma_{\mathfrak{n}}(x, y, z)=B\left([x, y]_{\theta, \gamma}, z\right)=B([x, y]+\theta(x, y)+\gamma(x, y, \cdot), z)=\gamma(x, y, z) .
$$

Since γ is symmetric, we obtain that the restriction of $\gamma_{\mathfrak{n}}$ to J^{3} is symmetric. For all $x, y \in J, v \in \mathfrak{a}$, we have

$$
\begin{aligned}
\gamma_{\mathfrak{n}}(x, y, v) & =B\left([x, y]_{\theta, \gamma}, v\right) \\
\gamma_{\mathfrak{n}}(x, v, y) & =B\left([x, v]_{\theta, \gamma}(\theta(x, y), v)\right.
\end{aligned}=B_{\mathfrak{a}}(\theta(x, y), v) .
$$

Therefore, using the fact that $[x, y]_{\theta, \gamma}=[y, x]_{\theta, \gamma}$ and $[x, v]_{\theta, \gamma}=[v, x]_{\theta, \gamma}$, one can deduce that the restriction of γ_{n} to $J^{2} \times V$ is symmetric.

For all $x \in J, v, w \in \mathfrak{a}$, we have

$$
\begin{aligned}
& \gamma_{\mathfrak{n}}(x, v, w)=B\left([x, v]_{\theta, \gamma}, w\right)=B_{\mathfrak{a}}(\rho(x) w, v), \\
& \gamma_{\mathfrak{n}}(v, w, x)=B\left([v, w]_{\theta, \gamma}, x\right)=B_{\mathfrak{a}}(\rho(x) v, w),
\end{aligned}
$$

and since $\left(\mathfrak{a}, \rho, \beta, B_{\mathfrak{a}}\right)$ is a quadratic representation of J on \mathfrak{a}, the restriction of γ_{n} to $J \times V^{2}$ is symmetric.

For all $u, v, w \in \mathfrak{a}$, we have

$$
\gamma_{\mathfrak{n}}(v, w, u)=B\left([v, w]_{\theta, \gamma}, u\right)=B\left(B_{\mathfrak{a}}(\rho(\cdot) v, w), u\right)=0 .
$$

Thus, the restriction of $\gamma_{\mathfrak{n}}$ to V^{3} is symmetric too.
For all $x, y, z, a \in J$ and for $t=\alpha(a)$, we have

$$
\begin{align*}
& d_{r}^{3} \gamma_{\mathfrak{n}}(x, y, z, t) \\
= & \gamma([x, y], \alpha(z), t)+\gamma([x, z], \alpha(y), t)+\gamma([y, z], \alpha(x), t) \tag{58}\\
& +\gamma(x, y,[\alpha(z), t])+\gamma(x, z,[\alpha(y), t])+\gamma(y, z,[\alpha(x), t]) \tag{59}\\
& +\gamma(\alpha(z), t,[x, y])+\gamma(\alpha(y), t,[x, z])+\gamma(\alpha(x), t,[y, z]) \tag{60}\\
& +\gamma([\alpha(z), t], x, y)+\gamma([\alpha(y), t], x, z)+\gamma([\alpha(x), t], y, z) \tag{61}\\
& +B_{\mathfrak{a}}(\theta(y, x), \theta(\alpha(z), t))+B_{\mathfrak{a}}(\theta(z, x), \theta(\alpha(y), t))+B_{\mathfrak{a}}(\theta(z, y), \theta(\alpha(x), t)) \tag{62}\\
& +B_{\mathfrak{a}}(\theta(t, \alpha(z)), \theta(x, y))+B_{\mathfrak{a}}(\theta(t, \alpha(y)), \theta(x, z))+B_{\mathfrak{a}}(\theta(t, \alpha(x)), \theta(y, z)) . \tag{63}
\end{align*}
$$

Since γ is symmetric, we get

$$
\text { (58) } \left.\left.+59=d_{r} \gamma(x, y, z, t) \text { and } 60\right)+61\right)=d_{r} \gamma(x, y, z, t) \text {. }
$$

Since θ is a 2 -Hom-cochain, by Proposition 4.5, we obtain

$$
(62)+(63)=B_{\mathfrak{a}}(\theta \wedge(\theta \circ \alpha))(x, y, z, a) .
$$

Thus $d_{r}^{3} \gamma_{\mathfrak{n}}(x, y, z, t)=2 d_{r} \gamma(x, y, z, t)+B_{\mathfrak{a}}(\theta \wedge(\theta \circ \alpha))(x, y, z, a)$. Then, since (θ, γ) is a quadratic 2 -cocycle, we obtain $d_{r}^{3} \gamma_{\mathfrak{n}}(x, y, z, t)=0$. By straightforward computations, for all $x, y, z \in J, v \in \mathfrak{a}$, we have

$$
\begin{aligned}
& \frac{1}{2} d_{r}^{3} \gamma_{\mathfrak{n}}(x, y, z, v) \\
= & B_{\mathfrak{a}}(\theta([x, y], \alpha(z)), v)+B_{\mathfrak{a}}(\theta([x, z], \alpha(y)), v)+B_{\mathfrak{a}}(\theta([y, z], \alpha(x)), v) \\
& +B(\rho(\alpha(z)) \theta(x, y), v)+B(\rho(\alpha(x)) \theta(y, z), v)+B(\rho(\alpha(y)) \theta(x, z), v) \\
= & \frac{1}{2} B_{\mathfrak{a}}\left(d^{2} \theta(x, y, z), v\right) .
\end{aligned}
$$

Therefore $d^{3} \gamma_{\mathfrak{n}}(x, y, z, v)=0$ by (θ, γ) is a quadratic 2 -cocycle.
Similarly, for any $x, y \in J, u, v \in \mathfrak{a}$, we get

$$
\begin{aligned}
& \frac{1}{2} d_{r}^{3} \gamma_{\mathfrak{n}}(x, y, u, v) \\
= & B_{\mathfrak{n}}(u, \beta(\rho([x, y]) v))+B_{\mathfrak{a}}(u, \rho(x) \rho(\alpha(y)) v)+B_{\mathfrak{a}}(u, \rho(y) \rho(\alpha(x)) v)
\end{aligned}
$$

Therefore, by (15), we have $d_{r}^{3} \gamma_{\mathfrak{n}}(x, y, u, v)=0$. For all $x \in J, u, v, w, s \in \mathfrak{a}$, $Z \in J^{*}$, by $B(Z, u)=0$, we have $d^{3} \gamma_{\mathfrak{n}}(u, v, w, x)=0, d^{3} \gamma_{\mathfrak{n}}(u, v, x, w)=0$ and $d^{3} \gamma_{\mathfrak{n}}(u, v, w, s)=0$. The rest of the proof is straightforward.

Definition 5.2. We denote the quadratic extension $\left(\mathfrak{d}_{\theta, \gamma}, J^{*}, i_{0}, \pi_{0}\right)$, constructed in Proposition 5.2, by $\mathfrak{d}_{\theta, \gamma}(\mathfrak{a}, J, \rho)$ and call it a twofold extension.
5.2. Classification by cohomology. In this subsection, we show that quadratic extensions are classified by the cohomology group $H_{Q}^{2}(\mathfrak{J}, \mathfrak{a})$.

Definition 5.3. Two quadratic extensions $\left(\mathfrak{J}_{1}, I_{1}, i_{1}, \pi_{1}\right)$, $\left(\mathfrak{J}_{2}, I_{2}, i_{2}, \pi_{2}\right)$ of J by \mathfrak{a} are called to be equivalent if there exists an isomorphism of metric Lie algebras $\Phi: \mathfrak{J}_{1} \rightarrow \mathfrak{J}_{2}$ which maps i_{1} onto i_{2} and satisfies $\bar{\Phi} \circ i_{1}=i_{2}$ and $\pi_{2} \circ \bar{\Phi}=\pi_{1}$, where $\bar{\Phi}: \mathfrak{J}_{1} / I_{1} \rightarrow \mathfrak{J}_{2} / I_{2}$ is the induced map.

Proposition 5.3. Any quadratic extension ($\mathfrak{J}, I, i, \pi)$ is equivalent to a twofold extension $\left(\mathfrak{d}_{\theta, \gamma}, J^{*}, i_{0}, \pi_{0}\right)$.

Proof. Let

$$
\mathcal{E}: 0 \longrightarrow \mathfrak{a} \xrightarrow{\bar{i}} \mathfrak{J} / I \xrightarrow{\pi} J \longrightarrow 0
$$

be the extension of J defined in (52) and s a section of \mathcal{E}. Then, by Proposition 2.8, we have $\mathfrak{J} / I=s(J) \oplus \bar{i}(\mathfrak{a})$ and the extension \mathcal{E} is equivalent to

$$
0 \longrightarrow(\mathfrak{a}, \rho, \beta) \xrightarrow{i_{0}}\left(M,[\cdot, \cdot]_{\theta}, \alpha_{M}\right) \xrightarrow{\pi_{0}}(J,[\cdot, \cdot], \alpha) \longrightarrow 0,
$$

where θ is a 2-cocyle of J on \mathfrak{a} and $M=J \oplus \mathfrak{a}$.
Now, let

$$
\mathcal{E}^{*}: 0 \longrightarrow J^{*} \xrightarrow{\tilde{\pi}^{*}} \mathfrak{J} \xrightarrow{\pi_{n}} \mathfrak{J} / I \longrightarrow 0
$$

be the extension defined in (53) and s^{\prime} a section of \mathcal{E}^{*}. Then, by Proposition 2.8, we have $\mathfrak{J}=s^{\prime}(J / I) \oplus \tilde{\pi}^{*}\left(J^{*}\right)$ and the extension \mathcal{E}^{*} is equivalent to

$$
0 \longrightarrow\left(J^{*}, \rho^{\prime}, \beta^{\prime}\right) \xrightarrow{i_{0}}\left(M^{\prime},[\cdot, \cdot]_{\gamma^{\prime}}, \alpha_{M^{\prime}}\right) \xrightarrow{\pi_{0}}\left(\mathfrak{J} / I,[\cdot, \cdot]_{\overline{\mathfrak{J}}}, \overline{\alpha_{\mathfrak{J}}}\right) \longrightarrow 0
$$

where γ^{\prime} is a 2-cocycle of \mathfrak{J} / I on J^{*} and $M^{\prime}=\mathfrak{J} / I \oplus J^{*}$.
We have $\mathfrak{J}=s^{\prime}(\mathfrak{J} / I) \oplus \tilde{\pi}^{*}\left(J^{*}\right)=s^{\prime}(s(J) \oplus i(\mathfrak{a})) \oplus \tilde{\pi}^{*}\left(J^{*}\right)$. We can write $\pi_{n}: s^{\prime}(\mathfrak{J} / I) \rightarrow \mathfrak{J} / I$ and $\pi: s(J) \rightarrow J$. Hence $\tilde{\pi}^{*}\left(J^{*}\right)=\left(s^{\prime} s(J)\right)^{*}$.

Using $\mathfrak{J}=s^{\prime}(J / I) \oplus \tilde{\pi}^{*}\left(J^{*}\right)$ and $\tilde{\pi}^{*}\left(J^{*}\right)=\left(s^{\prime} s(J)\right)^{*}$, we obtain $\mathfrak{J}=s^{\prime} s(J) \oplus$ $s^{\prime} i(\mathfrak{a}) \oplus\left(s^{\prime} s(J)\right)^{*}$. Then, using Proposition 4.3, for all $x \in J, v \in \mathfrak{a}, Z \in \mathfrak{J}^{*}$, we have

$$
\begin{aligned}
{\left[s^{\prime} s(x), s^{\prime} s(y)\right]_{\mathfrak{J}} } & =\left[s^{\prime} s(x), s^{\prime} s(y)\right]_{s^{\prime} s(J)}+\theta\left(s^{\prime} s(x), s^{\prime} s(y)\right)+\gamma\left(s^{\prime} s(x), s^{\prime} s(y), \cdot\right) \\
{\left[s^{\prime} s(x), s^{\prime} i(v)\right]_{\mathfrak{J}} } & =\rho\left(s^{\prime} s(x)\right) v+B_{\rho}\left(s^{\prime} i(v), \theta\left(s^{\prime} s(x), \cdot\right)\right) \\
{\left[s^{\prime} i(v), s^{\prime} i(w)\right]_{\mathfrak{J}} } & =B_{\mathfrak{a}}\left(\rho(\cdot)\left(s^{\prime} i(v)\right), s^{\prime} i(w)\right) \\
{\left[Z, s^{\prime} s(x)\right]_{\mathfrak{J}} } & =Z\left(\left[s^{\prime} s(x), \cdot\right]\right) \\
{\left[Z_{1}, s^{\prime} i(v)+Z_{2}\right]_{\mathfrak{J}} } & =0
\end{aligned}
$$

Now, we define a linear map $\Psi: J \oplus \mathfrak{a} \oplus J^{*} \rightarrow \mathfrak{J}$ by $\Psi(x+v+Z)=$ $s^{\prime} s(x)+s^{\prime} i(v)+\left(s^{\prime} s\right)^{*}(Z)$ and a bilinear map $[\cdot, \cdot]_{\mathfrak{d}}: J \oplus \mathfrak{a} \oplus J^{*} \rightarrow J \oplus \mathfrak{a} \oplus J^{*}$ by
$\left[x+v+Z, y+w+Z^{\prime}\right]_{\mathfrak{O}}=\Psi^{-1}\left(\left[s^{\prime} s(x)+s^{\prime} i(v)+\left(s^{\prime} s\right)^{*}(Z), s^{\prime} s(y)+s^{\prime} i(w)+\left(s^{\prime} s\right)^{*}\left(Z^{\prime}\right)\right]_{\mathfrak{J}}\right)$.
Then

$$
\begin{aligned}
& {\left[\Psi(x+v+Z), \Psi\left(y+w+Z^{\prime}\right)\right]_{\mathfrak{J}}} \\
& =\left[s^{\prime} s(x)+s^{\prime} i(v)+\left(s^{\prime} s\right)^{*}(Z), s^{\prime} s(y)+s^{\prime} i(w)+\left(s^{\prime} s\right)^{*}\left(Z^{\prime}\right)\right]_{\mathfrak{J}} \\
& =\Psi\left(\left[x+v+Z, y+w+Z^{\prime}\right]_{\mathfrak{o}}\right)
\end{aligned}
$$

Moreover, we have $\bar{\Psi} \circ i_{0}(v)=i(v)$ and $\pi \circ \bar{\Psi}(\bar{x})=\pi \circ s(x)=x=\pi_{0}(x)$.
Lemma 5.4. Let $\mathfrak{d}_{\theta, \gamma}:=\mathfrak{d}_{\theta, \gamma}(\mathfrak{a}, J, \rho)$ and $\mathfrak{d}_{\theta^{\prime}, \gamma^{\prime}}:=\mathfrak{d}_{\theta^{\prime}, \gamma^{\prime}}(\mathfrak{a}, J, \rho)$ be two twofold extensions such that $(\theta, \gamma) \cong\left(\theta^{\prime}, \gamma^{\prime}\right)$. Then the twofold extensions $\mathfrak{d}_{\theta, \gamma}:=\mathfrak{d}_{\theta, \gamma}(\mathfrak{a}, J, \rho)$ and $\mathfrak{d}_{\theta^{\prime}, \gamma^{\prime}}:=\mathfrak{d}_{\theta^{\prime}, \gamma^{\prime}}(\mathfrak{a}, J, \rho)$ are equivalent.

Proof. Using Theorem 4.9, we have $\theta^{\prime}=\theta+d_{r}^{1} \tau$ and $\gamma^{\prime}=\gamma+d_{r}^{2} \sigma-$ $B\left(\tau \wedge\left(\theta+\frac{1}{2} d^{1} \tau\right)\right)$ where $(\tau, \sigma) \in G$. Then, $d_{r}^{2} \sigma=0$. Define a linear map $\Phi: J \oplus \mathfrak{a} \oplus J^{*} \rightarrow J \oplus \mathfrak{a} \oplus J^{*}$ by

$$
\Phi(x+v+Z)=x+\underbrace{v-\tau(x)}_{\in \mathfrak{a}}+\underbrace{Z-\frac{1}{2} B_{\mathfrak{a}}(\tau(x), \tau(\cdot))+B_{\mathfrak{a}}(v, \tau(\cdot))}_{\in J^{*}}
$$

Then Φ is an isomorphism of metric Hom-Jacobi-algebras (see the proof of

Proposition 4.11). Finally, we show that Φ is isometric:

$$
\begin{aligned}
B(\Phi(x), \Phi(y)) & =B\left(x-\tau(x)-\frac{1}{2} B_{\mathfrak{a}}(\tau(x), \tau(\cdot)), y-\tau(y)-\frac{1}{2} B_{\mathfrak{a}}(\tau(y), \tau(\cdot))\right) \\
& =B_{\mathfrak{a}}(\tau(x), \tau(y))-\frac{1}{2} B_{\mathfrak{a}}(\tau(y), \tau(x))-\frac{1}{2} B_{\mathfrak{a}}(\tau(x), \tau(y)) \\
& =0=B(x, y)
\end{aligned} \quad \begin{aligned}
& B(\Phi(x), \Phi(v))=B\left(x-\tau(x)-\frac{1}{2} B_{\mathfrak{a}}(\tau(x), \tau(\cdot)), v+B_{\mathfrak{a}}(v, \tau(\cdot))\right) \\
&=-B_{\mathfrak{a}}(\tau(x), v)+B_{\mathfrak{a}}(v, \tau(x))=0 \\
& B(\Phi(u), \Phi(v))=B\left(u+B_{\mathfrak{a}}(u, \tau(\cdot)), v+B_{\mathfrak{a}}(v, \tau(\cdot))\right) \\
&=B_{\mathfrak{a}}(u, v)
\end{aligned}
$$

Lemma 5.5. Let $\mathfrak{d}_{\alpha, \gamma}:=\mathfrak{d}_{\theta, \gamma}(\mathfrak{a}, J, \rho)$ and $\mathfrak{d}_{\theta^{\prime}, \gamma^{\prime}}:=\mathfrak{d}_{\theta^{\prime}, \gamma^{\prime}}(\mathfrak{a}, J, \rho)$ be two equivalent twofold extensions. Then the quadratic 2 -cocycle $\left(\theta-\theta^{\prime}, \gamma-\gamma^{\prime}\right)$ is trivial.

Proof. Let $\Phi(x)=f(x)+\tau(x)+\zeta(x)$ where $f: J \rightarrow J, \tau: J \rightarrow \mathfrak{a}$ and $\zeta: J \rightarrow J^{*}$. Using $\pi \circ \Phi^{\prime}=\pi$, we obtain $f(x)=x$. Then

$$
\Phi(x)=x+\tau(x)+\zeta(x)
$$

Let $\Phi(v)=g(v)+h(v)+\eta(v)$, where $g: \mathfrak{a} \rightarrow J, h: \mathfrak{a} \rightarrow \mathfrak{a}$ and $\eta: \mathfrak{a} \rightarrow J^{*}$. Using $\Phi^{\prime} \circ i=i$, we obtain $g(v)=0$ and $h(v)=v$. Then $\Phi(v)=v+\eta(v)$. Using $B(v, x)=B(\Phi(v), \Phi(x))$, we obtain $\eta(v)(x)=-B_{\mathfrak{a}}(v, \tau(x))$. Since Φ is an isometry and $\Phi\left(J^{*}\right) \subset J^{*}$, we obtain $\Phi(Z)=Z$.

Using $B(\Phi(x), \Phi(y))=B(x, y)$, we obtain $B_{\mathfrak{a}}(\tau(x), \tau(y))=-\zeta(x)(y)-$ $\zeta(y)(x)$. Since $\zeta(x)(y)=\zeta(y)(x)$, we obtain $\zeta(x, y)=-\frac{1}{2} B_{\mathfrak{a}}(\tau(x), \tau(y))$. By $\Phi(d(x, y))=d^{\prime}(\Phi(x), \Phi(y))$, we obtain

$$
\theta(x, y)=\theta^{\prime}(x, y)-\tau\left([(x, y])+\rho(x) \tau(y)+\rho(y) \tau(x)=\theta^{\prime}(x, y)-d^{1} \tau(x, y)\right.
$$

and

$$
\gamma(x, y, \cdot)=\gamma^{\prime}(x, y, \cdot)-B_{\mathfrak{a}}\left(\left(\theta^{\prime}+\frac{1}{2} d(-\tau)\right) \wedge(-\tau)\right)(x, y, \cdot)
$$

Hence

$$
\left\{\begin{array}{l}
\theta=\theta^{\prime}+d^{1}(-\tau) \\
\gamma=\gamma^{\prime}(x, y, \cdot)-B_{\mathfrak{a}}\left(\left(\alpha^{\prime}+\frac{1}{2} d(-\tau)\right) \wedge(-\tau)\right)(x, y, \cdot)
\end{array}\right.
$$

Using Proposition 2.2, we have $d_{c}^{2} \theta=0$. Therefore, using Proposition 4.9, we have $d_{Q}^{2}(\theta, \gamma)=d_{Q}^{2}\left(\theta^{\prime}, \gamma^{\prime}\right)$.

Bringing the previous results together, we have the following result.

Theorem 5.6. The set $\operatorname{Ext}(J, \mathfrak{a})$ of equivalence classes of quadratic extensions $(\mathfrak{J}, I, i, \pi)$ of J by \mathfrak{a} is in a one-to-one correspondence with $Z_{Q}^{2}(J, \mathfrak{a}) / G$, that is,

$$
\operatorname{Ext}(J, \mathfrak{a}) \cong H_{Q}^{2}(J, \mathfrak{a})
$$

References

[1] A. L. Agore and G. Militaru, On a type of commutative algebras, Linear Algebra Appl. 485 (2015), 222-249.
[2] F. Ammar, Z. Ejbehi, and A. Makhlouf, Cohomology and deformations of Homalgebras, J. Lie Theory 21 (2011), 813-836.
[3] S. Benayadi and A. Makhlouf, Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms, J. Geom. Phys. 76 (2014), 38-60.
[4] D. Burde and A. Fialowski, Jacobi-Jordan algebras, Linear Algebra Appl. 459 (2014), 586-594.
[5] J. M. Casas, M. A. Insua, and N. Pacheco Rego, On universal central extensions of Hom-Lie algebras, Hacet. J. Math. Stat. 44 (2015), 277-288.
[6] C. E. Haliya and G. D. Houndedji, Hom-Jacobi-Jordan and Hom-antiassociative algebras with symmetric invariant nondegenerate bilinear forms, Quasigroups Related Systems 29 (2021), 61-88.
[7] J. T. Hartwig, D. Larsson, and S. D. Silvestrov, Deformations of Lie algebras using σ-derivations, J. Algebra 295 (2006), 314-361.
[8] Q. Jin and X. Li, Hom-Lie algebra structures on semi-simple Lie algebras, J. Algebra 319 (2008), 1398-408.
[9] I. Kath and M. Olibrich, Metric Lie algebras and quadratic extensions, Transform. Groups 11 (2006), 87-131.
[10] I. Kath and M. Olbrich, Metric Lie algebras with maximal isotropic centre, Math. Z. 246 (2004), 23-53.
[11] D. Larsson and S. D. Silvestrov, Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities. J. Algebra 288 (2005), 321-344.
[12] A. Makhlouf and S. D. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl. 2 (2008), 51-64.
[13] A. Makhlouf and S. D. Silvestrov, Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras, Forum Math. 22 (2010), 715-739.
[14] A. Medina and P. Revoy, Algèbres de Lie et produit scalaire invariant, Ann. Sci. l'É.N.S. 18 (1985), 553-561.
[15] J. V. Neumann, P. Jordan, and E. Wigner, On an algebraic generalization of the quantum mechanical formalism, Ann. Math. 35 (1934), 29-64.
[16] N. Saadaoui, Extensions of Hom-Jacobi-Jordan algebras, 2022, 21 pp. URL
[17] Y. Sheng, Representations of Hom-Lie algebras, Algebr. Represent. Theory 15 (2012), 1081-1098.
[18] S. Okubo and K. Noriaki, Jordan-Lie super algebra and Jordan-Lie triple system, J. Algebra 198 (1997), 388-411.
[19] A. Wörz-Busekroz, Bernstein algebras, Arch. Math. 48 (1987), 388-398.
[20] P. Zusmanovich, Special and exceptional mock-Lie algebras, Linear Algebra Appl. 518 (2017), 79-96.

University of Gabes, Higher Institute of Computer Science and Multimedia Gabes, City Elamal 4, Gabes, Tunisia

E-mail address: najib.saadaoui@isimg.tn

[^0]: Received July 6, 2023.
 2020 Mathematics Subject Classification. 16W10, 16S70, 17B60, 17B61, 20 J06.
 Key words and phrases. Metric-Hom-Jacobi-Jordan algebra, cohomology, quadratic extension, twofold extension.
 https://doi.org/10.12697/ACUTM.2023.27.19
 Corresponding author: Nejib Saadaoui

