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Natural vibrations of circular nanoarches of
piecewise constant thickness

Jaan Lellep and Shahid Mubasshar

Abstract. The free vibrations of elastic circular arches made of a nano-
material are considered. A method of determination of eigenfrequencies
of nanoarches weakened with stable cracks is developed making use of the
concept of the massless spring and Eringen’s nonlocal theory of elasticity.
The aim of the paper is to evaluate the sensitivity of eigenfrequencies on
the geometrical and physical parameters of the nanoarch.

1. Introduction

During the last decades, a lot of attention is paid to the investigation of
the structural elements on the nanosize level. It is evident that the classical
theory of elasticity is not able to account for the size effects of nanoparticles.
However, a suitable tool for this purpose presents the nonlocal theory of
elasticity developed by Eringen [16], Eringen and Edelen [17]. Originally
Eringen and Edelen [17] applied the nonlocal constitutive model for the
investigation of surface waves and screw dislocations in solids. Later the
nonlocal beam theory was used for the investigation of the bending problems
by Reddy [42], Thai et al. [52], Li and Wang [35], Li et al. [33], Reddy and
Pang [43], Civalek und Demir [14] by making use of the Euler–Bernoulli
beam model, also by Roque et al. [46], Wang et al. [57] in the case of
the Timoshenko beam model. Buckling and vibration of nanobeams were
studied by many investigators, including Ansari and Sahmani [5], Roostai
and Haghpanahi [45], Sahmani and Ansari [47], Behera and Chakraverty
[8], Aydogdu [6], Thai [52], Thai et al. [51], Thai et al. [52], Murmu and
Pradhan [40], Wang et al. [57], Ganapathi and Polit [19], Bağdatli [7], Wang

Received July 13, 2023.
2020 Mathematics Subject Classification. 74K10, 74H25, 74B05, 74B20.
Key words and phrases. Nanoarch, nanobeam, natural frequency, structural defect,

vibration.
https://doi.org/10.12697/ACUTM.2023.27.20
Corresponding author: Shahid Mubasshar

295



296 JAAN LELLEP AND SHAHID MUBASSHAR

et al. [58], Wang et al. [56], Wang and Arash [59] and others. Buckling of
multi-step non-uniform beams is investigated by Li [34]. The Ritz method
was adopted for the solution of bending, buckling and vibration in the case of
nanobeams by Ghannadpour et al. [20]. It appeared that together with the
Ritz method another effective method of solution of problems of this kind
is the differential quadrature method (see Shu [48], Pradhan and Kumar
[41]). The same numerical procedure was employed by Hossain and Lellep
[21, 22] as well when studying the natural frequencies of nanobeams with
cracks. Note that in these studies, the effect of the rotatory inertia of an
element was taken into account in contrast to the classical approach. In
the published literature, one can find a limited number of papers concerning
the vibration and stability of nanobeams, nanoplates and nanorings with
cracks. An analytical method is developed by Loghmani and Yazdi [36] for
the determination of natural frequencies of cracked nanobeams with stepped
cross-sections. Nanobeams with different end conditions are treated. The
case of a cantilever nanobeam with a buckyball at the free end is studied
separately in [23]. Curved beams and segments of rings with cracks are
the subjects of investigations by Karaagac et al. [24, 25], also by Cerri and
Ruta [12] and Cerri et al. [11], also Krawczuk et al. [26]. In-plane free
vibrations of circular arches with defects are investigated by Viola et al.
[53] and Viola and Tornabene [54], Chondros et al. [13], also by Mazanoglu
and Sabuncu [38] and Mazanoglu et al. [37]. The influence of defects on
the natural frequency of nanorings was assessed by Wang and Duan [55]
and Moosavi et al. [39]. Here the defects are modelled with the help of
hinges having rotational restraints on vibrations of nanorings. In the present
paper, the natural vibration is investigated under the assumption that the
nanoarches have step-wise varying cross-sections and that the arches are
weakened with crack-like defects. The cracks are assumed to be stationary
cracks. No attention will be paid to the extension of these defects. However,
the additional compliance induced by cracks is taken into account with the
help of the local compliance matrix.

2. Problem formulation

Let us consider the dynamic behaviour of a nanoarch or a curved nanobeam
of piecewise constant thickness (Figure 1):

h =


h0, ϕ ∈ [α0, α1),

h1, ϕ ∈ (α1, α2),

−−−−−−−
hn, ϕ ∈ (αn, αn+1],

where α0 = 0, αn+1 = β. Let R be the radius of the nanoarch. Here hi
(i = 0, ..., n) and αj (j = 0, ..., n+ 1) stand for given constants whereas ϕ is
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the current angle (0 ≤ ϕ ≤ β). In the present study, it is assumed that the
nanoarch is clamped at the left-hand end and it is absolutely free at ϕ = β.
It is also assumed that at cross-sections ϕ = αi stable cracks of length ci
are situated. The attention will be paid to nanoarches of rectangular cross-
sections with thickness h and width b = const only.

Figure 1. The geometry of the cantilever nanoarch with defects.

Figure 2. A flaw at the re-entrant corner of the step.
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The aim of the study is to elucidate the sensitivity of eigenfrequencies
on the geometrical and physical parameters of the nanoarch and also on
the location and length of the defects. For these purposes, the governing
equations of the nonlocal theory of elasticity developed by Eringen [16] are
used.

3. Nonlocal material behaviour

It is widely recognized that the nanomaterials subjected to the exter-
nal loadings behave according to the nonlocal constitutive equations of the
theory of elasticity (see Reddy [42], Eringen [16], Aydogdu [6], Ansari and
Sahmani [5], Loghmani and Yazdi [36], Reddy and Pang [43], Lellep and
Mubasshar [31]). It is known that in the classical theory of elasticity, the
stress tensor is proportional to the strain tensor at each point of the current
body. However, in the nonlocal theory of elasticity the stress at the cur-
rent point depends on the strain at each point of the body. Probably the
simplest nonlocal constitutive equation can be presented as (see Reddy [42],
Thai [51], Lellep and Lenbaum [27–29]

σij − η∇2σij = σcij .

Here σij denotes the stress tensor for a nonlocal theory, σcij is the stress

tensor in the classical elasticity and η = (e0a)2. Here a is the dimension of
the lattice of the material and e0 stands for a material constant, whereas,
∇2 is the nabla operator. In the present study, it is assumed that e0 and a,
and thus also η, are given constants. Evidently, the determination of η may
be complicated but this is another task.

Making use of generalized stresses M (radial bending moment) and N
(membrane force in the tangential direction), the nonlocal constitutive equa-
tion can be converted into

M − η∇2M = M c,

N − η∇2N = N c,

Q− η∇2Q = Qc,

(1)

where M c, N c and Qc stand for the corresponding quantities in the classical
theory of elasticity (see Reddy [42], Thai [51,52], Ansari et al. [4], Wang et
al. [56]).

It is worthwhile to mention that the total number of equations in the
system (1) coincides with the number of generalized stresses necessary for
the correct formulation of the current problem. In the bending problems,
the dominant generalized stresses are the bending moments. In the present
case according to (1) one has (s is the length of the element)

M − η∂
2M

∂s2
= −EIj(

∂2W

∂s2
+
W

R2
) (2)
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for ϕ ∈ (αj , αj+1); j = 0, ..., n. In (2) the substitution

M c = −EIj(
∂2W

∂s2
+
W

R2
)

has been introduced. Here E stands for the Young modulus and Ij is the
moment of inertia of the arch in the section (αj , αj+1) and ds = Rdϕ. Evi-
dently, in the case of circular arches, the generalized stresses are the bending
moment M and the membrane force N (see Soedel [49], Lellep and Lenbaum
[27,29]), also the shear force Q. Since the latter can be eliminated from the
governing equations the shear force will not get any attention in the subse-
quent analysis. The strain components corresponding to N and M are (see
Soedel [49]) the relative extension

ε =
1

R
(U

′
+W ) (3)

and the curvature

κ =
1

R2
(U

′
+W

′′
). (4)

In (3) and (4) primes denote the differentiation with respect to the current
angle, U and W denote the tangential and transverse displacements of the
middle surface, respectively, and R is the radius of the arch. In the classical
theory of elasticity (see Soedel [49]) it is assumed that ε = 0 and U

′
= −W .

Thus,

κ = − 1

R
(W +W

′′
) (5)

and

M c =
−Eh3b

12R2
(W +W

′′
). (6)

The nonlocal constitutive law (2) reads as

M − ηM ′′
= M c (7)

and

N − ηN ′′
= N c. (8)

4. Equilibrium equations

The equilibrium conditions of an infinitesimal element of the arch can be
presented as (see Soedel [49] and Lellep and Liyvapuu [30])

M
′ −RQ = 0,

N
′
+Q+ psR = ρhjRÜ,

Q
′ −N + pnR = ρhjRẄ ,

(9)
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where j = 0, ..., n and ϕ ∈ (αj , αj+1). Here ps, U and pn, W stand for the
external loads and displacements in the circumferential and normal direc-
tion, respectively. Let ρ be the density of the material and dots denote the
differentiation with respect to time t and primes with respect to the length
of the arch. Thus

Ü =
∂2U

∂t2
, Ẅ =

∂2W

∂t2
, M

′
=
∂M

∂s
, N

′
=
∂N

∂s
.

Evidently, ds = Rdϕ in (3)-(9). Differentiating the first equation in (9) with
respect to ϕ and substituting it into the last one leads to the equation

M
′′ −RN +R2(p− ρhjẄ ) = 0, (10)

which must be satisfied for ϕ ∈ (αj , αj+1). In the case of a curved cantilever
nanobeam at the free edge the bending moment and the shear force vanish.
Thus

M(β, t) = 0 (11)

and

Q(β, t) = 0. (12)

However, at the root section at ϕ = 0 one has

W (0, t) = 0 (13)

and

W
′
(0, t) = 0. (14)

We are considering the natural vibrations of nanoarches. Thus it is rea-
sonable to assume that ps = pn = 0 in (9) and p = 0 in (10). Making use of
(3), (6), (7) and (10), one can define

M =
−1

R2(1 + η)
(EIj(W

′′
+W )− hjηρR2Ẅ ) (15)

for ϕ ∈ (αj , αj+1); j = 0, ..., n. In the following, we are looking for the
solution of governing equations in the particular case when M = −RN . This
takes place, for instance, in the case when a cantilevered arch is subjected
to the concentrated loading directed towards the center of curvature of the
middle line of the arch. It is assumed herein also that the membrane force
vanishes. Substituting now (15) in (10) leads to the fourth-order equation

W IV + 2W
′′

+W +
ρhjR

4

EIj
(ηẄ

′′ − Ẅ ) = 0, (16)

which is to be solved for ϕ ∈ (αj , αj+1); j = 0, ..., n.
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5. Additional compliance due to cracks

When integrating the governing equations and also (16) one has to ac-
count for the continuity of variables W (ϕ, t), M(ϕ, t), Q(ϕ, t) which is a

consequence of physical requirements. Moreover, the slope W
′
(ϕ, t) is also

continuous except at the cross-sections with defects. Let us denote

θj = W
′
(αj + 0, t)−W ′

(αj − 0, t), (17)

where j = 1, ..., n. The jump of the slope of the deflection of the nanoarch
is coupled with the generalized stresses at the cross-section with defects.
Following Dimarogonas [15], Anifantis and Dimarogonas [3] the quantities
θj will be treated as generalized displacements. In the linear elastic fracture
mechanics, the generalized stresses Pi and generalized displacements ui (i =
1, ..., 6) are coupled as

ui =
∂Us
∂Pi

, (18)

where Us stands for the strain energy density. The compliance matrix is
defined as

cij =
∂ui
∂Pj

. (19)

Combining (18) and (19) leads to the equations

cij =
∂2Us
∂Pi∂Pj

,

where i = 1, ..., 6; j = 1, ..., n. The total energy release rate G is defined as
(see Broek [10], Anderson [2])

G =
1− ν2

E
(K2

I +K2
II +

K2
III

1− ν
),

where E is the Young modulus, ν is the Poisson ratio and

cij =
b ∂2

∂Pi∂Pj

∫∫
S
GdS. (20)

In (20), cij stand for the elements of the compliance matrix C. The quantities
KI ,KII ,KIII stand for the stress intensity factors corresponding to modes
I, II and III, respectively (see Broek [10], Anifantis and Dimarogonas [3],
Alsabbagh et al. [1]). On the other hand, the strain energy release rate can
be introduced so that

ui =
b ∂

∂Pi

∫ c

0
J dc (21)

and

cij =
b ∂2

∂Pi∂Pj

∫ c

0
J dc, (22)
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where J is so-called J-integral of Rice (see Rice [44]). It is worth to em-
phasize that dc stands in (21)–(22) for the extension of the crack and cij
are corresponding compliances due to the crack. Note that the energy re-
lease rate G was originally introduced for the characterization of the energy
behaviour in the neighbourhood of the crack tip in linear elastic materi-
als. However, James Rice [44] was able to extend the energy release rate to
non-linear materials. He showed that the non-linear energy release rate can
be expressed as a line integral called J-integral. The J-integral is evaluated
along an arbitrary closed contour Γ around the crack tip. It is defined as
(see Broek [10], Anderson [2])

J =

∫
Γ
(Us dy − Ti

∂ui
∂x

ds). (23)

In (23), Ti stand for external forces (tractions) and Γ is a closed contour
followed counterclockwise. Consider now a particular case when at ϕ = αj a
mode I crack is located. If θj is treated as a generalized coordinate then the
generalized forces associated with θj are Mj = M(αj , t) and Nj = N(αj , t).
Thus

θj = C0j
−→
Q(αj , t), (24)

where
−→
Q is the vector and M(αj , t), N(αj,t) and c0j stand for the elements

of the corresponding compliance matrix. It is reasonable to introduce the
notation

Cij =

[
c11(αj,t) c12(αj,t)
c21(αj,t) c22(αj,t)

]
. (25)

Due to symmetry, c12 = c21 at each αj . It is worthwhile to mention that the
local stiffness matrix Kj is reciprocal to the local compliance cj in the one-
dimensional case (see Lellep and Sakkov [32]). An alternative case is studied
by Anifantis and Dimarogonas [3]. It is known from the linear elastic fracture
mechanics that (see Broek [10] Anderson [2], Broberg [9])

G =
M2

2b

dC

dc
(26)

if a beam element is subjected to the bending moment M . Here C is the
compliance and c stands for the crack length. In this case the stress intensity
factor is

K =
σM

bh2

√
πcF1(

c

h
). (27)

In (27), F1 stands for so-called shape function which must be determined
experimentally, h being the thickness. However, there exist rich databases
(see Tada et al. [50]) which can be used for the interpolation of shape
functions F1(s) and F2(s) (here s = c/h). If the beam element is loaded with
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the moment Mj and the tensile force Nj then the stress intensity coefficient
is calculated as (see Tada et al. [50], Zhou and Huang [60])

Kj =

√
πsj

b
√
h

(NjF1(sj) +
6Mj

h
F2(sj)), (28)

where

F1 = 1.12− 0.23s+ 10.55s2 − 21.72s3 + 30.39s4 (29)

and

F2 = 1.12− 1.4s+ 7.33s2 − 13.08s3 + 14.08s4. (30)

In (28), the quantity h can be interpreted as h = min(hj , hj+1). Another
type of the shape function can be presented as (see Tada et al. [50])

F (s) =

√
2

πs
tan

πs

2
·

0.923 + 0.199(1− sin πs
2 )4

cos πs2
. (31)

Making use of the shape functions (29)–(31) one can calculate the elements
of the compliance matrix (25):

c11(αj) =
2

Eb

∫ c

0
sF 2

1 ds,

c12(αj) =
2

Ebh

∫ c

0
sF1F2 ds,

c22(αj) =
2

Eb

∫ c

0
sF 2

2 ds.

(32)

Finally, making use of (32) one can calculate

θj = c11(αj)M(αj , t) + c12(αj)N(αj , t) (33)

and the corresponding displacement

δj = c21(αj)M(αj , t) + c22(αj)N(αj , t). (34)

6. Solution of the governing equations

In order to solve the equation (16) in regions (αj , αj+1), j = 0, ..., n, the
method of separation of variables is applicable. Assume, thus, that

W (ϕ, t) = Xj(ϕ)T (t) (35)

for ϕ ∈ (αj , αj+1); j = 0, ..., n. The transformation (35) admits to present
(16) as the system of equations consisting of

T̈ + ω2T = 0 (36)

and

XIV
j +X

′′
j (2 +Ajη) +Xj(1−Aj) = 0, (37)
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where

Aj =
ω2ρhjR

4

EIj
; j = 0, ..., n.

The characteristic equation for the linear fourth-order equation (37) is

λ4
j + (2 +Ajη)λ2

j + 1−Aj = 0; j = 0, ..., n. (38)

It immediately follows from (38) that

λ2
j =

1

2
(−2−Ajη)± 1

2

√
(2 +Ajη)2 − 4(1−Aj),

and the general solution of (37) has the form

Xj = C1j coshµjϕ+ C2j sinhµjϕ+ C3j cos νjϕ+ C4j sin νjϕ,

where j = 0, ..., n and

µj =

√
−1− η

2
Aj +Bj

and

νj =

√
1 +

η

2
Aj +Bj ,

where the notation

Bj =
1

2

√
A2
jη

2 + 4Aj(1 + η)

is introduced. Note that the solution of the equation (36) depending on time
can be presented as

T = sin(ωt),

ω being the natural frequency of the nanoarch. Evidently, now

W (ϕ, 0) = 0, Ẇ (ϕ, 0) = ωXj(ϕ) (39)

for ϕ ∈ (αj , αj+1); j = 0, ..., n. It is presumed herewith that the initial
conditions are given in the form (39). Consider now the boundary conditions.
At the root section ϕ = 0 according to (13), (14) and (35), one has

X0(0) = 0, X
′
0(0) = 0.

The boundary conditions corresponding to the free edge are presented by
(11) and (12). Making use of (15) and (35) one can check that the require-
ments at the free edge are satisfied if

X
′′
n(β) +Xn(β)(1 +An) = 0

and

X
′′′
n (β) +X

′
n(β)(1 +An) = 0.
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7. Intermediate jump conditions

It was stated above that due to cracks the nanoarch has additional flex-
ibility. The additional compliance can be calculated by making use of the
relations (24)–(34). According to this concept, the slope W

′
has finite jumps

[W
′
(αj)] at ϕ = αj (j = 1, ..., n). Thus

W
′
(αj + 0, t) = W

′
(αj − 0, t) + θj , (40)

where θj is evaluated by (24), (25). Making use of (15), (35), one can present

M(αj + 0, t) =
−EIj

(1 + η)R2
(X

′′
j (αj) + (1 +Ajη)Xj(αj)T (t). (41)

In (40), (41) one has to distinguish the left-hand and right-hand limits,
respectively. Here the notation

g(α± 0) = lim
x→α±0

g(x)

is used. It follows from (17), (24)-(33) that

θj = (c11(αj)−
c12(αj)

R
)M(αj , t),

where the compliances c11(αj) and c12(αj) are evaluated by (32). It is ev-
ident from the physical considerations that the stress components M(ϕ, t)
and Q(ϕ, t) together with the displacement W (ϕ, t) must be continuous at
each time instant at each ϕ ∈ (0, β). Thus the set of continuity and jump
conditions is

[W (αj , t)] = 0, [W
′
(αj , t)] = θj , [M(αj , t)] = 0, [Q(αj , t)] = 0,

j = 1, ..., n.

8. Numerical results and conclusions

Numerical results are obtained for a specimen made of a nanomaterial
with the modulus of elasticity E = 7×1011 Pa, ν = 0.3, ρ = 10 kg/m3. The
radius of the middle line of the arch R = 110 nm and the width b = 1 nm
if the text does not contain any numerical evaluations of these quantities.
The results of the calculations are presented in Figures 3–14 and Tables 1
and 2. In Figsures 3–5, the natural frequency of the nanoarch is depicted
versus the thickness of the nanoarch for different values of the radius. Here
R = 80−120 nm and Figures 3–5 correspond to α = 0.8, 0.6 and 0.4, respec-
tively. Looking at the figures, one can draw a conclusion that the smaller
the radius, the higher the natural frequency of the nanoarch is for each
given value of the thickness. Also, one can see from the figures that thicker
nanoarches correspond to higher natural frequency values, provided the ra-
dius R is fixed. The figures reveal another noteworthy conclusion: as the
value of α increases, the impact of the thickness on the natural frequency
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of the nanoarches becomes greater. Three different curves depicting the
relationship between natural frequencies and crack length are presented in
Figures 6–8, each curve corresponds to different values of the nonlocal param-
eter η. Specifically, Figures 6–8 correspond to the values of α = 0.8, 0.6, 0.4,
respectively. The figures indicate that the natural frequency decreases as
the crack length increases. Notably, a significant decrease in frequency oc-
curs when the crack length surpasses 0.5. Additionally, the figures reveal
that lower values of alpha are associated with decreased natural frequencies.
Figure 9 illustrates the relationship between the natural frequency of the
nanoarch and the nonlocal parameter. The curves on the graph correspond
to different values of the radius. It is evident from the figure that as the non-
local parameter η increases, the frequency of the nanoarch decreases. This
behaviour is also observed when examining the natural frequency concerning
the radius. The relationship between the natural frequency and the location
of the defect is depicted in Figure 10. Each curve on the graph corresponds
to a different crack length. It is noticeable from the figure that initially, the
natural frequency decreases, but then it begins to increase. Once the crack
location exceeds 0.5, the natural frequency experiences a significant increase.
The effects of varying crack lengths can also be seen in the figure. In Fig-
ure 11, the natural frequency is plotted against the radius of the nanoarch.
Different curves in the figure correspond to the various positions of the de-
fect. It can be seen in the figure that the natural frequency decreases with
an increase in the radius. However, the influence of the radius on natural
frequency is less observable for higher values of alpha. Figure 12 illustrates
the relationship between the natural frequency of the nanoarches and their
thickness, with the thickness of the nanoarch varying between 0 and α. The
figure clearly shows that as the thickness of the nanoarch increases, so does
the natural frequency. Different curves in Figure 12 represent various values
of the radius, revealing the matter that the frequency decreases as the radius
of the arch increases.

Figure 13 shows the relationship between the natural frequency and the
central angle β of the nanoarch. Different curves in Figure 13 correspond to
different values of the nonlocal parameter η. It can be seen from Figure 13
that the natural frequency is higher for larger values of the central angle β.
On the other hand, the smaller is the nonlocal parameter η the higher is the
natural frequency. In Figure 14, the natural frequency is depicted against the
radius of the nanoarch, showcasing various shape functions. From the fig-
ure, it is evident that the choice of shape functions significantly impacts the
natural frequency of the arches. Natural frequencies of nanoarches clamped
at the left edge and free at the right-hand edge are presented in Table 1.
Table 1 corresponds to the arches with β = 300. Table 2 accommodates cor-
responding values of the natural frequency for arches fully clamped at both
edges for different values of the parameter η (here 0 ≤ η ≤ 4). In Table 1,
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the results of the current work are compared with those obtained by Gana-
pathi et al. [18], making use of the finite element method. The comparison
of the eigenfrequencies found by different methods shows that the current
method leads to somewhat overestimated values of natural frequencies. Nev-
ertheless, the eigenfrequencies calculated by the current method are higher
than those corresponding to Ganapathi et al. [18]. The present calculation
method is also applied to full nanorings (β = 2π). The obtained results of
calculations are accommodated together with the results by Wang and Duan
[55] in Table 2 for different values of the nonlocal parameter η. It can be
seen from Table 2 that the results obtained by the current method are close
to those obtained by Wang and Duan. The current approach leads to the
eigenfrequencies which are lower than the reseults of Wang and Duan [55].

Figure 3. Natural frequency versus thickness of the
nanoarch for α = 0.8.
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Figure 4. Natural frequency versus thickness of the
nanoarch for α = 0.6.

Figure 5. Natural frequency versus thickness of the
nanoarch for α = 0.4.
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Figure 6. Natural frequency versus crack length for α = 0.8.

Figure 7. Natural frequency versus crack length for α = 0.6.
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Figure 8. Natural frequency versus crack length for α = 0.4.

Figure 9. Natural frequency versus nonlocal parameter.
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Figure 10. Natural frequency versus defect location.

Figure 11. Natural frequency versus radius of the nanoarch.
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Figure 12. Natural frequency versus thickness h0 of the nanoarch.

Figure 13. Natural frequency versus central angle of the nanoarch.
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Figure 14. Natural frequency versus radius of the nanoarch
for different shape functions.

Table 1. Natural frequency of the nanoarches for varying
nonlocal parameter.

β = 300

Mode η Present Ganapathi et al.[18]
1 0 5.1132 3.5078

1 4.8045 3.4289
2 4.5771 3.3546
3 4.1808 3.2847
4 3.8474 3.2187

2 0 21.6534 19.8974
1 18.9765 17.6058
2 17.0128 15.9352
3 15.2049 14.6692
4 14.7549 13.6734
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Table 2. Natural frequency of circular nanorings.

a = 0.2 a = 0.4
Mode Present Wang and Duan [55] Present Wang and Duan [55]

1 5.6234 6.2 3.2089 4.4
2 41.2437 42.4 21.8362 23.6
3 127.2065 129.1 57.5028 59.5
4 274.3769 276.9 107.7692 110.8
5 485.1752 488.5 173.1745 176.3

Nanoring with a defect
1 4.9908 5.9 3.2543 4.2
2 39.1549 40.8 21.8654 23.1
3 123.7280 125.0 56.5437 58.6
4 267.8756 270.0 107.0654 109.6
5 475.5538 478.6 172.1767 174.9
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