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Narayana numbers as products of three repdigits
in base g

Hamid Ben Yakkou, Kossi Richmond Kakanou, and Pagdame
Tiebekabe

Abstract. In this paper, we show that there are only finitely many
Narayana’s numbers which can be written as a product of three repdigits
in base g with g ≥ 2. Moreover, for 2 ≤ g ≤ 10, we determine all these
numbers.

1. Introduction

The problems of the terms of linear recurrence sequences written as a
product of repdigits in any base have been intensely studied by several re-
searchers specialized in Number Theory. In this article, we consider the
linear recurrent sequence of the third order – the Narayana’s cows numbers
defined as follows:

Nn = Nn−1 +Nn−3 for n ≥ 3 with N0 = 0, N1 = N2 = 1.

For more details on the work related to the determination of the terms
of linear recurrent sequences which are repdigits in any base, we refer the
reader to the following recent results [1]–[3], [6], [10].

The concept of Narayana’s cows numbers, derived from Indian mythology
and Hinduism, holds a significant place in mathematics. These numbers have
been extensively studied due to their properties and relationships with other
mathematical sequences, and their important applications in other various
fields such as cryptography, coding theory, and graph theory. In this paper,
we delve into a fascinating aspect of Narayana numbers by examining their
representation as a product of three repdigits in base g with g ≥ 2.
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Repdigits, which consist of repeated digits, have garnered attention for
their mathematical properties and patterns. In a fixed base g ≥ 2, a repdigit
has the following form:

n−1∑
i=0

d× gi = d×
gn − 1

g − 1
,

where 1 ≤ d ≤ g − 1 and n is a positive integer.
The proofs of our main results are based on a double application of Baker’s

method and on a reduction algorithm using computations based on continued
fractions. The method used to determine Narayana numbers, which are
products of three repdigits is similar to that used by Adédji [2] and by
Adédji et al. [1].

The present paper is organized as follows: in Section 2, we present our
main results, Section 3 is devoted to reminding necessary results for the
proofs of our results, and in Section 4, we prove our results.

2. Statement of main results

In this section, we state all the main results obtained in this paper.

Theorem 1. Let g ≥ 2 be an integer. Then the Diophantine equation

Nk = d1
g` − 1

g − 1
· d2

gm − 1

g − 1
· d3

gn − 1

g − 1
(1)

has only finitely many solutions in integers k, d1, d2, d3, `,m, n such that 1 ≤
di ≤ g − 1 for i = 1, 2, 3 and n ≥ m ≥ ` ≥ 1. Further, we have

n < 5.91× 1049 log9 g and k < 4.73× 1050 log10 g.

Under the notation and assumptions of Theorem 1, if (1) holds for
(k, d1, d2, d3, `,m, n), then we write

Nk = [a, b, c]g = a× b× c,

where

a = d1 ×
g` − 1

g − 1
= d1 · · · d1g︸ ︷︷ ︸

`−1 times

, b = d2 ×
gm − 1

g − 1
= d2 · · · d2g︸ ︷︷ ︸

m−1 times

,

and c = d3 ×
gn − 1

g − 1
= d3 · · · d3g︸ ︷︷ ︸

n−1 times

.

In the following theorem, we completely and explicitly give all solutions
of the equation (1) corresponding to 2 ≤ g ≤ 10.
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Theorem 2. The only Narayana numbers which are products of three
repdigits in base g with 2 ≤ g ≤ 10 are

{1, 2, 3, 4, 6, 9, 13, 28, 60, 88, 129, 189}.
More precisely, we have

Table 1. Narayana numbers which are products of three
repdigits in base g, 2 ≤ g ≤ 10.

k Nk [a, b, c]g

1, 2, 3 1 [1, 1, 1]g for g = 2, . . . , 10.

4 2 [1, 1, 2]g for g = 3, . . . , 10.

5 3 [1, 1, 11]2, [1, 1, 3]g for g = 4, . . . , 10.

6 4 [1, 1, 11]3, [1, 1, 4]g for g = 5, . . . , 10, [1, 2, 2]g for g =
3, . . . , 10.

7 6 [1, 1, 11]5, [1, 2, 3]g forg = 4, . . . , 10, [1, 1, 6]g for g =
7, . . . , 10.

8 9 [1, 11, 11]2, [1, 1, 111]3, [1, 1, 11]8, [1, 1, 9]10,
[1, 3, 3]g for g = 4, . . . , 10.

9 13 [1, 1, 111]3

11 28 [1, 1, 44]6, [1, 2, 22]6, [1, 4, 11]6, [2, 2, 11]6,
[1, 4, 7]g for g = 8, . . . , 10, [2, 2, 7]g for g = 8, . . . , 10.

13 60 [2, 2, 33]4, [2, 3, 22]4, [1, 1, 66]9, [1, 2, 33]9,
[1, 3, 22]9,[1, 6, 11]9, [2, 3, 11]9, [2, 5, 6]g for g =

7, . . . , 10, [3, 4, 5]g for g = 6, . . . , 10.

14 88 [1, 1, 88]10, [1, 2, 44]10, [1, 4, 22]10, [1, 8, 11]10,
[2, 2, 22]10, [2, 4, 11]10.

15 129 [1, 1, 333]6, [1, 3, 111]6.

16 189 [1, 11, 111111]2, [1, 3, 333]4, [3, 3, 111]4, [3, 3, 33]6,
[1, 3, 77]8, [1, 7, 33]8, [3, 7, 11]8, [3, 7, 9]10.

3. Preliminary results

In this section, we give some notations and recall certain definitions and
results required for the proofs of our main results.

3.1. Some properties of Narayana sequence. Narayana’s cows se-
quence comes from a problem with cows proposed by an Indian mathemati-
cian Narayana in the 14th century. In this problem, we assume that there is
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a cow at the beginning and each cow produces a calf every year from the 4th
year. Narayana’s cow problem counts the number of calves produced each
year [4].

The characteristic polynomial of Narayana’s cows sequence {Nn}n≥0 is

ϕ(x) = x3 − x2 − 1.

Furthermore, the zeros of ϕ(x) are

αN =
1

3

 3

√
1

2
(29− 3

√
93) +

3

√
1

2
(3
√

93 + 29) + 1

 ,

βN =
1

3
−

1

6

(
1− i

√
3
)

3

√
1

2
(29− 3

√
93)−

1

6

(
1 + i

√
3
)

3

√
1

2
(3
√

93 + 29),

γN =
1

3
−

1

6

(
1 + i

√
3
)

3

√
1

2
(29− 3

√
93)−

1

6

(
1− i

√
3
)

3

√
1

2
(3
√

93 + 29).

Then, the Narayana sequence can be obtained by Binet formula

Nn = aNα
n
N + bNβ

n
N + cNγ

n
N . (2)

From the three initial values of Nayarana sequence, and using Vieta’s theo-
rem, one has

aN =
α2
N

α3
N + 2

, bN =
β2
N

β3
N + 2

, and cN =
γ2
N

γ3
N + 2

.

The minimal polynomial of aN over Z is 31x3 − 3x− 1.
Setting Π(n) = Nn − aNαn

N = bNβ
n
N + cNγ

n
N , we notice that

|Π(n)| <
1

α
n/2
N

for all n ≥ 1. (3)

We note that the characteristic polynomial has a real zero αN (> 1) and
two complex conjugate zeros βN and γN with |βN | = |γN | < 1. In fact,
αN ≈ 1.46557 . We also have the following property of (Nn)n≥0.

Lemma 1. For the sequence (Nn)n≥0, we have

αn−2
N ≤ Nn ≤ αn−1

N for n ≥ 1.

Proof. One can easily prove this lemma using induction on n. �

Let Kϕ := Q(αN , βN ) be the splitting field of the polynomial ϕ over Q.
Then [Kϕ,Q] = 6. Furthermore, [Q(αN ) : Q] = 3. The Galois group of Kϕ

over Q is given by

Gϕ := Gal(K/Q) ∼= {(1), (αNβN ), (αNγN ), (βNγN ), (αNβNγN ), (αNγNβN )}
∼= S3.
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Thus, we identify the automorphisms of Gϕ with the permutations of the ze-
ros of the polynomial ϕ. For example, the permutation (αNβN ) corresponds
to the automorphisms σϕ : αN → βN , βN → αN , γN → γN .

3.2. Linear forms in logarithms. We begin this subsection with a few
reminders about the logarithmic height of an algebraic number. Let η be
an algebraic number of degree d, a0 > 0 be the leading coefficient of its
minimal polynomial over Z and let η = η(1), . . . , η(d) denote its conjugates.
The quantity defined by

h(η) =
1

d

log |a0|+
d∑

j=1

log max(1, |η(j)|)


is called the logarithmic height of η. Some properties of height are as follows.
For η1, η2 algebraic numbers and m ∈ Z, we have

h(η1 ± η2) ≤ h(η1) + h(η2) + log 2,

h(η1η
±1
2 ) ≤ h(η1) + h(η2),

h(ηm1 ) = |m|h(η1).

In particular, if η = p/q ∈ Q is a rational number in its reduced form with
q > 0, then h(η) = log(max{|p|, q}).

We can now present the famous Matveev’s result used in this study. Let
L be a real number field of degree dL, η1, . . . , ηs ∈ L and b1, . . . , bs ∈ Z\{0}.
Let B ≥ max{|b1|, . . . , |bs|} and

Λ = ηb11 · · · η
bs
s − 1.

Let A1, . . . , As be real numbers such that

Ai ≥ max{dLh(ηi), | log ηi|, 0.16}, i = 1, . . . , s.

With the above notation, Matveev [8] proved the following result.

Theorem 3. Assume that Λ 6= 0. Then

log |Λ| > −1.4 · 30s+3 · s4.5 · d2
L · (1 + log dL) · (1 + logB) ·A1 · · ·As.

We also need the following result from Sanchez and Luca [9].

Lemma 2. Let r ≥ 1 and H > 0 be such that H > (4r2)r and H >
L/(logL)r. Then

L < 2rH(logH)r.
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3.3. Reduction method. The bounds on the variables obtained via
Baker’s theory [5] are too large for any computational purposes. To re-
duce the bounds, we use the reduction method due to Dujella and Pethő [7,
Lemma 5a]. For a real number X, let |X| := min{|X −n| : n ∈ Z} stand for
the distance of X to the nearest integer.

Lemma 3. Let M be a positive integer, p/q be a convergent of the con-
tinued fraction expansion of an irrational number τ such that q > 6M , and
A,B, µ be some real numbers with A > 0 and B > 1. Furthermore, let

ε := |µq| −M · |τq|.
If ε > 0, then there is no solution to the inequality

0 < |uτ − v + µ| < AB−w

in positive integers u, v and w with

u ≤M and w ≥
log(Aq/ε)

logB
.

4. Proofs of main results

4.1. Proof of Theorem 1. To prove Theorem 1, we will use the following
lemma which provides a relation on the size of k versus n and g.

Lemma 4. All solutions of the Diophantine equation (1) satisfy

k < 8n log g.

Proof. From (1), we have

αk−2
N ≤ Nk = d1

g` − 1

g − 1
· d2

gm − 1

g − 1
· d3

gn − 1

g − 1
≤ (gn − 1)3 < g3n.

Taking logarithm on both sides, we get (k−2) logαN < 3n log g. Since n ≥ 2
and g ≥ 2, we obtain the desired inequality. This ends the proof. �

Proof of Theorem 1. If n = 1, then ` = m = 1. So, the equation (1) becomes

Nk = d1d2d3,

which implies

αk−2
N ≤ (g − 1)3 ,

which leads to

k < 2 + 3
log g

logαN
.

Now, suppose n ≥ 2. From (1) and (2), we have

Nk = aNα
k
N + bNβ

k
N + cNγ

k
N = d1

g` − 1

g − 1
· d2

gm − 1

g − 1
· d3

gn − 1

g − 1
,
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which implies

aNα
k
N −

d1d2d3g
`+m+n

(g − 1)3
= −

d1d2d3

(
g`+m + g`+n + gm+n

)
(g − 1)3

+
d1d2d3

(
gl + gm + gn

)
(g − 1)3

−
d1d2d3

(g − 1)3
−Π(k).

(4)

Taking the absolute values of both sides of (4) and using (3), we get∣∣∣∣∣aNαk
N −

d1d2d3g
`+m+n

(g − 1)3

∣∣∣∣∣ < d1d2d3

(
g`+m + g`+n + gm+n

)
(g − 1)3

+
d1d2d3

(
gl + gm + gn

)
(g − 1)3

+
d1d2d3

(g − 1)3
+

1

α
k/2
N

.

(5)

Multiplying both sides of (5) by
(g − 1)3

d1d2d3g`+n+m
and noticing the fact that

` ≤ m ≤ n, we get the inequality∣∣∣∣∣(g − 1)3 · aNαk
N · g−(`+n+m)

d1d2d3
− 1

∣∣∣∣∣ < 1

g`
+

1

gm
+

1

gn
+

1

g`+m
+

1

g`+n

+
1

gm+n
+

1

g`+m+n
+

(g − 1)3

α
k/2
N d1d2d3g`+n+m

< 8 · g−`.
So, we get ∣∣∣∣aN (g − 1)3

d1d2d3
· αk
N · g−(`+n+m) − 1

∣∣∣∣ < 8 · g−`. (6)

We put

Γ1 :=
aN (g − 1)3

d1d2d3
· αk
N · g−(`+n+m) − 1.

Let us show Γ1 6= 0. We proceed by the contrary. Assume that Γ1 = 0.
Then

aNα
k
N =

d1d2d3

(g − 1)3
· g`+m+n,

which implies

σϕ

(
aNα

k
N

)
= bNβ

k
N =

d1d2d3

(g − 1)3
· g`+m+n.

Taking the absolute value, we get∣∣∣bNβkN ∣∣∣ =

∣∣∣∣ d1d2d3

(g − 1)3
· g`+m+n

∣∣∣∣ .
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We have
∣∣bNβkN ∣∣ < 1 instead

∣∣∣∣ d1d2d3

(g − 1)3
· g`+m+n

∣∣∣∣ > 1 since 1 ≤ ` ≤ m ≤ n,

which leads to a contradiction. Hence Γ1 6= 0.
In order to apply Matveev’s result to Γ1, set

t := 3, η1 :=
aN (g − 1)3

d1d2d3
, η2 := αN , η3 := g,

b1 := 1, b2 := k, b3 := −(`+m+ n),

and K := Q(η1, η2, η3) = Q(αN ), which is a real number field of degree
dK = 3.
Using properties of the logarithmic height, we get

h(η2) = h(αN ) =
logαN

3
, h(η3) = h(g) = log g

and

h(η1) = h

(
aN (g − 1)3

d1d2d3

)
≤ h(aN ) + h

(
(g − 1)3

d1d2d3

)
≤

1

3
log 23 + log

(
max

{
(g − 1)3, d1d2d3

})
< 3 log(g) + 2 < 6 log g since g ≥ 2.

Thus, we can take

A1 = 18 log(g), A2 = logαN and A3 = 3 log g.

By Lemma 4, we have k < 8n log g, so we put B = 8n log g. Using Theorem
3, we see that

log |Γ1| > −1.4× 306 × 34.5 × 32(1 + log 3)(1 + log(8n log g))

× (18 log(g))(3 log g logαN )

> −5.6× 1013(1 + log(8n log g))(log2 g).

Comparing the above inequality with (6), we obtain that

` log g − log 8 < 5.6× 1013(1 + log(8n log g))(log2 g).

Since g ≥ 2 and n ≥ 2, we have

1 + log(8n log g) < 8 log(n log g).

So we get

` < 4.5× 1014 log n log2 g.
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Rewriting (1), we get

aNα
k
N (g − 1)

d1(g` − 1)
+

Π(k)(g − 1)

d1(g` − 1)
=

d2d3

(g − 1)2

(
gn+m − gm − gn + 1

)
,

which implies

aNα
k
N (g − 1)

d1(g` − 1)
−
d2d3g

n+m

(g − 1)2
= −

Π(k)(g − 1)

d1(g` − 1)
−
d2d3g

m

(g − 1)2
−

d2d3g
n

(g − 1)2
+

d2d3

(g − 1)2
.

(7)

Taking the absolute values of both sides of (7), we have∣∣∣∣∣aNαk
N (g − 1)

d1(g` − 1)
−
d2d3g

n+m

(g − 1)2

∣∣∣∣∣ < (g − 1)

d1(g` − 1)α
k/2
N

+
d2d3g

m

(g − 1)2
+
d2d3g

n

(g − 1)2
+

d2d3

(g − 1)2
.

Dividing both sides of the inequality above by
d2d3g

n+m

(g − 1)2
and using the fact

that n ≥ 2, we see that∣∣∣∣ (g − 1)3

d1d2d3(g` − 1)
· aNαk

N · g−(n+m) − 1

∣∣∣∣ ≤ (g − 1)3

d1d2d3(g` − 1)α
k/2
N gn+m

+
1

gn

+
1

gm
+

1

gn+m
< 4 · g−m.

Then we have ∣∣∣∣ (g − 1)3

d1d2d3(g` − 1)
· aNαk

N · g−(n+m) − 1

∣∣∣∣ < 4

gm
. (8)

We put

Γ2 =
(g − 1)3

d1d2d3(g` − 1)
· aNαk

N · g−(n+m) − 1.

One can check that Γ2 6= 0, proceeding as we did for Γ1. Let us apply
Matveev’s result for Γ2. Let

t := 3, η1 :=
(g − 1)3

d1d2d3(g` − 1)
· aN , η2 := αN , η3 := g,

b1 := 1, b2 := k, b3 := −(m+ n),

and K := Q(η1, η2, η3) = Q(αN ) of degree dK = 3. By Lemma 4, we have
k < 8n log g, so we put B = 8n log g. We have

h(η2) = h(αN ) =
logαN

3
, h(η3) = h(g) = log g,

and

h(η1) = h

(
(g − 1)3

d1d2d3(g` − 1)
· aN

)
≤ h(aN ) + h

(
(g − 1)3

d1d2d3(g` − 1)

)
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≤
1

3
log 23 + log

(
max

{
(g − 1)3, d1d2d3

})
+ h

(
1

g` − 1

)
< 2 + 3 log(g − 1) + log(g` − 1)

< (3 + `) log(g) + 2

< (6 + `) log g since g ≥ 2.

Thus, we can take

A1 = (18 + 3`) log(g), A2 = logαN and A3 = 3 log g.

Using Theorem 3, we see that

log |Γ2| > −1.4× 306 × 34.5 × 32(1 + log 3)(1 + log(8n log g))

× ((18 + 3`) log(g))(3 log g logαN )

> −3.1× 1012(1 + log(8n log g))(log2 g)(18 + 3`).

Comparing with (8), we get

m log g − log 4 < 3.1× 1012(1 + log(8n log g))(log2 g)(18 + 3`).

We have

1 + log(8n log g) < 8 log n log g and ` < 4.5× 1014 log n log2 g.

So
m < 3.8× 1028 log2 n log4 g.

Reorganizing (1), we get

d3g
n

g − 1
−

(g − 1)2 · aNαk
N

d1d2(g` − 1)(gm − 1)
=

d3

g − 1
+

Π(k)(g − 1)2

d1d2(g` − 1)(gm − 1)
.

We have∣∣∣∣∣ d3g
n

g − 1
−

(g − 1)2 · aNαk
N

d1d2(g` − 1)(gm − 1)

∣∣∣∣∣ < d3

g − 1
+

(g − 1)2

α
k/2
N d1d2(g` − 1)(gm − 1)

by taking the absolute values of both sides of (7). Dividing both sides of
the above inequality by (d3g

n)/(g− 1) and using the fact that n ≥ 2, we see
that∣∣∣∣1− aN (g − 1)3

d1d2d3(g` − 1)(gm − 1)
· g−n · αk

N

∣∣∣∣ < 1

gn
+

1

gn−1
<

2

gn−1
= 2 · g1−n.

Then, we have∣∣∣∣ aN (g − 1)3

d1d2d3(g` − 1)(gm − 1)
· g−n · αk

N − 1

∣∣∣∣ < 2 · g1−n. (9)

We put

Γ3 =
aN (g − 1)3

d1d2d3(g` − 1)(gm − 1)
· g−n · αk

N − 1.
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One can verify that Γ3 6= 0. Let us analyze Matveev’s result for Γ3. Let

t := 3, η1 :=
aN (g − 1)3

d1d2d3(g` − 1)(gm − 1)
, η2 := αN , η3 := g,

b1 := 1, b2 := k, b3 := −n,

and K := Q(η1, η2, η3) = Q(αN ) of degree dK = 3. By Lemma 4, we have
k < 8n log g, so we put B = 8n log g. We have

h(η2) = h(αN ) =
logαN

3
, h(η3) = h(g) = log g,

and

h(η1) = h

(
aN (g − 1)3

d1d2d3(g` − 1)(gm − 1)

)
≤ h(aN )+h

(
(g − 1)3

d1d2d3(g` − 1)(gm − 1)

)
≤

1

3
log 23 + log

(
max{(g − 1)3, d1d2d3}

)
+ h

(
1

g` − 1

)
+ h

(
1

gm − 1

)
< 2 + 3 log (g − 1) + log

(
g` − 1

)
+ log (gm − 1)

< (3 + `+m) log(g) + 2

< (6 + `+m) log g since g ≥ 2.

Thus, we can take

A1 = 3(6 + `+m) log(g), A2 = logαN and A3 = 3 log g.

Using Theorem 3, we see that

log |Γ3| > −1.4× 306 × 34.5 × 33(1 + log 3)(1 + log(8n log g))

× ((6 + `+m) log(g))(3 log g logαN )

> −9.31× 1012(1 + log(8n log g))(log2 g)(6 + `+m).

Comparing with (9), we get

(n− 1) log g − log 2 < 9.31× 1012(1 + log(8n log g))(log2 g)(6 + `+m).

We have

1 + log(8n log g) < 8 log n log g, m < 3.8× 1028 × log2 n log4 g,

` < 4.5× 1014 log n log2 g.

Thus

6 + `+m < 4.51× 1014 log n log2 g + 3.8× 1028 × log2 n log4 g

< 4× 1028 × log2 n log4 g.

So we have

n < 3× 1042 log3 n log6 g.
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Now we apply Lemma 2, by setting

r := 3, L := n and H := 3× 1042 · log6 g,

we get

n < 23 · 3× 1042 · log6 g × log3
(
3× 1042 · log6 g

)
< 2.4× 1043 · log6 g · (95.6 + 6 log log g)3

< 5.91× 1049 log9 g.

Notice that we have used the inequality 95.6 + 6 log log g < 135 log g which
holds since g ≥ 2. �

4.2. Proof of Theorem 2. Since 2 ≤ g ≤ 10, according to Theorem 1, we
have

` ≤ m ≤ n < 1.08× 1053 and k < 1.99× 1054.

Consequently, the next step is to reduce the upper bounds above in order to
identify the set of the interval in which the possible solutions of (1) lie. To
do this, we proceed in three steps.

Step 1. Using (6), let

Λ1 := − log(Γ1 + 1) = (`+m+ n) log g − k logαN − log

(
(g − 1)3aN

d1d2d3

)
.

Notice that (6) can be rewritten as∣∣e−Λ1 − 1
∣∣ < 8

g`
.

Observe that Λ1 6= 0, since e−Λ1 − 1 = Γ1 6= 0. Assume that ` ≥ 5. Then∣∣e−Λ1 − 1
∣∣ < 8

g`
<

1

2
.

Since |x| < 2 |ex − 1|, if |x| <
1

2
holds, then

|Λ1| <
16

g`
.

Substituting Λ1 in the above inequality with its value and dividing through
by logαN , we get∣∣∣∣∣∣∣∣∣(`+m+ n)

(
log g

logαN

)
− k +

log

(
(g − 1)3aN

d1d2d3

)
logαN

∣∣∣∣∣∣∣∣∣ <
16

logαN g`
.
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Then, we can apply Lemma 3 with the data

τ :=
log g

logαN
, µ :=

log

(
(g − 1)3aN

d1d2d3

)
logαN

, A :=
16

logαN
,

B := g, and w := ` with 1 ≤ d1 ≤ d2 ≤ d3 ≤ g − 1.

We can take M := 1.99 × 1054, since k < 8n log g < 1.99 × 1054. So,
for the remaining proof, we use Mathematica to apply Lemma 3. For the
computations, if the first convergent qt is such that qt > 6M does not satisfy
the condition ε > 0, then we use the next convergent until we find the one
that satisfies the conditions. Thus, we have the results given in Table 2.

Table 2. Upper bound on `.

g 2 3 4 5 6 7 8 9 10

qt q118 q100 q110 q115 q90 q106 q112 q102 q96

ε ≥ 0.36 0.26 0.03 0.01 0.06 0.001 0.0019 0.005 0.01

` ≤ 194 121 99 87 76 72 67 62 59

Therefore

1 ≤ ` ≤
log((16/ logαN ) · q118/0.36)

log 2
≤ 194.

Step 2. In this step, we have to reduce the upper bound on m. To do this,
let us consider

Λ2 := − log(Γ2 + 1) = (m+ n) log g − k logαN + log

(
(g − 1)3aN

d1d2d3 · (g` − 1)

)
.

Thus inequality (8) becomes∣∣e−Λ2 − 1
∣∣ < 4

gm
<

1

2
,

which holds for m ≥ 4. It follows that∣∣∣∣∣∣∣∣∣(m+ n)
log g

logαN
− k +

log

(
(g − 1)3aN

d1d2d3 · (g` − 1)

)
logαN

∣∣∣∣∣∣∣∣∣ <
8

gm logαN
. (10)

So the conditions of Lemma 3 are satisfied. Applying this lemma to the
inequality (10) with the following data
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τ :=
log g

logαN
, µ :=

log

(
(g − 1)3aN

d1d2d3 · (g` − 1)

)
logαN

,

A :=
8

logαN
, B := g, and w := m

with 1 ≤ d1 ≤ d2 ≤ d3 ≤ g − 1 and 1 ≤ ` ≤ 194.
As k < 8n log g < 1.99 × 1054, we can take M := 1.99 × 1054. With

Mathematica we get the results given in Table 3.

Table 3. Upper bound on m.

g 2 3 4 5 6 7 8 9 10

qt q118 q100 q110 q115 q90 q106 q112 q102 q96

ε ≥ 0.004 0.0007 0.0003 0.001 0.0002 0.0005 0.0001 0.005 0.001

m ≤ 199 125 102 88 78 72 68 62 60

In all cases, we can conclude that

1 ≤ m ≤
log((8/ logαN ) · q115/0.0009)

log 2
≤ 200.

Step 3. Finally, to reduce the bound on n we have to choose

Λ3 := log(Γ3 + 1) = (n) log g − k logαN + log

(
(g − 1)3aN

d1d2d3 · (g` − 1)(gm − 1)

)
.

We have, ∣∣e−Λ3 − 1
∣∣ < 2

gn−1
<

1

2
,

which is valid for n ≥ 4 and g ≥ 2. It follows that

∣∣∣∣∣m log g

logαN
− k +

log

(
(g − 1)3aN

d1d2d3 · (g` − 1)(gm − 1)

)
logαN

∣∣∣∣∣ < 4

gn−1αN
. (11)

Now we have to apply Lemma 3 to (11) by taking the following parameters

τ :=
log g

logαN
, µ :=

log

(
(g − 1)3aN

d1d2d3 · (g` − 1)(gm − 1)

)
logαN

, A :=
8

logαN
,

B := g, and w := n− 1
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with 1 ≤ d1 ≤ d2 ≤ d3 ≤ g − 1, 1 ≤ ` ≤ 194 and 1 ≤ m ≤ 183.
Using the fact that k < 8n log g < 1.99 × 1054, we can take M := 1.99 ×

1054, and we get the following reduced bounds of n for 2 ≤ g ≤ 10.

Table 4. Upper bound on n.

g 2 3 4 5 6 7 8 9 10

qt q118 q99 q110 q115 q90 q106 q112 q102 q96

ε ≥ 0.00006 0.002 0.007 0.0002 0.0008 0.002 0.0005 0.02 0.009

n ≤ 204 124 99 89 77 71 67 61 59

It follows from the above table that

1 ≤ n ≤
log((4/ logαN ) · q118/10−6)

log 2
≤ 205,

which is valid for all g such that 2 ≤ g ≤ 10. In light of the above results, we
need to check the equation (1) in the cases 2 ≤ g ≤ 10 for 1 ≤ d1, d2, d3 ≤ 9,
1 ≤ n ≤ 205, 1 ≤ m ≤ 200, 1 ≤ ` ≤ 194 and 1 ≤ k ≤ 11500. A quick
inspection using Sagemath reveals that the Diophantine equation (1) in the
range 2 ≤ g ≤ 10 has only the solutions listed in the statement of Theorem 2.
This completes the proof of Theorem 2.

5. Discussions

In addition to Baker’s method and linear forms in logarithms, there are
other so-called “classical” methods and techniques for solving exponential
Diophantine equations. These include the modular arithmetic method, p-
adic analysis, Fermat’s method of infinite descent, the factorization method,
solving using inequalities, the mathematical induction method, the paramet-
ric method, and so on. It would be interesting to treat the same problems
approached in this article with other methods than those of the linear forms
in logarithms. The modular arithmetic method could be used to determine
Narayana numbers, which are products of three repdigits in base g with g ≥ 2
due to the interesting divisibility properties possessed by the repdigits.
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cations (LACGAA), Université Cheikh Anta Diop de Dakar (UCAD), Sénégal
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Diop de Dakar (UCAD), Sénégal
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