Quasi-Laplacian energy of fractal graphs

Murat Erşen BERBERLER

Abstract

Graph energy is a measurement of determining the structural information content of graphs. The first Zagreb index can be handled with its connection to graph energy. In this paper, a novel and significant application of the first Zagreb index to composite graphs based on fractal graphs is revealed, and by the relation between quasi-Laplacian energy and the vertex degrees of a graph, we derive closed-form formulas for the quasi-Laplacian energy of fractal graphs or namely R-graphs, R-vertex and edge join, R-vertex and edge corona, R-vertex and edge neighborhood graphs in terms of the corresponding energy, the first Zagreb indices, number of vertices and edges of the underlying graphs.

1. Introduction

All graphs considered in this paper are simple and undirected. Let $G=$ $(V(G), E(G))$ be a graph with vertex set $V(G)$ and edge set $E(G)$. If $|V(G)|=n$ and $|E(G)|=m$, we say that G is an (n, m)-graph. The degree of a vertex $v \in V(G)$, denoted by $\operatorname{deg}(v)$, is the number of edges incident to v in G. For a graph G, the sum of the degrees of vertices is equal to the twice the number of edges, that is $\sum_{v \in V(G)} \operatorname{deg}(v)=2|E(G)|$, a well-known result called the handshaking lemma. Let $D(G)=\operatorname{diag}\left(\operatorname{deg}\left(v_{1}\right), \operatorname{deg}\left(v_{2}\right)\right.$, $\left.\ldots, \operatorname{deg}\left(v_{|V(G)|}\right)\right)$ be the diagonal matrix with all vertex degrees of G as its diagonal entries. Let $A(G)$ denote the adjacency matrix of G. The quasi-Laplacian matrix of G is defined as $Q(G)=D(G)+A(G)$ [2]. The quasi-Laplacian matrix $Q(G)$ of G is a real symmetric positive semi-definite matrix [3], and we use $\mu_{1}(G) \geq \mu_{2}(G) \geq \ldots \geq \mu_{|V(G)|}(G) \geq 0$ to denote the

[^0]eigenvalues of $Q(G)$. The quasi-Laplacian energy of G is defined in [8] as
$$
E_{Q}(G)=\sum_{i=1}^{|V(G)|} \mu_{i}^{2}
$$
where it is pointed out that the quasi-Laplacian energy of G can also be expressed as
\[

$$
\begin{equation*}
E_{Q}(G)=\sum_{i=1}^{|V(G)|} \mu_{i}^{2}=\sum_{i=1}^{|V(G)|} \operatorname{deg}^{2}\left(v_{i}\right)+\sum_{i=1}^{|V(G)|} \operatorname{deg}\left(v_{i}\right) \tag{1}
\end{equation*}
$$

\]

The first Zagreb index of a graph was first introduced by Gutman and Trinajstić in [5], defined as

$$
\begin{equation*}
M_{1}(G)=\sum_{v \in V(G)} \operatorname{deg}^{2}(v) \tag{2}
\end{equation*}
$$

The first Zagreb index can be also expressed as a sum over edges of G,

$$
M_{1}(G)=\sum_{u v \in E(G)}\left(\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v)\right)
$$

We will omit the subscript G when the graph is clear from the context. We encourage the reader to consult [1, 4, 9, 10, 11] for historical background, computational techniques and mathematical properties of the Zagreb indices.

It is well known that composite graph classes arise from simpler graphs via various graph operations. Therefore, it is important and of interest to understand how certain invariants of those composite graphs are related to the corresponding invariants of the simpler graphs.

The fractal graph of a graph G, denoted by $R(G)$, is the graph obtained from G by adding a vertex v_{e} and then joining v_{e} to the end vertices of e for each $e \in E(G)$. Let $I(G)$ be the set of newly added vertices, that is $I(G)=V(R(G)) \backslash V(G)$. The fractal graph of a graph G is also known as the R-graph of a graph G [6].

Let G_{1} and G_{2} be two vertex-disjoint graphs. In [7 and [6], new graph operations based on fractal graphs are defined as follows.

- The R-vertex join of G_{1} and G_{2}, denoted by $G_{1}\langle v\rangle G_{2}$, is the graph obtained from vertex disjoint $R\left(G_{1}\right)$ and G_{2} by joining every vertex of $V\left(G_{1}\right)$ with every vertex of $V\left(G_{2}\right)$.
- The R-edge join of G_{1} and G_{2}, denoted by $G_{1}\langle e\rangle G_{2}$, is the graph obtained from vertex disjoint $R\left(G_{1}\right)$ and G_{2} by joining every vertex of $I\left(G_{1}\right)$ with every vertex of $V\left(G_{2}\right)$.
- The R-vertex corona of G_{1} and G_{2}, denoted by $G_{1} \cdot G_{2}$, is the graph obtained from vertex disjoint $R\left(G_{1}\right)$ and $\left|V\left(G_{1}\right)\right|$ copies of G_{2} by joining the i th vertex of $V\left(G_{1}\right)$ to every vertex in the i th copy of G_{2}.
- The R-edge corona of G_{1} and G_{2}, denoted by $G_{1} \times G_{2}$, is the graph obtained from vertex disjoint $R\left(G_{1}\right)$ and $\left|I\left(G_{1}\right)\right|$ copies of G_{2} by joining the i th vertex of $I\left(G_{1}\right)$ to every vertex in the i th copy of G_{2}.
- The R-vertex neighborhood corona of G_{1} and G_{2}, denoted by $G_{1} \odot G_{2}$, is the graph obtained from vertex disjoint $R\left(G_{1}\right)$ and $\left|V\left(G_{1}\right)\right|$ copies of G_{2} by joining the neighbors of the i th vertex of G_{1} in $R\left(G_{1}\right)$ to every vertex in the i th copy of G_{2}.
- The R-edge neighborhood corona of G_{1} and G_{2}, denoted by $G_{1} \otimes G_{2}$, is the graph obtained from vertex disjoint $R\left(G_{1}\right)$ and $\left|I\left(G_{1}\right)\right|$ copies of G_{2} by joining the neighbors of the i th vertex of $\left|I\left(G_{1}\right)\right|$ in $R\left(G_{1}\right)$ to every vertex in the i th copy of G_{2}.
In this paper we derive closed-form formulas for the quasi-Laplacian energy of fractal graphs or namely R-graphs, R-vertex and edge join, R-vertex and edge corona, R-vertex and edge neighborhood graphs in terms of the corresponding energy (and some other quantities) of G_{1} and G_{2}. The paper ends with a short summary and conclusion.

2. Quasi-Laplacian energy of graphs based on fractal graphs

In this chapter, we consider an (n, m)-graph G and two vertex-disjoint graphs, i.e., an (n_{1}, m_{1})-graph G_{1} and an $\left(n_{2}, m_{2}\right)$-graph G_{2}.
2.1. Quasi-Laplacian energy of fractal graphs. The degree of a vertex $v \in V(R(G))$ is given by

$$
\operatorname{deg}_{R(G)}(v)= \begin{cases}2 \operatorname{deg}_{G}(v), & \text { if } v \in V(G) ; \tag{3}\\ 2, & \text { if } v \in I(G) .\end{cases}
$$

Theorem 1. The quasi-Laplacian energy of $R(G)$ is

$$
E_{Q}(R(G))=4\left(E_{Q}(G)\right)+2 m .
$$

Proof. By definition (1) we have

$$
E_{Q}(R(G))=\sum_{i=1}^{|V(R(G))|} \operatorname{deg}_{R(G)}^{2}\left(v_{i}\right)+\sum_{i=1}^{|V(R(G))|} \operatorname{deg}_{R(G)}\left(v_{i}\right) .
$$

Splitting the vertex set $V(R(G))$ into disjoint sets $V(G)$ and $I(G)$, we get

$$
\begin{aligned}
E_{Q}(R(G))= & \sum_{v \in V(G)} \operatorname{deg}_{R(G)}^{2}(v)+\sum_{v \in I(G)} \operatorname{deg}_{R(G)}^{2}(v) \\
& +\sum_{v \in V(G)} \operatorname{deg}_{R(G)}(v)+\sum_{v \in I(G)} \operatorname{deg}_{R(G)}(v) .
\end{aligned}
$$

Substituting degrees of the vertices of $R(G)$ from (3), we compute

$$
\begin{aligned}
E_{Q}(R(G)) & =\left(\sum_{i=1}^{n}\left(2 \operatorname{deg}_{G}\left(v_{i}\right)\right)^{2}+\sum_{i=1}^{m}(2)^{2}\right)+\left(\sum_{i=1}^{n}\left(2 \operatorname{deg}_{G}\left(v_{i}\right)\right)+\sum_{i=1}^{m}(2)\right) \\
& =\left(4 \sum_{i=1}^{n} \operatorname{deg}_{G}^{2}\left(v_{i}\right)+4 m\right)+\left(2 \sum_{i=1}^{n} \operatorname{deg}_{G}\left(v_{i}\right)+2 m\right) .
\end{aligned}
$$

By handshaking lemma, we compute each summation as follows:

$$
\begin{aligned}
E_{Q}(R(G)) & =4 \sum_{i=1}^{n} \operatorname{deg}_{G}^{2}\left(v_{i}\right)+4 m+2(2 m)+2 m \\
& =4 \sum_{i=1}^{n} \operatorname{deg}_{G}^{2}\left(v_{i}\right)+4 \sum_{i=1}^{n} \operatorname{deg}_{G}\left(v_{i}\right)+2 m .
\end{aligned}
$$

Comparing with definition (1) of the quasi-Laplacian energy of G, we receive the result.
2.2. Quasi-Laplacian energy of R-vertex join graphs. The degree of a vertex $v \in V\left(G_{1}\langle v\rangle G_{2}\right)$ is given by

$$
\operatorname{deg}_{G_{1}\langle v\rangle G_{2}}(v)= \begin{cases}2 \operatorname{deg}_{G_{1}}(v)+n_{2}, & \text { if } v \in V\left(G_{1}\right) \tag{4}\\ 2, & \text { if } v \in I\left(G_{1}\right) \\ \operatorname{deg}_{G_{2}}(v)+n_{1}, & \text { if } v \in V\left(G_{2}\right)\end{cases}
$$

Theorem 2. The quasi-Laplacian energy of a graph $G_{1}\langle v\rangle G_{2}$ is

$$
\begin{aligned}
E_{Q}\left(G_{1}\langle v\rangle G_{2}\right)= & 4 E_{Q}\left(G_{1}\right)+E_{Q}\left(G_{2}\right) \\
& +n_{1} n_{2}\left(n_{1}+n_{2}+2\right)+2 m_{1}\left(4 n_{2}+1\right)+4 n_{1} m_{2}
\end{aligned}
$$

Proof. By definition (1) we start with

$$
E_{Q}\left(G_{1}\langle v\rangle G_{2}\right)=\sum_{i=1}^{\left|V\left(G_{1}\langle v\rangle G_{2}\right)\right|} \operatorname{deg}_{G_{1}\langle v\rangle G_{2}}^{2}\left(v_{i}\right)+\sum_{i=1}^{\left|V\left(G_{1}\langle v\rangle G_{2}\right)\right|} \operatorname{deg}_{G_{1}\langle v\rangle G_{2}}\left(v_{i}\right) .
$$

Splitting the vertex set $V\left(G_{1}\langle v\rangle G_{2}\right)$ into disjoint sets $V\left(G_{1}\right), V\left(G_{2}\right)$ and $I\left(G_{1}\right)$, we get

$$
\begin{aligned}
E_{Q}\left(G_{1}\langle v\rangle G_{2}\right)= & \sum_{v \in V\left(G_{1}\right)} \operatorname{deg}_{G_{1}\langle v\rangle G_{2}}^{2}(v)+\sum_{v \in I\left(G_{1}\right)} \operatorname{deg}_{G_{1}\langle v\rangle G_{2}}^{2}(v) \\
& +\sum_{v \in V\left(G_{2}\right)} \operatorname{deg}_{G_{1}\langle v\rangle G_{2}}^{2}(v)+\sum_{v \in V\left(G_{1}\right)} \operatorname{deg}_{G_{1}\langle v\rangle G_{2}}(v) \\
& +\sum_{v \in I\left(G_{1}\right)} \operatorname{deg}_{G_{1}\langle v\rangle G_{2}}(v)+\sum_{v \in V\left(G_{2}\right)} \operatorname{deg}_{G_{1}\langle v\rangle G_{2}}(v) .
\end{aligned}
$$

Substituting the degrees of the vertices of $G_{1}\langle v\rangle G_{2}$ from (4), we compute

$$
\begin{aligned}
E_{Q}\left(G_{1}\langle v\rangle G_{2}\right)= & \sum_{i=1}^{n_{1}}\left(2 \operatorname{deg}_{G_{1}}\left(v_{i}\right)+n_{2}\right)^{2}+\sum_{i=1}^{m_{1}}(2)^{2}+\sum_{i=1}^{n_{2}}\left(\operatorname{deg}_{G_{2}}\left(v_{i}\right)+n_{1}\right)^{2} \\
& +\sum_{i=1}^{n_{1}}\left(2 \operatorname{deg}_{G_{1}}\left(v_{i}\right)+n_{2}\right)+\sum_{i=1}^{m_{1}}(2)+\sum_{i=1}^{n_{2}}\left(\operatorname{deg}_{G_{2}}\left(v_{i}\right)+n_{1}\right) \\
= & 4 \sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}^{2}\left(v_{i}\right)+4 n_{2} \sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}\left(v_{i}\right)+n_{1} n_{2}^{2}+4 m_{1} \\
& +\sum_{i=1}^{n_{2}} \operatorname{deg}_{G_{2}}^{2}\left(v_{i}\right)+2 n_{1} \sum_{i=1}^{n_{2}} \operatorname{deg}_{G_{2}}\left(v_{i}\right)+n_{2} n_{1}^{2} \\
& +2 \sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}\left(v_{i}\right)+n_{1} n_{2}+2 m_{1}+\sum_{i=1}^{n_{2}} \operatorname{deg}_{G_{2}}\left(v_{i}\right)+n_{1} n_{2}
\end{aligned}
$$

By handshaking lemma, we compute each summation as follows:

$$
\begin{aligned}
E_{Q}\left(G_{1}\langle v\rangle G_{2}\right)= & 4 \sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}^{2}\left(v_{i}\right)+4 n_{2}\left(2 m_{1}\right)+n_{1} n_{2}^{2}+4 m_{1}+\sum_{i=1}^{n_{2}} \operatorname{deg}_{G_{2}}^{2}\left(v_{i}\right) \\
& +2 n_{1}\left(2 m_{2}\right)+n_{2} n_{1}^{2}+2\left(2 m_{1}\right)+n_{1} n_{2}+2 m_{1}+2 m_{2}+n_{1} n_{2}
\end{aligned}
$$

After rearranging the terms, we get

$$
\begin{aligned}
E_{Q}\left(G_{1}\langle v\rangle G_{2}\right)= & 4\left(\sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}^{2}\left(v_{i}\right)+2 m_{1}\right)+\left(\sum_{i=1}^{n_{2}} \operatorname{deg}_{G_{2}}^{2}\left(v_{i}\right)+2 m_{2}\right) \\
& +4 n_{1} m_{2}+2 m_{1}\left(4 n_{2}+1\right)+n_{1} n_{2}\left(n_{1}+n_{2}+2\right)
\end{aligned}
$$

Recognizing here the quasi-Laplacian energies for G_{1} and G_{2} (see (11), we receive the result.
2.3. Quasi-Laplacian energy of R-edge join graphs. The degree of a vertex $v \in V\left(G_{1}\langle e\rangle G_{2}\right)$ is given by

$$
\operatorname{deg}_{G_{1}\langle e\rangle G_{2}}(v)= \begin{cases}2 \operatorname{deg}_{G_{1}}(v), & \text { if } v \in V\left(G_{1}\right) \tag{5}\\ n_{2}+2, & \text { if } v \in I\left(G_{1}\right) \\ \operatorname{deg}_{G_{2}}(v)+m_{1}, & \text { if } v \in V\left(G_{2}\right)\end{cases}
$$

Theorem 3. The quasi-Laplacian energy of a graph $G_{1}\langle e\rangle G_{2}$ is $E_{Q}\left(G_{1}\langle e\rangle G_{2}\right)=4\left(E_{Q}\left(G_{1}\right)\right)+E_{Q}\left(G_{2}\right)+m_{1}\left(n_{2}\left(n_{2}+m_{1}+6\right)+4 m_{2}\right)$.
Proof. By definition (1), we have that

$$
E_{Q}\left(G_{1}\langle e\rangle G_{2}\right)=\sum_{i=1}^{\left|V\left(G_{1}\langle e\rangle G_{2}\right)\right|} \operatorname{deg}_{G_{1}\langle e\rangle G_{2}}^{2}\left(v_{i}\right)+\sum_{i=1}^{\left|V\left(G_{1}\langle e\rangle G_{2}\right)\right|} \operatorname{deg}_{G_{1}\langle e\rangle G_{2}}\left(v_{i}\right)
$$

Splitting the vertex set $V\left(G_{1}\langle e\rangle G_{2}\right)$ into disjoint sets $V\left(G_{1}\right), V\left(G_{2}\right)$ and $I\left(G_{1}\right)$, we get

$$
\begin{aligned}
E_{Q}\left(G_{1}\langle e\rangle G_{2}\right)= & \sum_{v \in V\left(G_{1}\right)} \operatorname{deg}_{G_{1}\langle e\rangle G_{2}}^{2}(v)+\sum_{v \in I\left(G_{1}\right)} \operatorname{deg}_{G_{1}\langle e\rangle G_{2}}^{2}(v) \\
& +\sum_{v \in V\left(G_{2}\right)} \operatorname{deg}_{G_{1}\langle e\rangle G_{2}}^{2}(v)+\sum_{v \in V\left(G_{1}\right)} \operatorname{deg}_{G_{1}\langle e\rangle G_{2}}(v) \\
& +\sum_{v \in I\left(G_{1}\right)} \operatorname{deg}_{G_{1}\langle e\rangle G_{2}}(v)+\sum_{v \in V\left(G_{2}\right)} \operatorname{deg}_{G_{1}\langle e\rangle G_{2}}(v) .
\end{aligned}
$$

Substituting the degrees of the vertices of $G_{1}\langle e\rangle G_{2}$ from (5), we compute

$$
\begin{aligned}
& E_{Q}\left(G_{1}\langle e\rangle G_{2}\right)=\sum_{i=1}^{n_{1}}\left(2 \operatorname{deg}_{G_{1}}\left(v_{i}\right)\right)^{2}+\sum_{i=1}^{m_{1}}\left(n_{2}+2\right)^{2}+\sum_{i=1}^{n_{2}}\left(\operatorname{deg}_{G_{2}}\left(v_{i}\right)+m_{1}\right)^{2} \\
&+\sum_{i=1}^{n_{1}}\left(2 \operatorname{deg}_{G_{1}}\left(v_{i}\right)\right)+\sum_{i=1}^{m_{1}}\left(n_{2}+2\right)+\sum_{i=1}^{n_{2}}\left(\operatorname{deg}_{G_{2}}\left(v_{i}\right)+m_{1}\right) \\
&= 4 \sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}^{2}\left(v_{i}\right)+m_{1}\left(n_{2}+2\right)^{2}+\sum_{i=1}^{n_{2}} \operatorname{deg}_{G_{2}}^{2}\left(v_{i}\right)+2 m_{1} \sum_{i=1}^{n_{2}} \operatorname{deg}_{G_{2}}\left(v_{i}\right) \\
&+n_{2} m_{1}^{2}+2 \sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}\left(v_{i}\right)+m_{1}\left(n_{2}+2\right)+\sum_{i=1}^{n_{2}} \operatorname{deg}_{G_{2}}\left(v_{i}\right)+n_{2} m_{1} .
\end{aligned}
$$

By handshaking lemma, we compute each summation as follows:

$$
\begin{aligned}
E_{Q}\left(G_{1}\langle e\rangle G_{2}\right)= & 4 \sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}^{2}\left(v_{i}\right)+m_{1}\left(n_{2}+2\right)^{2}+\sum_{i=1}^{n_{2}} \operatorname{deg}_{G_{2}}^{2}\left(v_{i}\right)+2 m_{1}\left(2 m_{2}\right) \\
& +n_{2} m_{1}^{2}+2\left(m_{1}\right)+m_{1}\left(n_{2}+2\right)+2 m_{2}+n_{2} m_{1}
\end{aligned}
$$

Rearranging terms, we receive

$$
\begin{aligned}
E_{Q}\left(G_{1}\langle e\rangle G_{2}\right)= & 4\left(\sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}^{2}\left(v_{i}\right)+2 m_{1}\right)+\left(\sum_{i=1}^{n_{2}} \operatorname{deg}_{G_{2}}^{2}\left(v_{i}\right)+2 m_{2}\right) \\
& +m_{1}\left(n_{2}\left(n_{2}+m_{1}+6\right)+4 m_{2}\right)
\end{aligned}
$$

Using definition (11), we see the desired result for $E_{Q}\left(G_{1}\langle e\rangle G_{2}\right)$.
2.4. Quasi-Laplacian energy of R-vertex corona graphs. The degree of a vertex $v \in V\left(G_{1} \cdot G_{2}\right)$ is given by

$$
\operatorname{deg}_{G_{1} \cdot G_{2}}(v)= \begin{cases}2 \operatorname{deg}_{G_{1}}(v)+n_{2}, & \text { if } v \in V\left(G_{1}\right) \tag{6}\\ 2, & \text { if } v \in I\left(G_{1}\right) \\ \operatorname{deg}_{G_{2}}(v)+1, & \text { if } v \in V\left(G_{2}\right)\end{cases}
$$

Theorem 4. The quasi-Laplacian energy of a graph $G_{1} \cdot G_{2}$ is

$$
E_{Q}\left(G_{1} \cdot G_{2}\right)=4 E_{Q}\left(G_{1}\right)+n_{1} E_{Q}\left(G_{2}\right)+n_{1}\left(4 m_{2}+n_{2}\left(n_{2}+3\right)\right)+2 m_{1}\left(4 n_{2}+1\right)
$$

Proof. By definition (1), we have that

$$
E_{Q}\left(G_{1} \cdot G_{2}\right)=\sum_{i=1}^{\left|V\left(G_{1} \cdot G_{2}\right)\right|} \operatorname{deg}_{G_{1} \cdot G_{2}}^{2}\left(v_{i}\right)+\sum_{i=1}^{\left|V\left(G_{1} \cdot G_{2}\right)\right|} \operatorname{deg}_{G_{1} \cdot G_{2}}\left(v_{i}\right)
$$

Splitting the vertex set $V\left(G_{1} \cdot G_{2}\right)$ into disjoint sets $V\left(G_{1}\right), V\left(G_{2}\right)$ and $I\left(G_{1}\right)$, we get

$$
\begin{aligned}
E_{Q}\left(G_{1} \cdot G_{2}\right)= & \sum_{v \in V\left(G_{1}\right)} \operatorname{deg}_{G_{1} \cdot G_{2}}^{2}(v)+\sum_{v \in I\left(G_{1}\right)} \operatorname{deg}_{G_{1} \cdot G_{2}}^{2}(v) \\
& +\sum_{i=1}^{n_{1}} \sum_{v \in V\left(G_{2}\right)} \operatorname{deg}_{G_{1} \cdot G_{2}}^{2}(v)+\sum_{v \in V\left(G_{1}\right)} \operatorname{deg}_{G_{1} \cdot G_{2}}(v) \\
& +\sum_{v \in I\left(G_{1}\right)} \operatorname{deg}_{G_{1} \cdot G_{2}}(v)+\sum_{i=1}^{n_{1}} \sum_{v \in V\left(G_{2}\right)} \operatorname{deg}_{G_{1} \cdot G_{2}}(v)
\end{aligned}
$$

Substituting the degrees of the vertices of $G_{1} \cdot G_{2}$ from (6), we compute

$$
\begin{aligned}
E_{Q}\left(G_{1} \cdot G_{2}\right)= & \sum_{i=1}^{n_{1}}\left(2 \operatorname{deg}_{G_{1}}\left(v_{i}\right)+n_{2}\right)^{2}+\sum_{i=1}^{m_{1}}(2)^{2}+\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}}\left(\operatorname{deg}_{G_{2}}\left(v_{j}\right)+1\right)^{2} \\
& +\sum_{i=1}^{n_{1}}\left(2 \operatorname{deg}_{G_{1}}\left(v_{i}\right)+n_{2}\right)+\sum_{i=1}^{m_{1}}(2)+\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}}\left(\operatorname{deg}_{G_{2}}\left(v_{j}\right)+1\right) \\
= & 4 \sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}^{2}\left(v_{i}\right)+4 n_{2} \sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}\left(v_{i}\right)+n_{1} n_{2}^{2}+4 m_{1} \\
& +\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} \operatorname{deg}_{G_{2}}^{2}\left(v_{j}\right)+2 \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} \operatorname{deg}_{G_{2}}\left(v_{j}\right)+n_{1} n_{2} \\
& +2 \sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}\left(v_{i}\right)+n_{1} n_{2}+2 m_{1}+\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}}\left(\operatorname{deg}_{G_{2}}\left(v_{j}\right)\right)+n_{1} n_{2}
\end{aligned}
$$

Applying handshaking lemma, we get:

$$
\begin{aligned}
E_{Q}\left(G_{1} \cdot G_{2}\right)= & 4 \sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}^{2}\left(v_{i}\right)+4 n_{2}\left(2 m_{1}\right)+n_{1} n_{2}^{2}+4 m_{1}+\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} \operatorname{deg}_{G_{2}}^{2}\left(v_{j}\right) \\
+ & 2 \sum_{i=1}^{n_{1}}\left(2 m_{2}\right)+n_{1} n_{2}+2\left(2 m_{1}\right)+n_{1} n_{2}+2 m_{1}+\sum_{i=1}^{n_{1}}\left(2 m_{2}\right)+n_{1} n_{2} \\
= & 4 \sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}^{2}\left(v_{i}\right)+4 n_{2}\left(2 m_{1}\right)+n_{1} n_{2}^{2}+4 m_{1}+n_{1} \sum_{j=1}^{n_{2}} \operatorname{deg}_{G_{2}}^{2}\left(v_{j}\right) \\
& +4 n_{1} m_{2}+n_{1} n_{2}+2\left(2 m_{1}\right)+n_{1} n_{2}+2 m_{1}+2 n_{1} m_{2}+n_{1} n_{2} .
\end{aligned}
$$

After rearranging,

$$
\begin{aligned}
E_{Q}\left(G_{1} \cdot G_{2}\right)= & 4\left(\sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}^{2}\left(v_{i}\right)+2 m_{1}\right)+n_{1}\left(\sum_{j=1}^{n_{2}} \operatorname{deg}_{G_{2}}^{2}\left(v_{j}\right)+2 m_{2}\right) \\
& +n_{1}\left(4 m_{2}+n_{2}\left(n_{2}+3\right)\right)+2 m_{1}\left(4 n_{2}+1\right),
\end{aligned}
$$

from which, by definition (1), we see that the desired result for $E_{Q}\left(G_{1} \cdot G_{2}\right)$ holds.
2.5. Quasi-Laplacian energy of R-edge corona graphs. The degree of a vertex $v \in V\left(G_{1} \times G_{2}\right)$ is given by

$$
\operatorname{deg}_{G_{1} \times G_{2}}(v)= \begin{cases}2 \operatorname{deg}_{G_{1}}(v), & \text { if } v \in V\left(G_{1}\right) ; \tag{7}\\ n_{2}+2, & \text { if } v \in I\left(G_{1}\right) ; \\ \operatorname{deg}_{G_{2}}(v)+1, & \text { if } v \in V\left(G_{2}\right) .\end{cases}
$$

Theorem 5. The quasi-Laplacian energy of a graph $G_{1} \times G_{2}$ is

$$
E_{Q}\left(G_{1} \times G_{2}\right)=4 E_{Q}\left(G_{1}\right)+m_{1}\left(E_{Q}\left(G_{2}\right)+n_{2}\left(n_{2}+6\right)+4 m_{2}+2\right) .
$$

Proof. By definition (1), we have that

$$
E_{Q}\left(G_{1} \times G_{2}\right)=\sum_{i=1}^{\left|V\left(G_{1} \times G_{2}\right)\right|} \operatorname{deg}_{G_{1} \times G_{2}}^{2}\left(v_{i}\right)+\sum_{i=1}^{\left|V\left(G_{1} \times G_{2}\right)\right|} \operatorname{deg}_{G_{1} \times G_{2}}\left(v_{i}\right) .
$$

Splitting the vertex set $V\left(G_{1} \times G_{2}\right)$ into disjoint sets $V\left(G_{1}\right), V\left(G_{2}\right)$ and $I\left(G_{1}\right)$, we get

$$
\begin{aligned}
E_{Q}\left(G_{1} \times G_{2}\right)= & \sum_{v \in V\left(G_{1}\right)} \operatorname{deg}_{G_{1} \times G_{2}}^{2}(v)+\sum_{v \in I\left(G_{1}\right)} \operatorname{deg}_{G_{1} \times G_{2}}^{2}(v) \\
& +\sum_{i=1}^{m_{1}} \sum_{v \in V\left(G_{2}\right)} \operatorname{deg}_{G_{1} \times G_{2}}^{2}(v) \sum_{v \in V\left(G_{1}\right)} \operatorname{deg}_{G_{1} \times G_{2}}(v) \\
& +\sum_{v \in I\left(G_{1}\right)} \operatorname{deg}_{G_{1} \times G_{2}}(v)+\sum_{i=1}^{m_{1}} \sum_{v \in V\left(G_{2}\right)} \operatorname{deg}_{G_{1} \times G_{2}}(v)
\end{aligned}
$$

Substituting the degrees of the vertices of $G_{1} \times G_{2}$ from (7), we compute

$$
\begin{aligned}
& E_{Q}\left(G_{1} \times G_{2}\right)= \sum_{i=1}^{n_{1}}\left(2 \operatorname{deg}_{G_{1}}\left(v_{i}\right)\right)^{2}+\sum_{i=1}^{m_{1}}\left(n_{2}+2\right)^{2}+\sum_{i=1}^{m_{1}} \sum_{j=1}^{n_{2}}\left(\operatorname{deg}_{G_{2}}\left(v_{j}\right)+1\right)^{2} \\
&+\sum_{i=1}^{n_{1}}\left(2 \operatorname{deg}_{G_{1}}\left(v_{i}\right)\right)+\sum_{i=1}^{m_{1}}\left(n_{2}+2\right)+\sum_{i=1}^{m_{1}} \sum_{j=1}^{n_{2}}\left(\operatorname{deg}_{G_{2}}\left(v_{j}\right)+1\right) \\
&=4 \sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}^{2}\left(v_{i}\right)+m_{1}\left(n_{2}+2\right)^{2}+\sum_{i=1}^{m_{1}} \sum_{j=1}^{n_{2}} \operatorname{deg}_{G_{2}}^{2}\left(v_{j}\right)+2 \sum_{i=1}^{m_{1}} \sum_{j=1}^{n_{2}} \operatorname{deg}_{G_{2}}\left(v_{j}\right) \\
& \quad+m_{1} n_{2}+2 \sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}\left(v_{i}\right)+m_{1}\left(n_{2}+2\right)+\sum_{i=1}^{m_{1}} \sum_{j=1}^{n_{2}} \operatorname{deg}_{G_{2}}\left(v_{j}\right)+m_{1} n_{2}
\end{aligned}
$$

By handshaking lemma, we have:

$$
\begin{aligned}
E_{Q}\left(G_{1} \times G_{2}\right)= & 4 \sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}^{2}\left(v_{i}\right)+m_{1}\left(n_{2}+2\right)^{2}+\sum_{i=1}^{m_{1}} \sum_{j=1}^{n_{2}} \operatorname{deg}_{G_{2}}^{2}\left(v_{j}\right)+2 \sum_{i=1}^{m_{1}}\left(2 m_{2}\right) \\
& +m_{1} n_{2}+2\left(2 m_{1}\right)+m_{1}\left(n_{2}+2\right)+\sum_{i=1}^{m_{1}}\left(2 m_{2}\right)+m_{1} n_{2} \\
= & 4 \sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}^{2}\left(v_{i}\right)+m_{1}\left(n_{2}+2\right)^{2}+\sum_{i=1}^{m_{1}} \sum_{j=1}^{n_{2}} \operatorname{deg}_{G_{2}}^{2}\left(v_{j}\right) \\
& +4 m_{1} m_{2}+m_{1} n_{2}+2\left(2 m_{1}\right)+m_{1}\left(n_{2}+2\right)+2 m_{1} m_{2}+m_{1} n_{2}
\end{aligned}
$$

Rearranging, we get that

$$
\begin{aligned}
E_{Q}\left(G_{1} \times G_{2}\right) & =4\left(\sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}^{2}\left(v_{i}\right)+2 m_{1}\right)+m_{1}\left(\sum_{j=1}^{n_{2}} \operatorname{deg}_{G_{2}}^{2}\left(v_{j}\right)+2 m_{2}\right) \\
& +m_{1}\left(n_{2}\left(n_{2}+6\right)+4 m_{2}+2\right)
\end{aligned}
$$

from which by definition (1), the desired result for $E_{Q}\left(G_{1} \times G_{2}\right)$ is received.
2.6. Quasi-Laplacian energy of R-vertex neighborhood corona graphs. The degree of a vertex $v \in V\left(G_{1} \odot G_{2}\right)$ is given by
$\operatorname{deg}_{G_{1} \odot G_{2}}(v)= \begin{cases}\left(n_{2}+2\right) \operatorname{deg}_{G_{1}}(v), & \text { if } v \in V\left(G_{1}\right) ; \\ 2\left(n_{2}+1\right), & \text { if } v \in I\left(G_{1}\right) ; \\ \operatorname{deg}_{G_{2}}(v)+2 \operatorname{deg}_{G_{1}}(u), & \text { if } v \in V\left(G_{2}\right), \text { where } u \text { is } i \text { th } \\ & \text { vertex of } G_{1} \text { in } R\left(G_{1}\right) \text { and } v \\ & \text { is a vertex in } i \text { th copy of } G_{2} .\end{cases}$

Theorem 6. The quasi-Laplacian energy of a graph $G_{1} \odot G_{2}$ is

$$
\begin{aligned}
E_{Q}\left(G_{1} \odot G_{2}\right)= & \left(\left(n_{2}+2\right)^{2}+2 n_{2}\right) E_{Q}\left(G_{1}\right)+n_{1}\left(E_{Q}\left(G_{2}\right)\right) \\
& +2\left(n_{2} M_{1}\left(G_{1}\right)+m_{1}\left(8 m_{2}+1\right)\right)
\end{aligned}
$$

where $M_{1}\left(G_{1}\right)$ is the first Zagreb index of G_{1}, given in (2).
Proof. By definition (1), we have that

$$
E_{Q}\left(G_{1} \odot G_{2}\right)=\sum_{i=1}^{\left|V\left(G_{1} \odot G_{2}\right)\right|} \operatorname{deg}_{G_{1} \odot G_{2}}^{2}\left(v_{i}\right)+\sum_{i=1}^{\left|V\left(G_{1} \odot G_{2}\right)\right|} \operatorname{deg}_{G_{1} \odot G_{2}}\left(v_{i}\right)
$$

Splitting the vertex set $V\left(G_{1} \odot G_{2}\right)$ into disjoint sets $V\left(G_{1}\right), V\left(G_{2}\right)$ and $I\left(G_{1}\right)$, we get

$$
\begin{aligned}
E_{Q}\left(G_{1} \odot G_{2}\right)= & \sum_{v \in V\left(G_{1}\right)} \operatorname{deg}_{G_{1} \odot G_{2}}^{2}(v)+\sum_{v \in I\left(G_{1}\right)} \operatorname{deg}_{G_{1} \odot G_{2}}^{2}(v) \\
& +\sum_{i=1}^{n_{1}} \sum_{v \in V\left(G_{2}\right)} \operatorname{deg}_{G_{1} \odot G_{2}}^{2}(v)+\sum_{v \in V\left(G_{1}\right)} \operatorname{deg}_{G_{1} \odot G_{2}}(v) \\
& +\sum_{v \in I\left(G_{1}\right)} \operatorname{deg}_{G_{1} \odot G_{2}}(v)+\sum_{i=1}^{n_{1}} \sum_{v \in V\left(G_{2}\right)} \operatorname{deg}_{G_{1} \odot G_{2}}(v)
\end{aligned}
$$

Substituting the degrees of the vertices of $G_{1} \odot G_{2}$ from (8), we get

$$
\begin{aligned}
E_{Q}\left(G_{1} \odot G_{2}\right) & =\sum_{i=1}^{n_{1}}\left(\left(n_{2}+2\right) \operatorname{deg}_{G_{1}}\left(v_{i}\right)\right)^{2}+\sum_{i=1}^{m_{1}}\left(2\left(n_{2}+1\right)\right)^{2} \\
& +\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}}\left(\operatorname{deg}_{G_{2}}\left(v_{j}\right)+2 \operatorname{deg}_{G_{1}}\left(u_{i}\right)\right)^{2}+\sum_{i=1}^{n_{1}}\left(\left(n_{2}+2\right) \operatorname{deg}_{G_{1}}\left(v_{i}\right)\right) \\
& +\sum_{i=1}^{m_{1}}\left(2\left(n_{2}+2\right)\right)+\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}}\left(\operatorname{deg}_{G_{2}}\left(v_{j}\right)+2 \operatorname{deg}_{G_{1}}\left(u_{i}\right)\right) \\
& =\left(n_{2}+2\right)^{2} \sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}^{2}\left(v_{i}\right)+m_{1}\left(2\left(n_{2}+1\right)\right)^{2}+\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} \operatorname{deg}_{G_{2}}^{2}\left(v_{j}\right) \\
& +4 \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} \operatorname{deg}_{G_{2}}\left(v_{j}\right) \operatorname{deg}_{G_{1}}\left(u_{i}\right)+4 \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} \operatorname{deg}_{G_{1}}^{2}\left(u_{i}\right) \\
& +\left(n_{2}+2\right) \sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}\left(v_{i}\right)+m_{1}\left(2\left(n_{2}+2\right)\right)+\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} \operatorname{deg}_{G_{2}}\left(v_{j}\right) \\
& +2 \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} \operatorname{deg}_{G_{1}}\left(u_{i}\right) .
\end{aligned}
$$

By handshaking lemma, we compute each summation as follows:

$$
\begin{aligned}
E_{Q}\left(G_{1} \odot G_{2}\right) & =\left(n_{2}+2\right)^{2} \sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}^{2}\left(v_{i}\right)+m_{1}\left(2\left(n_{2}+1\right)\right)^{2}+\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} \operatorname{deg}_{G_{2}}^{2}\left(v_{j}\right) \\
& +4\left(\sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}\left(u_{i}\right)\right)\left(\sum_{i=1}^{n_{2}} \operatorname{deg}_{G_{2}}\left(v_{i}\right)\right)+4 \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} \operatorname{deg}_{G_{1}}^{2}\left(u_{i}\right) \\
& +\left(n_{2}+2\right)\left(2 m_{1}\right)+m_{1}\left(2\left(n_{2}+2\right)\right)+\sum_{i=1}^{n_{1}}\left(2 m_{2}\right)+2 n_{2} \sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}\left(u_{i}\right) \\
= & \left(n_{2}+2\right)^{2} \sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}^{2}\left(v_{i}\right)+m_{1}\left(2\left(n_{2}+1\right)\right)^{2}+\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} \operatorname{deg}_{G_{2}}^{2}\left(v_{j}\right) \\
& +4\left(2 m_{1}\right)\left(2 m_{2}\right)+4 \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} \operatorname{deg}_{G_{1}}^{2}\left(u_{i}\right)+\left(n_{2}+2\right)\left(2 m_{1}\right) \\
& +m_{1}\left(2\left(n_{2}+2\right)\right)+n_{1}\left(2 m_{2}\right)+2 n_{2}\left(2 m_{1}\right) .
\end{aligned}
$$

Rearranging, and then using definitions (1) and (2), we have the desired result:

$$
\begin{aligned}
& E_{Q}\left(G_{1} \odot G_{2}\right)=\left(\left(n_{2}+2\right)^{2}+2 n_{2}\right)\left(\sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}^{2}\left(v_{i}\right)+2 m_{1}\right) \\
& \quad+2\left(n_{2} \sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}^{2}\left(u_{i}\right)+m_{1}\left(8 m_{2}+1\right)\right)+n_{1}\left(\sum_{j=1}^{n_{2}} \operatorname{deg}_{G_{2}}^{2}\left(v_{j}\right)+2 m_{2}\right) \\
& =\left(\left(n_{2}+2\right)^{2}+2 n_{2}\right) E_{Q}\left(G_{1}\right)+n_{1}\left(E_{Q}\left(G_{2}\right)\right)+2\left(n_{2} M_{1}\left(G_{1}\right)+m_{1}\left(8 m_{2}+1\right)\right) .
\end{aligned}
$$

2.7. Quasi-Laplacian energy of R-edge neighborhood corona graphs.

The degree of a vertex $v \in V\left(G_{1} \otimes G_{2}\right)$ is given by

$$
\operatorname{deg}_{G_{1} \otimes G_{2}}(v)= \begin{cases}\left(n_{2}+2\right) \operatorname{deg}_{G_{1}}(v), & \text { if } v \in V\left(G_{1}\right) ; \tag{9}\\ \operatorname{leg}_{G_{2}}(v)+2, & \text { if } v \in V\left(G_{2}\right) ; \\ 2, & \text { if } v \in I\left(G_{1}\right)\end{cases}
$$

Theorem 7. The quasi-Laplacian energy of a graph $G_{1} \otimes G_{2}$ is
$E_{Q}\left(G_{1} \otimes G_{2}\right)=4\left(n_{2}+1\right) E_{Q}\left(G_{1}\right)+n_{2}^{2} M_{1}\left(G_{1}\right)+m_{1}\left(E_{Q}\left(G_{2}\right)+2\left(4 m_{2}+1\right)\right)$.
Proof. By definition (1), we have that

$$
E_{Q}\left(G_{1} \otimes G_{2}\right)=\sum_{i=1}^{\left|V\left(G_{1} \otimes G_{2}\right)\right|} \operatorname{deg}_{G_{1} \otimes G_{2}}^{2}\left(v_{i}\right)+\sum_{i=1}^{\left|V\left(G_{1} \otimes G_{2}\right)\right|} \operatorname{deg}_{G_{1} \otimes G_{2}}\left(v_{i}\right) .
$$

Splitting the vertex set $V\left(G_{1} \otimes G_{2}\right)$ into disjoint sets $V\left(G_{1}\right), V\left(G_{2}\right)$ and $I\left(G_{1}\right)$, we have

$$
\begin{aligned}
E_{Q}\left(G_{1} \otimes G_{2}\right)= & \sum_{v \in V\left(G_{1}\right)} \operatorname{deg}_{G_{1} \otimes G_{2}}^{2}(v)+\sum_{v \in I\left(G_{1}\right)} \operatorname{deg}_{G_{1} \otimes G_{2}}^{2}(v) \\
& +\sum_{v \in V\left(G_{2}\right)} \operatorname{deg}_{G_{1} \otimes G_{2}}^{2}(v)+\sum_{v \in V\left(G_{1}\right)} \operatorname{deg}_{G_{1} \otimes G_{2}}(v) \\
& +\sum_{v \in I\left(G_{1}\right)} \operatorname{deg}_{G_{1} \otimes G_{2}}(v)+\sum_{v \in V\left(G_{2}\right)} \operatorname{deg}_{G_{1} \otimes G_{2}}(v) .
\end{aligned}
$$

Substituting the degrees of the vertices of $G_{1} \otimes G_{2}$ from (9), we get

$$
\begin{aligned}
& E_{Q}\left(G_{1} \otimes G_{2}\right)=\sum_{i=1}^{n_{1}}\left(\left(n_{2}+2\right) \operatorname{deg}_{G_{1}}\left(v_{i}\right)\right)^{2}+\sum_{i=1}^{m_{1}}(2)^{2}+\sum_{i=1}^{m_{1}} \sum_{j=1}^{n_{2}}\left(\operatorname{deg}_{G_{2}}\left(v_{j}\right)+2\right)^{2} \\
& \quad+\sum_{i=1}^{n_{1}}\left(\left(n_{2}+2\right) \operatorname{deg}_{G_{1}}\left(v_{i}\right)\right)+\sum_{i=1}^{m_{1}}(2)+\sum_{i=1}^{m_{1}} \sum_{j=1}^{n_{2}}\left(\operatorname{deg}_{G_{2}}\left(v_{j}\right)+2\right) \\
& =\left(n_{2}+2\right)^{2} \sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}^{2}\left(v_{i}\right)+4 m_{1}+\sum_{i=1}^{m_{1}} \sum_{j=1}^{n_{2}} \operatorname{deg}_{G_{2}}^{2}\left(v_{j}\right)+4 \sum_{i=1}^{m_{1}} \sum_{j=1}^{n_{2}} \operatorname{deg}_{G_{2}}\left(v_{j}\right) \\
& \quad+4 m_{1} n_{2}+\left(n_{2}+2\right) \sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}\left(v_{i}\right)+2 m_{1}+\sum_{i=1}^{m_{1}} \sum_{j=1}^{n_{2}} \operatorname{deg}_{G_{2}}\left(v_{j}\right)+2 m_{1} n_{2} .
\end{aligned}
$$

By handshaking lemma, we compute each summation as follows:

$$
\begin{aligned}
& E_{Q}\left(G_{1} \otimes G_{2}\right)=\left(n_{2}+2\right)^{2} \sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}^{2}\left(v_{i}\right)+4 m_{1}+\sum_{i=1}^{m_{1}} \sum_{j=1}^{n_{2}} \operatorname{deg}_{G_{2}}^{2}\left(v_{j}\right) \\
& +4 \sum_{i=1}^{m_{1}}\left(2 m_{2}\right)+4 m_{1} n_{2}+\left(n_{2}+2\right)\left(2 m_{1}\right)+2 m_{1}+\sum_{i=1}^{m_{1}}\left(2 m_{2}\right)+2 m_{1} n_{2} .
\end{aligned}
$$

After rearranging,

$$
\begin{aligned}
E_{Q}\left(G_{1} \otimes G_{2}\right)= & 4\left(n_{2}+1\right)\left(\sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}^{2}\left(v_{i}\right)+2 m_{1}\right)+n_{2}^{2} \sum_{i=1}^{n_{1}} \operatorname{deg}_{G_{1}}^{2}\left(v_{i}\right) \\
& +m_{1}\left(\sum_{j=1}^{n_{2}} \operatorname{deg}_{G_{2}}^{2}\left(v_{j}\right)+2 m_{2}\right)+2 m_{1}\left(4 m_{2}+1\right) .
\end{aligned}
$$

Comparing with definitions (1) and (2), the desired result for $E_{Q}\left(G_{1} \otimes G_{2}\right)$ follows.

3. Summary and conclusion

Graph energy has so many applications in the field of chemistry, physics, biology, mathematics and sociology. By the approach presented in [8], the relation between quasi-Laplacian energy and the vertex degrees of a graph was envisaged. In this paper, it is also observed that the first Zagreb index can be handled with its connection to graph energy. A new and significant application of the first Zagreb index to composite graphs based on fractal graphs is revealed, and exact formulae for quasi-Laplacian energy are derived in terms of the corresponding energies, the first Zagreb indices, number of vertices and edges of the underlying graphs of those composite graph types.

References

[1] J. Braun, A. Kerber, M. Meringer, and C. Rucker, Similarity of molecular descriptors: the equivalence of Zagreb indices and walk counts, MATCH Commun. Math. Comput. Chem. 54 (2005), 163-176.
[2] D. M. Cvetković, M. Dooband, and H. Sachs, Spectra of Graphs: Theory and Applications, Deutscher Verlag der Wissenschaften, 191-195, 1980.
[3] M. Desai and V. Rao, A characterization of the smallest eigenvalue of a graph, J. Graph Theory 18 (1994), 181-194.
[4] I. Gutman and K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004), 83-92.
[5] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535-538.
[6] J. Lan and B. Zhou, Spectra of graph operations based on R-graph, Linear Multilinear Algebra 63 (2015), 1401-1422.
[7] X. Li, J. Zhou, and C. Bu, Resistance distance and Kirchhoff index of R-vertex join and R-edge join of two graphs, Discrete Appl. Math. 187 (2015), 130-139.
[8] Y. Ma, Z. Cao, and X. Qi, Quasi-Laplacian centrality: A new vertex centrality measurement based on quasi-Laplacian energy of networks, Physica A: Statistical Mechanics and its Applications 527 (2019), 121130. DOI
[9] B. Zhou, Zagreb indices, MATCH Commun. Math. Comput. Chem. 52 (2004), 113118.
[10] B. Zhou and I. Gutman, Further properties of Zagreb indices, MATCH Commun. Math. Comput. Chem. 54 (2005), 233-239.
[11] B. Zhou and I. Gutman, Relations between Wiener, hyper-Wiener and Zagreb indices, Chem. Phys. Lett. 394 (2004), 93-95.

Faculty of Science, Department of Computer Science, Dokuz Eylul UniverSity, 35160 Izmir, TURKEY

E-mail address: murat.berberler@deu.edu.tr

[^0]: Received August 15, 2023.
 2020 Mathematics Subject Classification. 05C07, 05C09, 05C50, 05C76.
 Key words and phrases. Quasi-Laplacian matrix, quasi-Laplacian energy, Zagreb index, fractal graph, R-join, R-corona.
 https://doi.org/10.12697/ACUTM.2024.28.01

