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Atoms of the lattices of residuated mappings

Kalle Kaarli and Sándor Radeleczki

Abstract. Given a lattice L, we denote by Res(L) the lattice of all
residuated maps on L. The main objective of the paper is to study
the atoms of Res(L) where L is a complete lattice. Note that the de-
scription of dual atoms of Res(L) easily follows from earlier results of
Shmuely (1974). We first consider lattices L for which all atoms of
Res(L) are mappings with 2-element range and give a sufficient con-
dition for this. Extending this result, we characterize these atoms of
Res(L) which are weakly regular residuated maps in the sense of Blyth
and Janowitz (Residuation Theory, 1972). In the rest of the paper we
investigate the atoms of Res(M) where M is the lattice of a finite pro-
jective plane, in particular, we describe the atoms of Res(F ), where F
is the lattice of the Fano plane.

1. Introduction

Let A and B be (partially) ordered sets. Recall that a mapping f : A→ B
is called residuated if there exists a mapping g : B → A such that

∀x ∈ A,∀y ∈ B f(x) ≤ y ⇔ x ≤ g(y) .

In this case the mapping g is uniquely determined, called the residual of f
and denoted f∗. The set of all residuated mappings from A to B is denoted
by Res(A,B).

Let now L be a complete lattice. We denote Res(L) = Res(L,L) and
Res∗(L) = {f∗ | f ∈ Res(L)}. It is well known that then Res(L) and Res∗(L)
consist of complete join endomorphisms and complete meet endomorphisms
of L, respectively. Clearly Res(L) and Res∗(L) are complete lattices with
respect to the pointwise defined order relation and the bijection f ↔ f∗ is
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an anti-isomorphism between them. The study of the lattice Res(L) goes
back to [4], where Grätzer and Schmidt gave a general form of its elements
for the case of distributive lattice L. The aim of the present paper is to
investigate atoms of the lattice Res(L) where L is a complete lattice. For
motivation, we refer to the paper [6], where the atoms of Res(L) came up in
an attempt to describe locally order affine complete lattices.

We first observe that dual atoms of this lattice can be easily described
without any restrictions on the lattice L. In fact this is an easy consequence
of results by Shmuely [13].

Unfortunately, the situation with atoms is drastically different. Actually
only in very special cases one can completely describe the atoms of Res(L).
We first consider the lattices L for which all atoms of Res(L) have 2-element
range. It is known [11, 12] that completely distributive lattices enjoy such
property. Our new sufficient condition (Theorem 7) allows to find more
lattices with this property, for example, pseudocomplemented lattices of fi-
nite height. Since the atoms with 2-element range are weakly regular in the
sense of Blyth and Janowitz [2], we then study when the atoms of Res(L) are
weakly regular. In the rest of the paper we investigate the atoms of Res(M)
where M is the lattice of a finite projective plane. It turns out that all atoms
of Res(F ) where F is the lattice of the Fano plane are weakly regular but
this is not true for projective planes, in general.

2. Preliminaries

In what follows all lattices are assumed to be complete. Given a lattice L,
we call a binary relation R ⊆ L× L compatible if it is a complete sublattice
of L × L. Recall that reflexive and symmetric binary relations are called
tolerances. A tolerance on a lattice L is by definition a tolerance relation on
L which also is a compatible binary relation on L. The set of all tolerances
on a lattice L will be denoted by Tol(L). Obviously, the set Tol(L) is a lattice
with respect to the set theoretical inclusion. We call a lattice tolerance simple
if the trivial tolerances ∆L = {(x, x) | x ∈ L} and ∇L = L× L are the only
members of Tol(L). It is important for us that there is a close relationship
between residuated maps and tolerances, established by Janowitz [5], see also
[8], Proposition 3.2. Given a tolerance T ∈ Tol(L), consider the mapping
fT : L → L defined by fT (x) =

∧
{z | (z, x) ∈ T}. Then fT ∈ Res(L) and,

moreover, fT is decreasing, that is, fT (x) ≤ x for every x ∈ L. We will
denote the set of all decreasing residuated maps on L by Res↓(L). On the
other hand, given a mapping f ∈ Res↓(L), the binary relation

T = T f = {(x, y) ∈ L2 | f(x ∨ y) ≤ x ∧ y}

is a tolerance on L and fT = f . Thus there is a one-to-one correspondence,
actually an anti-isomorphism between lattices Tol(L) and Res↓(L). It is easy
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to see that a tolerance T is a congruence of L if and only if the corresponding
residuated mapping fT is idempotent. For easy reference, we summarize
these facts in the following theorem.

Theorem 1. For every lattice L, the correspondence T ↔ fT is an anti-
isomorphism between the lattices Tol(L) and Res↓(L). In particular, fT is
a minimal decreasing residuated mapping on L if and only if T is a max-
imal tolerance of L. The mapping fT is idempotent if and only if T is a
congruence of L.

Clearly all automorphisms of a lattice L are residuated mappings. In view
of our interest in atoms of Res(L), the following lemma is useful. Its proof
is straightforward.

Lemma 2. Let f ∈ Res(L) and α ∈ Aut(L). The mapping f is an atom
of Res(L) if and only if fα is an atom of Res(L) if and only if αf is an
atom of Res(L).

3. Dual atoms of Res(L)

Given elements a, b ∈ L, we define a mapping fab : L→ L by the rule:

fab(x) =

 0, if x = 0;
b, if x ≤ a, x 6= 0;
1, otherwise.

It is easy to check that fab ∈ Res(L) for arbitrary a, b ∈ L. Note that if
a = 0 or b = 1, then fab is the greatest element of Res(L), that is, fab(x) = 1
whenever x 6= 0.

Probably for the first time such mappings appeared in Shmuely’s paper
[13]. Technically, Shmuely’s approach was somewhat different. Given or-
dered sets A and B, she studied the set of functions A ⊗ B which in our
notation is precisely Res(A,Bd) where Bd denotes the dual of the ordered
set B. Thus all of her results can be translated into the language of resid-
uated functions. In particular, Shmuely introduced the mappings La

b that
correspond to our functions fab and obtained the following results, in differ-
ent notation, of course.

Lemma 3. ([13], Lemma 2.5) Let a, b, c, d ∈ L, c 6= 0 and d 6= 1. Then:

fab ≤ fcd ⇔ c ≤ a and b ≤ d .

It follows that if a, c ∈ L \ {0} and b, d ∈ L \ {1}, then

fab = fcd ⇔ c = a and b = d .

Lemma 4. ([13], Theorem 2.5) Every g ∈ Res(L) can be represented as
the meet of some set of mappings fab, a, b ∈ L. In particular,

g =
∧
{fag(a) | a ∈ L} .
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Proof. Let a ∈ L, we first prove that g(x) ≤ fag(a)(x) for any x ∈ L. This
is clearly true if x = 0 or x 6≤ a. If x 6= 0 but x ≤ a, then g(x) ≤ g(a) =
fag(a)(a). This proves that g ≤

∧
{fag(a) | a ∈ L}. Let now h ∈ Res(L) be

such that h ≤ fag(a) for every a ∈ L. Then, in particular, h(a) ≤ fag(a)(a) =
g(a) for every a ∈ L. Thus, g =

∧
{fag(a) | a ∈ L}. �

Theorem 5. Every dual atom of Res(L) has the form fab where a is a
dual atom of L and b is an atom of L.

Proof. Let g be a dual atom of Res(L). By Lemma 4, there exist a, b ∈ L
such that g = fab. Now Lemma 3 yields that a and b must be a dual atom
and an atom of L, respectively. �

Corollary 6. If L is atomistic and dually atomistic, then Res(L) is a
dually atomistic (complete) lattice.

4. Atoms with 2-element range

If f ∈ Res(L) and f is not the zero map, then |f(L) |≥ 2. In fact the
residuated maps with |f(L)|= 2 always exist. Take arbitrary a, b ∈ L and
define:

eab(x) =

{
0, if x ≤ a;
b, if x 6≤ a .

It is easy to check that all mappings eab are residuated. It is also easy to see
that every f ∈ Res(L) with |f(L)|= 2 has the form eab. Such mappings first
appeared almost simultanously in the papers by Schreiner [12] and Shmuely
[13]. They both used the same notation Ea

b but Shmuely’s Ea
b is the dualized

version of Schreiner’s Ea
b which is exactly our eab.

Following Raney’s paper [11], Schreiner [12] introduced tight residuated
mappings and proved that, for any lattice L, every tight residuated mapping
is a join of some set of mappings eab. In view of [11] and [12], all members
of Res(L) are tight if and only if the lattice L is completely distributive.
These facts easily imply that if L is completely distributive (in particular
distributive of finite height), then all atoms of Res(L) have the form eab. In
what follows, we prove a stronger result.

It is easy to see that the mapping eab is an atom of Res(L) if and only if a
and b are a dual atom and an atom of L, respectively. Similarly, it is an easy
exercise to check that the mapping eab is decreasing if and only if L satisfies
the condition: for every x ∈ L, either x ≤ a or b ≤ x. Following [12], we
will call such pairs (a, b) decreasing. Clearly all the pairs (a, b) with a = 1
or b = 0 are decreasing. We will call them trivial decreasing pairs because
the function they yield is the zero function. In view of Theorem 1, the non-
trivial decreasing mappings of the form eab are precisely those induced by
tolerances with exactly two blocks.
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In what follows, ↑ a ( ↓ a), where a ∈ L, denotes the principal filter (the
principal ideal) of the lattice L generated by a.

Theorem 7. If every non-zero principal ideal of L, as a lattice, has a
non-trivial decreasing pair, then all atoms of Res(L) have the form eab.

Proof. Let f be an atom of Res(L), |f(L)| ≥ 3. Let a = f(1), L′ =↓ a.
By assumption L′ has a non-trivial decreasing pair (b, c), let g = ebcf . Now
g ∈ Res(L) and g ≤ f , since ebc is decreasing. Clearly, |g(L)| ≤ 2, thus
g 6= f . Since f is an atom, g should be the zero map. However, g(1) =
ebc(f(1)) = ebc(a) = c 6= 0. This contradiction proves that f must have
2-element range. �

Corollary 8. If L is completely distributive, then all atoms of Res(L)
have the form eab.

Proof. Let L be a completely distributive lattice and 0 6= a ∈ L. Then the
principal ideal L1 =↓ a is completely distributive, too. Now, the existence
of a non-trivial decreasing pair in L1 is proved in Theorem 5 of [11]. �

Problem 1. Does there exist a distributive lattice L such that some atom
of Res(L) is not of the form eab?

Corollary 9. If L has a single atom, then all atoms of Res(L) have the
form eab.

Proof. Let p be the atom of L and 0 6= a ∈ L. Then p ≤ a and p is the
only atom of L1 = ↓a. Now, (p, p) is a nontrivial decreasing pair for L1. �

Corollary 10. Let L be a lattice of finite height such that every principal
ideal of L has a non-trivial distributive homomorphic image. Then all atoms
of Res(L) have the form eab.

Proof. Let a ∈ L and L1 =↓ a. Since L1 has a non-trivial distributive
homomorphic image, it also has a 2-element homomorphic image, hence also
a congruence with exactly two blocks. It follows that L1 has a decreasing
pair. �

Corollary 11. If L is a pseudocomplemented lattice of finite height, then
all atoms of Res(L) have the form eab.

Proof. Recall that a lattice L is called pseudocomplemented if, for every
a ∈ L, the set {x ∈ L | x ∧ a = 0} has a largest element, denoted by a∗.
It is well known that the mapping φ : L → L, φ(x) = x∗∗, is a lattice
homomorphism and φ(L) is a Boolean lattice. If a ∈ L is arbitrary, then
obviously a ≤ a∗∗. Hence φ(↓a) is a non-trivial distributive homomorphic
image of ↓a. Now Corollary 10 implies that all atoms of Res(L) have the
form eab. �
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Problem 2. Does there exist a finite lattice L such that all atoms of
Res(L) have the form eab but there is a principal ideal of L with no non-
trivial distributive homomorphic image?

A partial answer to this problem is given by the following proposition.

Proposition 12. If L is a lattice of finite height and all atoms of Res(L)
have the form eab, then L has a non-trivial decreasing pair.

Proof. Let T be a maximal tolerance of L. Then f = fT is a non-zero
decreasing residuated map of L. Since L is of finite height, there exists an
atom g of Res(L) such that g ≤ f . By our assumption, g has the form eab
and since f is decreasing, g is decreasing, too. It follows that (a, b) is a
decreasing pair. �

5. Weakly regular atoms of Res(L)

We start with a proposition that gives necessary conditions for a mapping
f to be an atom of Res(L). Note that if f ∈ Res(L), then f(L) is not
necessarily a sublattice of L. However, still the ordered set f(L) is a lattice,
which we will denote by Lf . Similarly, we denote by L∗f the lattice f∗(L).

Proposition 13. If f is an atom of Res(L), then the lattices Lf and L∗f
are tolerance simple.

Proof. Suppose T is a tolerance of Lf and T 6= ∇Lf . Consider the map-

ping g = fT f : L → L. Since the join operation is the same in Lf and L,

we have g ∈ Res(L) and g(x) = fT f(x) ≤ f(x) for every x ∈ L. This yields
0 ≤ g ≤ f in Res(L). Since f is an atom, we have either g = 0 or g = f .
Since T 6= ∇Lf , fT is not the zero map, hence g 6= 0. Thus, g = f , i.e.

fT (f(x)) = f(x), for all x ∈ L. We see that fT is identical on f(L), whence
T = ∆Lf . This proves that the lattice Lf is tolerance simple.

The second claim is proved using dual arguments because f is an atom of
Res(L) if and only if f∗ is a coatom of Res∗(L). �

A disadvantage of the condition in Proposition 13 is that it is given in
terms of the lattice Lf , not in terms of L. This suggests to consider atoms f
for which f(L) is a sublattice of L. In particular, this condition is satisfied
by so-called weakly regular residuated mappings introduced by Blyth and
Janowitz in [2]. As they claim, such mappings are extremely important,
especially because of their relationship with modularity of lattices.

Definition 1. A mapping f ∈ Res(L) is called range closed if f(L) =
↓f(1) and dually range closed if f∗(L) = ↑f∗(0). A mapping which is both
range closed and dually range closed is called weakly regular.
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In view of [2, Theorem 13.2] and the remark after it, weakly regular residu-
ated mappings have the following characterization in terms of isomorphisms
between ideals and filters.

Proposition 14. Let L be a lattice and f : L → L. Then the following
are equivalent:

(1) f is a weakly regular residuated mapping;
(2) there are a, b ∈ L and a lattice isomorphism α : ↑ a →↓ b such that

f(x) = α(x ∨ a) for every x ∈ L.

Theorem 15. Let f ∈ Res(L) be weakly regular. Then f is an atom of
Res(L) if and only if the lattice f(L) = Lf is tolerance simple.

Proof. The necessity follows from Proposition 13. For sufficiency, let α :
↑a →↓ b be the lattice isomorphism determining f . Then clearly f(1) = b
and f(L) = ↓ b. For simplicity, write L instead of Lf . Assume that the
lattice L is tolerance simple and take g ∈ Res(L) such that g < f . Then
g(a) ≤ f(a) = α(a) = 0, hence g(a) = 0. Next we show that, for any
x, y ∈ L,

f(x) = f(y) ⇒ g(x) = g(y) . (1)

Indeed, if f(x) = f(y), then x ∨ a = y ∨ a and

g(x) = g(x) ∨ g(a) = g(x ∨ a) = g(y ∨ a) = g(y) ∨ g(a) = g(y) .

Since f(L) = ↓ b and g ≤ f , the formula (1) implies that the mapping
h : f(L) → f(L), h(f(x)) = g(x) is well defined. It is routine to check that
h is residuated and g ≤ f implies that h ∈ ResL.

Therefore, by Theorem 1, there exists a tolerance T of L such that h = fT .
Since L is tolerance simple, T ∈ {∆L,∇L}. If T = ∆L, then h = 1L, hence
g = hf = f , a contradiction. Thus, T = ∇L implying h = 0 and g = hf = 0.
This proves that f is an atom of Res(L). �

Now we use Theorem 15 for exhibiting some interesting examples of atoms
of Res(L).

Example 1. Atoms of the form eab are weakly regular. Recall that
a mapping eab is an atom of Res(L) if and only if a and b are a dual
atom and an atom of L, respectively. It is easy to see that eab is the
weakly regular residuated mapping determined by the lattice isomorphism
α : ↑a→↓b.

Example 2. Every automorphism of L is a weakly regular residuated
mapping. Indeed, an automorphism α of L is the weakly regular residuated
mapping of L determined by the isomorphism α : ↑0 →↓1. It follows from
Theorem 15 that an automorphism of L is an atom of Res(L) if and only if
the lattice L is tolerance simple.
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Example 3. Let L be a modular lattice and s, t ∈ L the complements
of each other. Define f : L → L by the formula f(x) = (x ∨ s) ∧ t. Such
mappings are often called projections. It is well known that in this situation
the mapping α : ↑ s →↓ t, α(y) = y ∧ t, is a lattice isomorphism. Thus
f(x) = α(x ∨ s) for every x ∈ L which means that f is a weakly regular
residuated mapping. It follows from Theorem 15 that the mapping f is an
atom of Res(L) if and only if ↓ t (and also ↑s) is a tolerance simple lattice.

Example 4. ([1], Example 4.2) Let V be a vector space over a field K and
φ : V → V a linear mapping. Then φ induces the mapping f : Sub(V ) →
Sub(V ), f(W ) = φ(W ) = {φ(x) | x ∈ W}. According to [1], f is a weakly
regular residuated mapping of Sub(V ). It follows from Theorem 15 that the
mapping f is an atom of Res(Sub(V )) if and only if the lattice ↓ f(Sub(V ))
(the lattice of subspaces of φ(V )) is tolerance simple. It is well known that
this is always the case when φ(V ) is finite dimensional.

Example 5. Let Mn, n ≥ 3, be a finite lattice of size n + 2 where all
members of L \ {0, 1} are both atoms and coatoms. Note that all these
lattices are tolerance simple. In particular, M3 is the smallest modular
but non-distributive lattice. Foreman [3] has described join irreducibles of
Res(Mn) for every n ≥ 3. It follows that every atom of Res(Mn) is either an
automorphism of Mn or the mapping eab where a and b are atoms of Mn.
Hence, all atoms of Res(Mn) are weakly regular.

6. Lattices of projective planes

We have seen that atoms of Res(L) have a nice description if L is a
distributive lattice of finite height. Since modularity is a property of lattices
close to distributivity, it is natural to try to describe atoms of Res(L) for
finite modular lattices L. Unfortunately, it has turned out that even in the
case of very nice modular lattices L this problem can be very hard. About
15 years ago Vladimir Kuchmei and Stefan Schmidt (the former coauthors
of the first author) considered atoms of the lattices Res(M) where M is a
finite complemented modular lattice. Surely this is a very important class
of lattices. Eventually they restricted to the lattices of projective planes but
even then a satisfactory result was obtained only for the Fano plane (the
smallest projective plane). For all other projective planes they proved that
the corresponding lattice Res(M) contains certain “exotic” atoms. It has to
be mentioned that the idea of construction of those atoms was suggested by
Ralph Mckenzie. The proofs were complicated and technical and eventually
the manuscript [10] remained unpublished.

Kuchmei and Shmidt kindly allowed us to use their manuscript for which
we are most grateful. Our hope was that we can considerably simplify their
proofs. To be honest, we were not succesful. Still we think it makes sense
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to publish these results just in order to show the complexity of the problem.
Our proofs only partly follow those given in [10]. They are not shorter but
perhaps more transparent and easier to follow than those in [10].

Let M be the lattice of a finite projective plane of order n (n ≥ 2). Then
M = {0, 1}∪P ∪L where P and L are the sets of atoms (called points) and
coatoms (called lines) of M , respectively. It is required that:

• P ∩ L = ∅;
• every line covers exactly n + 1 points and, dually, every point is

covered by exactly n+ 1 lines;
• two different lines cover exactly one common point and, dually, two

different points are covered by exactly one common line.

It is natural to identify every line with the set of points below it, that is,
if l ∈ L, then l = {x ∈ P | x < l}. Hence, if x ∈ P and l ∈ L, then x < l is
equivalent to x ∈ l. Occasionally we will use geometric terminology like two
lines intersect in a point or a line goes through a point.

It is well known that |P |=|L |= n2 + n + 1. All known finite projective
planes have prime power order and for every prime power n there exists a
projective plane of order n.

Since the lattice M is atomistic, every f ∈ Res(M) is uniquely determined
by its restriction to P . The following lemma describes the functions P →M
that can be extended (uniquely) to residuated mappings on M .

Lemma 16. If f ∈ Res(M) and x, y, z ∈ P , then

x ≤ y ∨ z ⇒ f(x) ≤ f(y) ∨ f(z) . (2)

On the other hand, every mapping f : P →M satisfying (2) can be uniquely
extended to a residuated mapping on M .

Proof. The first claim is obvious because f is a join endomorphism of M .
In order to prove the second claim, assume that a mapping f : P → M
satisfies the condition (2) and define a mappping g : M →M by

g(x) =
∨
{f(p) | p ∈ P, p ≤ x} .

It is easy to see that g(0) = 0, g|P = f , and g is order preserving. Let
x, y ∈ M . Since g is order preserving, we have g(x ∨ y) ≥ g(x) ∨ g(y). For
the converse, take p ∈ P such that p ≤ x∨ y and let px, py ∈ P be such that
px ≤ x, py ≤ y and p ≤ px ∨ py. The existence of such points can be easily
proved by checking cases. For example, consider the case x, y ∈ L which
probably is most complicated. If x = y, then take px = py = p. Otherwise,
choose any line l such that x ∧ y 6∈ l and define px = x ∧ l and py = y ∧ l.

Now, using condition (2) and the definition of g, we have:

f(p) ≤ f(px) ∨ f(py) ≤ g(x) ∨ g(y) .

Using again the definition of g, we conclude g(x ∨ y) ≤ g(x) ∨ g(y). �
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In view of this lemma, we will use the same notation for f ∈ Res(M)
and its restriction to P . Moreover, we call the mappings P →M satisfying
(2) the residuated mappings on M . Note that actually condition (2) puts a
restriction to the action of f on every single line. This allows us to speak
about applying Lemma 16 to some line.

7. The Fano lattice

As mentioned above, there exists a projective plane of order 2. It is unique
up to isomorphism and it is called the Fano plane. We call the lattice of the
Fano plane the Fano lattice and denote it by F . The Fano lattice has 7
points and 7 lines, thus |F |= 16, every line of F contains exactly 3 points
and there are exactly 3 lines that go through a given point.

It is well known that the size of the automorphism group Aut(F ) is 168
and it is easy to see that the number of non-collinear ordered triples of points
of the Fano plane is 168, too. This implies the following lemma.

Lemma 17. The group Aut(F ) acts transitively on the set of non-collinear
ordered triples of points of F . Consequently, it also acts transitively on the
set of ordered pairs (a, b), a 6= b, of points of F .

Our aim is to prove the following theorem.

Theorem 18. Every atom of Res(F ) is weakly regular.

As the first step, we handle the case f(1) 6= 1.

Lemma 19. Let f be an atom of Res(F ). If f(1) 6= 1, then f is weakly
regular.

Proof. Since f is an atom of Res(F ), it is not the zero map, Thus, there are
two possibilities: either f(1) is a point or f(1) is a line. The first case is trivial
because then |f(F )| = 2, so f is weakly regular. We now focus on the second
case when f(1) = s is a line. Assume that s = {a1, a2, a3}. There are 4
possibilities: 1) f(F ) = {0, s}, 2) f(F ) = {0, a1, s}, 3) f(F ) = {0, a1, a2, s},
4) f(F ) = {0, a1, a2, a3, s} = ↓s. In the first case f is not an atom because
e0a1 < f . Also in the cases 2) and 3) f cannot be an atom, because then the
lattice Lf is not tolerance simple (see Proposition 13). Remains the case 4)
when f is range closed.

We have to prove that f is also dually range closed, that is, f∗(F ) =
↑ f∗(0). Note that just dualizing the beginning of the proof, we get the
statement: if f∗ is a coatom of Res∗(F ) and f∗(0) 6= 0, then f∗(F ) =
↑ f∗(0). Since f is an atom of Res(F ) if and only if f∗ is a coatom of
Res∗(F ), we only need to prove that, under assumptions of our lemma,
f∗(0) 6= 0, that is, f(x) = 0 for some x 6= 0.

Let bi =
∨
f−1(ai), i = 1, 2, 3. Clearly, the elements bi are points or lines.

Suppose that two of them, say b1 and b2 are lines. Then c = b1 ∧ b2 is a
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point and f(c) ≤ a1 ∧ a2 = 0. Let now two of the elements bi be points, say
b2, b3 ∈ P . Then x ∈ P \ {b2, b3} implies f(x) ∈ {0, a1, s}. If f(x) = 0 for
some x ∈ P , then we are done. Otherwise it is easy to see that ela1 < f
where l = b2 ∨ b3. This contradicts the assumption that f is an atom of
Res(F ). �

Lemma 20. Let f be an atom of Res(F ). If f∗(0) 6= 0, then f is weakly
regular.

Proof. This can be proved similarly to Lemma 19, or derived from that
lemma using a duality argument. �

Thus, in order to prove Theorem 18, we may restrict ourselves to the case
f(1) = 1 and f∗(0) = 0. An important step of the proof is given by the
following lemma.

Lemma 21. Let f be an atom of Res(F ) such that f(1) = 1 and f∗(0) =
0. Then the restriction of f to P is injective.

Proof. Assume that there exist a1, a2 ∈ P , a1 6= a2, such that f(a1) =
f(a2). Let l0 = a1 ∨ a2, a3 be the third point of l0 and B = P \ l0 =
{b1, b2, b3, b4}. The numeration can be chosen so that the sets

l1 = {a1, b1, b4}, l2 = {a2, b2, b4}, l3 = {a3, b3, b4},

l4 = {a1, b2, b3}, l5 = {a2, b1, b3}, l6 = {a3, b1, b2}
are the lines. For the rest the following observation is important:

a1 < (li ∧ lj) ∨ (lk ∧ lm) (3)

whenever {i, j, k,m} = {2, 3, 5, 6} which means that the set {a1, li∧lj , lk∧lm}
is a line. Indeed, whatever order of {2, 3, 5, 6} we choose, always

{li ∧ lj , lk ∧ lm} ∈ {{a2, a3}, {b1, b4}, {b2, b3}} .

We must prove that a1 = a2. We split the proof of this equality into three
parts depending on where the element a = f(a1) = f(a2) lies. Note that
a 6= 0 because f∗(0) = 0.

Part 1, a = 1. Applying Lemma 16 to the lines that contain either a1 or
a2, we conclude

f(b1) ∨ f(b4) = f(b2) ∨ f(b4) = f(b2) ∨ f(b3) = f(b1) ∨ f(b3) = 1 . (4)

It follows that if f(b3) or f(b4) is a point, then f(b1), f(b2) ∈ L∪{1}. Thus,
either f(b1), f(b2) ∈ L ∪ {1} or f(b3), f(b4) ∈ L ∪ {1}. We handle the first
case, the second one is similar. Since f(b1), f(b2) ∈ L ∪ {1}, there exists
b ∈ P so that b ≤ f(b1) ∧ f(b2). Let g = el3,b. It is easy to see that g ≤ f
but g 6= f because g(a1) = b < 1 = f(a1). This contradicts the minimality
of f .
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Part 2, a ∈ P . Due to Lemmas 17 and 2, without loss of generality, a =
a1. It follows from Lemma 16 that f(a3) = a1, too. For every i ∈ {1, 2, 3, 4},
we have 1 = a1 ∨ a2 ∨ bi which implies

1 = f(1) = f(a1) ∨ f(a2) ∨ f(bi) = a1 ∨ f(bi) .

Thus, f(bi) = 1 or f(bi) ∈ L and in the latter case a1 6≤ f(bi). Note that in
view of Part 1, f(bi) = 1 can hold only for one value of i. Observe that f acts
injectively on B. Suppose, on the contrary, that there are i and j such that
i 6= j but f(bi) = f(bj) = l. We know that l = 1 is impossible, so l ∈ L. The
line bi ∨ bj intersects the line l0 in one of the points ak, k ∈ {1, 2, 3}. Hence
ak ≤ bi ∨ bj implying a1 = f(ak) ≤ f(bi) ∨ f(bj) = f(bi), a contradiction.

Thus, f(B) = M = {l2, l3, l5, l6} or there is i ∈ {2, 3, 5, 6} such that
f(B) = (M \{li})∪{1}. Assume first that f(B) = M and define a mapping
g : P → F by

g(a1) = 0, g(a2) = g(a3) = a1, g(b1) = g(b4) = f(b1) ∧ f(b4),

g(b2) = g(b3) = f(b2) ∧ f(b3) .

Since f(B) = M , formula (3) implies that the set

{a1, f(b1) ∧ f(b4), f(b2) ∧ f(b3)} (5)

is a line. It is easy to see, using Lemma 16, that g is residuated. Indeed, g
maps the lines l0, l1 and l4 to two-element sets containing 0 and the other
four lines to the line (5). Since obviously g < f , we have a contradiction
with minimality of f .

It remains to consider the case when there is i ∈ {2, 3, 5, 6} such that
f(bi) = 1. Then there is exactly one mapping h : P → F such that h(x) =
f(x) if x 6= bi and h(B) = M . Clearly, h < f and using Lemma 16 it is
easy to check that h is residuated. Hence, in view of the previous step of
the proof, h is not an atom of Res(F ) and hence also f cannot be an atom
of Res(F ).

Part 3, a ∈ L. In view of Lemmas 17 and 2, without loss of generality,
a = l0. First note that

f(bi) 6≤ l0 for every i ∈ {1, 2, 3, 4} . (6)

Indeed, otherwise f(a1), f(a2), f(bi) ≤ l0 and a1 ∨ a2 ∨ bi = 1 would imply
1 = f(1) ≤ l0, a contradiction. Next observe that the equalities (4) hold
in the present case, too. Indeed, applying Lemma 16 to the line l5, we get
l0 ≤ f(b1) ∨ f(b3). Hence f(b1) ∨ f(b3) ∈ {l0, 1} but f(b1) ∨ f(b3) = l0
is impossible because f(bi) 6≤ l0. The other three equalities are proved
similarly.

The equalities (4) imply that either f(b1), f(b2) ∈ L∪{1} or f(b3), f(b4) ∈
L ∪ {1}. Assume, without loss of generality, that f(b3), f(b4) ∈ L ∪ {1} and
suppose that there exists c ∈ P such that f(b3) ∧ f(b4) ∧ l0 ≥ c ∈ P . Then
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g = el6,c ≤ f . Since g(a1) = c < a = f(a1), f is not minimal, a contradiction.
Thus,

f(b3) ∧ f(b4) ∧ l0 = 0 (7)

which means that f(b3) and f(b4) are different lines, moreover, the triple of
lines f(b3), f(b4), l0 is not confluent (has no common point). Let d be the
only point that does not belong to any of these three lines. Also, there must
exist one more line h such that d 6< h.

Suppose now that f(b1) ∈ P . We know that f(b1) 6∈ l0 and in view of (4)
also f(b1) 6∈ f(bj), j = 3, 4. Hence, f(b1) = d. Similarly, if f(b2) ∈ P , then
f(b2) = d. Since by Part 2 of our proof f(b1) = f(b2) ∈ P is impossible, we
conclude that only one of the elements f(b1) and f(b2) can be a point.

Next we show that f(b1) 6= 1, the proof that f(b2) 6= 1 is similar. First
suppose that f(b1) = 1, f(b2) ∈ P . By the previous paragraph, we have
f(b2) = d and applying Lemma 16 to the line l6 we get 1 ≤ f(a3)∨d. Hence,
f(a3) ∈ L and f(a1) = f(a2) = l0 implies f(a3) = l0.

Now define a mapping g : P → F as follows: g(b1) = h, g(x) = f(x) if
x 6= b1. We use again Lemma 16 to show that g is residuated. Since f and
g differ only on the point b1, we have to check only the lines l1, l5 and l6.
The points of the first two lines are mapped by g to three different lines, so
the condition of Lemma 16 is satisfied. The points of l6 are mapped to the
set {l0, h, d}. Since

l0 ∨ h = l0 ∨ d = h ∨ d = 1 ,

we are done. Thus, g is a non-zero residuated mapping strictly less than f .
This contradiction with minimality of f proves that f(b1) 6= 1.

It remains to handle two cases: (i) f(b1) ∈ P , f(b2), f(b3), f(b4) ∈ L and
(ii) f(bi) ∈ L, i ∈ {1, 2, 3, 4}.

(i) We denote pi = l0 ∧ f(bi), i = 2, 3, 4, and show that these three points
are different, that is, l0 = {p2, p3, p4}. Assume first that f(a3) ∈ L, hence
f(a3) = l0. Note that the point f(b1) does not belong to any of the four lines
l0, f(b2), f(b3), f(b4). For l0, f(b3) and f(b4) this follows from formulas (6)
and (4) and as for f(b2), if f(b1) ≤ f(b2), then applying Lemma 16 to the
line l6, we get l0 = f(a3) ≤ f(b1)∨ f(b2) = f(b2), a contradiction. Hence no
three lines from this set are confluent because otherwise they would cover
the whole P , in particular also f(b1). But then pi = pj is impossible for
i 6= j, as desired.

Assume now that f(a3) ∈ P . We know that f(a3) < l0 and apply-
ing Lemma 16 to the line l6, we conclude f(b2) ≤ f(a3) ∨ f(b1). Since
f(a3), f(b1) ∈ P , this yields the equality f(b2) = f(a3)∨ f(b1), thus f(a3) <
f(b2) and consequently f(a3) = l0 ∧ f(b2) = p2. As f(b3) 6= f(b4), Lemma
16 applied to the line l3 implies f(a3) 6≤ f(b3) and f(a3) 6≤ f(b4), hence
pi 6= p2, i = 3, 4. Finally, it follows from formula (7) that p3 6= p4.



348 K. KAARLI AND S. RADELECZKI

Now define a mapping g : P → F as follows:

g(b1) = 0, g(a1) = g(b4) = p4, g(a2) = g(b3) = p3, g(a3) = g(b2) = p2 .

The mapping g maps the lines l1, l5 and l6 to one of the sets {0, ak} where
k = 1, 2, 3, and the remaining lines bijectively to l0. Therefore Lemma 16
implies that g is residuated and obviously g < f . This is a contradiction
with minimality of f .

(ii) Recall that now f(bi), i ∈ {1, 2, 3, 4}, are distinct lines. Let first
f(a3) ∈ L, hence, as above, f(a3) = l0. Since the four lines f(bi) are
different, at least two of them must intersect l0 in the same point, let it be
ak. Let l be any line satisfying the following condition:

x ∈ P, ak 6≤ f(x) ⇒ x < l .

Such a line l exists because there are at least five points x such that ak ≤
f(x). Then clearly elak < f , a contradiction with minimality of f .

Finally, assume that f(a3) ∈ P . Consider the mapping g : P → F defined
by:

g(x) =

{
f(a3), if x < l0;
f(x), otherwise,

and show that it is residuated. In view of Lemma 16, we have to show
that g(x) ≤ g(y) ∨ g(z) holds for any three collinear points x, y, z. Clearly,
this is the case if these points belong to l0. Otherwise {g(x), g(y), g(z)} =
{f(a3), f(bi), f(bj)} where i 6= j. Since f(bi)∨f(bj) = 1, we will be done if we
show that f(a3) 6≤ f(bi), that is, f(a3)∨ f(bi) = 1 for every i. We prove this
for i = 1, the other cases are similar. If f(a3) ≤ f(b1), then, applying Lemma
16 to the line l6, we have f(b2) ≤ f(b1) ∨ f(a3) = f(b1), i.e. f(b2) = f(b1),
a contradiction. It remains to notice that g(a1) = f(a3) < l0 = f(a1), hence
g < f . �

We continue the proof of Theorem 18. It seems to us that a different,
“symmetric” notation of points is convenient now. We choose a non-collinear
triple of points a1, a2, a3 and denote by aij the third point of the line ai∨aj ,
i < j. The seventh point will be denoted by b. As it was mentioned already,
we may assume that f(1) = 1 and f∗(0) = 0, that is, f(x) = 0 holds only
for x = 0. In view of Lemma 21, we know that f is injective. We split
the remaining part of the proof into cases depending on properties of the
set X = P ∩ f−1(P ). It will turn out that in Case 1 the mapping f is an
automorphism of F while the other cases do not occur at all.

Case 1: |X| = 7. Clearly, in this case X = P = f(P ). It is easy to see
that then also f(L) = L, hence f is bijective. Thus, f is an automorphism
of F , in particular, it is a weakly regular residuated mapping.

Case 2: |X| < 7 and the set of points f(X) is not collinear, that is, f(X)
contains a non-collinear triple of points. Note that by Lemma 21 this is
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certainly the case when |X| ≥ 4. Indeed, if f is injective, then |X| = |f(X)|
but every line contains only three points.

Without loss of generality, assume that a1, a2, a3 ∈ X and the triple
f(a1), f(a2), f(a3) is non-collinear. Again without loss of generality, in
view of Lemma 17, assume that f(ai) = ai, i = 1, 2, 3. Then Lemma 16
implies that f(aij) ≤ ai ∨ aj and applying Lemma 21, we conclude that
f(aij) ∈ {aij , ai ∨ aj}. We see that x ≤ f(x) holds for all points x = ai
and x = aij . Now, if also b ≤ f(b), then idF ≤ f and since f is an atom of
Res(F ), we have idF = f . But then f(P ) = P , a contradiction.

Consequently, we must handle the possibilities when b 6≤ f(b). There are
essentially two different cases: (i) f(b) ≤ ai ∨ aj for some i 6= j and (ii)
f(b) = {a12, a23, a13}.

(i) Without loss of generality, assume that f(b) ≤ a1∨a2. Then, applying
Lemma 16 first to the line {a1, b, a23} and then to the line {a3, a23, a2}, we
obtain

f(a23) ≤ f(a1) ∨ f(b) ≤ a1 ∨ a1 ∨ a2 = a1 ∨ a2
and

a3 = f(a3) ≤ f(a23) ∨ f(a2) ≤ a1 ∨ a2 ∨ a2 = a1 ∨ a2 ,
a contradiction, because the points a1, a2 and a3 are not collinear.

(ii) Let now f(b) = {a12, a23, a13} and consider the projection mapping
g(x) = (a3 ∨ x) ∧ (a1 ∨ a2). Then easy straightforward calculations show
that g(x) ≤ f(x) for every x ∈ P . Since g(a3) = 0 < a3 = f(a3), we have a
contradiction with minimality of f .

Case 3: |X| = 3. The subcase with f(X) non-collinear was actually
handled in Case 2, thus we may assume that the triple f(X) is collinear.

First suppose that the triple X is not collinear. As above, we may assume
that X = {a1, a2, a3}. Then

1 = f(1) = f(a1 ∨ a2 ∨ a3) = f(a1) ∨ f(a2) ∨ f(a3) < 1 ,

a contradiction. Thus, it remains to consider the case when the triple X
is collinear. Without loss of generality, X = {a1, a12, a2} and f(ai) = ai,
i = 1, 2. Then f(a12) ≤ a1 ∨ a2 and, by Lemma 21, f(a12) = a12. Since
|X| = 3, the points that do not belong to the line a1 ∨ a2, are mapped by f
to lines or to 1 and by Lemma 21 there is x ∈ P such that f(x) ∈ L. Let y
be a common point of lines f(x) and a1 ∨ a2 and z be the third point of the
line x ∨ y. Then f(y) = y ≤ f(x) and z 6∈ X, thus f(z) 6∈ P . Consequently,

f(z) ≤ f(y) ∨ f(x) = y ∨ f(x) = f(x)

implying f(z) = f(x), a contradiction with Lemma 21.

Case 4: |X| = 2. As above, we may assume that X = {a1, a2} and
f(ai) = ai, i = 1, 2. Further, since f(a12) ≤ f(a1) ∨ f(a2) = a1 ∨ a2 and
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a12 6∈ X, we have f(a12) = a1 ∨ a2. Let now x ∈ P be such that x 6≤ a1 ∨ a2
and f(x) ∈ L. Note that in view of Lemma 21, there are at least three such
points and f(x) 6= a1 ∨ a2. Let y = f(x) ∧ (a1 ∨ a2) and let z be the third
point of the line x∨ y. Then f(z) ≤ f(x)∨ f(y). We see that if y ∈ {a1, a2},
then f(z) ≤ f(x) ∨ y = f(x) and since f(z) 6∈ P , we have a contradiction
with Lemma 21. This means that the line f(x) intersects a1 ∨ a2 at a12.
Since there are only two lines through a12, different from a1 ∨ a2, we have a
contradiction again.

Case 5: |X| = 1. As above, we may assume that X = {a1} and
f(a1) = a1. Since |P \X| = 6 and there are only 4 lines not containing the
point a1, there exist two different points x1, x2 such that a1 ≤ f(x1), f(x2).
If the triple {a1, x1, x2} is collinear, then f(x1) ≤ f(a1)∨f(x2) = a1∨f(x2) =
f(x2) and similarly f(x2) ≤ f(x1). Thus we get f(x1) = f(x2), a contradic-
tion with Lemma 21.

It remains to consider the case when the triple {a1, x1, x2} is not collinear.
Let yi be the third point of the line = a1 ∨ xi, i = 1, 2. Then

f(yi) ≤ f(a1) ∨ f(xi) = a1 ∨ f(xi) = f(xi), i = 1, 2.

Because of Lemma 21, f(xi) = f(yi) is impossible, thus f(y1) = 1 = f(y2)
which again contradicts Lemma 21.

Case 6: |X| = 0. Now f maps P injectively into L ∪ {1}. Suppose
f(P ) 6⊆ L, that is, there exists a ∈ P such that f(a) = 1. Then clearly there
exists a unique injective mapping g : P → L such that g < f and in view of
Lemma 16, g is residuated meaning that f is not minimal. Thus, we may
restrict ourselves to the case f(P ) ⊆ L. Actually, because of injectivity of
f , we have f(P ) = L.

Suppose first that there is a line l such that the lines f(x), x < l, are
confluent and let c be the common point of these three lines. Then define
the mapping g : P → F as follows:

g(x) =

{
c, if x < l;
f(x), otherwise.

It is easy to check, using Lemma 16, that g is residuated, and obviously
g < f .

Finally, assume that for any line l the three lines f(x), x < l, are not
confluent. Since the number of non-confluent triples of lines (what is 28)
is larger than the number of lines (what is 7), there also exist three non-
collinear points b1, b2, b3 such that the lines li = f(bi), i = 1, 2, 3, are non-
confluent. Then clearly the triple of points l1 ∧ l2 , l2 ∧ l3 , l3 ∧ l1 is non-
collinear, too. Without loss of generality, assume that

a1 = l1 ∧ l3 , a2 = l1 ∧ l2 , a3 = l2 ∧ l3
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and note that then

l1 = a1 ∨ a2 , l2 = a2 ∨ a3 , l3 = a1 ∨ a3 .

In view of Lemma 17 there exists an automorphism α of F such that α(ai) =
bi, i = 1, 2, 3. Due to Lemma 2, the mapping g = fα is an atom of Res(F )
and it is easy to see that g inherits the properties of f that are important
for us. Namely, g(P ) = L and the triple of lines g(x), x < l, is non-confluent
for every line l. Now we have g(ai) = li, i = 1, 2, 3. Hence,

g(a1) = a1 ∨ a2, g(a2) = a2 ∨ a3, g(a3) = a1 ∨ a3 .

Since the collinear points a12, a23, a13 cannot be mapped to confluent lines,
one of these points is mapped to the line a12 ∨ a23. Assume, without loss of
generality, that g(a12) = a12 ∨ a23.

Now, the remaining three points a13, a23 and b have to be mapped by
g bijectively to the lines a1 ∨ a23, a2 ∨ a13 and a3 ∨ a12. Since the triple
{b, a3, a12} is collinear and g(a3) ∧ g(a12) = a13, there are two possibilities:
g(b) = a1 ∨ a23 or g(b) = a3 ∨ a12. Indeed, otherwise the triple of lines
{g(b), g(a3), g(a12)} would be confluent.

Assume that g(b) = a1 ∨ a23, the other case is similar. Further, for g(a23)
there are again two possibilities, either a2 ∨ a13 or a3 ∨ a12. However, since
g(a2) ∧ g(a3) = a3, the second case is impossible. Thus, g(a23) = a2 ∨ a13
and consequently g(a13) = a3 ∨ a12.

Now define a mapping h : P → P as follows:

h(a1) = a1, h(a2) = a2, h(a12) = a12,

h(a3) = a13, h(a13) = a3, h(a23) = b, h(b) = a23 .

Obviously, h is a bijection and Lemma 16 shows that h is residuated. It is
easy to check that h < g, a contradiction with minimality of g.

The proof of Theorem 18 is complete now. 2

8. Example

The proof of Theorem 18 significantly depends on the specific structure
of F , especially on the facts that every line contains exactly three points
and every point belongs to exactly three lines. Therefore it is not surprising
that it cannot be generalized to larger projective planes. This is what the
following example exhibits.

Example. Let M be the lattice of a projective plane of order n > 2. Then
the lattice Res(M) has atoms that are not weakly regular.

We fix a point a and a line s such that a 6≤ s. Let

P s = {x ∈ P | x 6< s}, La = {x ∈ L | a 6< x} .
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Since |P s |= n2 =|La |, there exists a bijection α : P s → La. We first observe
that α can be chosen so that α(a) = s and∧

{α(y) | y ≤ a ∨ x, y 6= x} = 0 (8)

holds for every point x < s.
Let ρ be the partition of the set P s\{a} whose blocks are the lines through

a (without a). Obviously, each block of ρ can be written as (x∨ a) \ {a} for
some x < s. Let τ be the partition of the set La \ {s} whose blocks consist
of lines that intersect s in the same point. Clearly both ρ and τ have n+ 1
blocks, all of size n−1. Let β : P s \{a} → La \{s} be a bijection that maps
blocks of ρ to blocks of τ .

Let Z be a transversal of the partition ρ, that is, a set of points that con-
tains exactly one element from each ρ-block and let γ be a cyclic permutation
on Z. Now define α : P s → La as follows:

α(x) =

 s, if x = a;
β(x), if x 6= a and x 6∈ Z;
β(γ(x)), if x ∈ Z ;

and check that it satisfies the condition (8). Let x be an arbitrary point of
s and let the points y, z < a ∨ x be such that z ∈ Z and y 6∈ Z. It follows
from the definition of α that the lines α(y) and α(z) intersect s in different
points. Since α(a) = s, we have α(a)∧α(y)∧α(z) = 0, thus (8) is satisfied.

Now define f : P →M as follows:

f(x) =

{
a, if x < s;
α(x), if x ∈ P s .

Lemma 16 easily implies that f ∈ Res(M). Indeed, we have to check that
whenever x ≤ y ∨ z where x, y, z ∈ P , also f(x) ≤ f(y) ∨ f(z). Now, if
y, z < s, then also x < s, hence f(x) = a ≤ a = f(y) ∨ f(z). Otherwise,
it follows from the definition of α that f(y) ∨ f(z) = 1 and we are done.
Furthermore, obviously f(1) = 1 but f(M) 6= M , thus f is not weakly
regular.

Now we are going to prove that f is an atom of Res(M). Suppose there
is g ∈ Res(M) such that g < f , that is, g(x) ≤ f(x) for all points x ∈ P and
g(b) < f(b) for some b ∈ P . We first show that such point b must exist in
the line s and then of course g(b) = 0 because g(b) < f(b) = a ∈ P .

Suppose b 6< s. Since g(b) < f(b) ∈ L, we have b ∈ P ∪ {0}. Thus there
are at least n + 1 lines h such that g(b) ≤ h. We show that among them
there is a line h such that h 6= f(b) and a 6< h. If g(b) = 0, then this follows
from the inequality

|{h ∈ L | a 6< h, h 6= f(b)}| ≥ n2 − 1 ≥ 3 .

If g(b) ∈ P , then note that g(b) 6= a. This is because b 6< s implies a 6< f(b).
Now, among n+ 1 lines through g(b) only g(b)∨a goes through a. It follows
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that

|{h ∈ L | a 6< h, h 6= f(b)}| ≥ (n+ 1)− 2 ≥ 1 .

By the definition of f there exists y ∈ P \ s such that f(y) = h. Denote
c = (y ∨ b) ∧ s. Since b 6< s, we have c ∈ P and clearly c < s which implies
g(c) ≤ f(c) = a. On the other hand,

g(c) ≤ g(y ∨ b) = g(y) ∨ g(b) ≤ f(y) ∨ h = h .

Thus, g(c) ≤ h ∧ a = 0. This says that, without loss of generality, the point
b can be chosen in the line s.

It follows from Lemma 16 that if b < l ∈ L, then g is constant on the set
l \ {b}, in particular, g is constant on the set (a ∨ b) \ {b}. Thus, g(a) =
g(y) ≤ f(y) = α(y) holds for every point y ≤ a ∨ b, y 6= b. But then, using
formula (8), we have

g(a) ≤
∧
{α(y) | y ≤ a ∨ b, y 6= b} = 0 .

Since g(b) = 0, also g(a ∨ b) = 0. Now Lemma 16 easily implies that g is
constant on P \ (a ∨ b), let g(x) = d ∈ M for all points x 6< a ∨ b. Hence
d < f(x) holds for all points x that do not belong to lines s and a∨ b. Since
f is one-to-one on the set P \ (s ∪ (a ∨ b)) this would imply that

|P \ (s ∪ (a ∨ b))| ≤ |{l ∈ L | d < l}| = n+ 1.

However, this is not true because for n ≥ 3 we have:

|P \ (s ∪ (a ∨ b))| − (n+ 1) = (n2 + n+ 1)− (2n+ 1)− (n+ 1)

= (n− 1)2 − 2 > 0 .

This contradiction proves that actually there is no g ∈ Res(M) such that
0 < g < f . In other words, f is an atom of Res(M).

Remark. We suggest the reader to find out why our argument would not
work when n = 2, that is, in the case of the Fano plane.
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