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On a generalization of the Nagumo–Brezis theorem

Kaveh Eftekharinasab and Ruslana Horidko

Abstract. We generalize the Nagumo–Brezis theorem to the category
of MCk-Fréchet manifolds. Then we will apply the obtained result to
locate a critical value of a real-valued mapping over these manifolds.

1. Introduction

The problem of verifying the (positive) invariance of a set with respect
to the flow generated by a vector field (or a dynamical system) has a long
and rich history. Some early results were obtained by Bouligand in 1932 [2].
Later, Nagumo in 1942 provided the first necessary and sufficient conditions
on set invariance [11], which state that a set is invariant if and only if a
vector field lies in the tangent cone. In the late 1960’s and early 1970’s,
Nagumo’s theorem was independently rediscovered by Bony [1] and Brezis
[3]. The results of Brezis used the tangent cone to give conditions on set
invariance, while Bony used a comparison theorem type result. In the infinite
dimensional case, the ideas of Nagumo and Brezis were utilized for Banach
manifolds, and are well-documented in [12].

If we want to develop these ideas further to Fréchet manifolds, we will
encounter some obstacles. It is well-known that, in general, a vector field on
a Fréchet manifold M has no integral curve, or even if it does, the integral
curve may not be unique. Also, in general, a vector field may not generate
a (differentiable) flow, and the domain of a flow may not be open in M ×R.
Therefore, we need to work on concrete manifolds.

The above issues were treated for a generalized category of Fréchet man-
ifolds, known as MCk(or bounded)-Fréchet manifolds in [5, 6, 8]. Thus,
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it would be intriguing to investigate conditions for set invariance in this
category of manifolds too.

In this paper, we extend the ideas of Nagumo and Brezis to the MCk-
Fréchet manifolds. We give a criterion for a closed subset of an MCk-
Fréchet nuclear manifold to be invariant under the flow defined by an MCk-
vector field in Theorem 2. Then, we will apply the latter theorem to locate
critical points of real-valued mappings (which is a very challenging problem
for Fréchet manifolds) in Theorem 3.

A related point to consider is that for Fréchet manifolds only the Palais–
Smale condition has been used to locate critical points so far, see [4, 7].
However, due to the difficulty of verifying the Palais-Smale condition, and
the existence of important functions that do not satisfy the condition it would
be a gain to develop other methods such as the Nagumo–Brezis theorem to
locate critical points.

2. Prerequisites

In this section, we briefly recall the basic knowledge about MCk-Fréchet
manifolds that we will need, we use the notations and the definitions of the
papers [5, 6, 8].

We will use the notation U ⊆◦ T to indicate that a set U is open in
a topological space T . Throughout the paper, we assume that E,F are
Fréchet spaces, and CL(E,F ) is the space of all continuous linear mappings
from E to F , endowed with the compact-open topology.

Let ϕ : U ⊆◦ E → F be a map. If for all x ∈ U and all h ∈ E the
directional derivatives

Dϕ(x)h = lim
t→0

ϕ(x+ th)− ϕ(x)

t

exist and the induced map Dϕ(x) : U → CL(E,F ) is continuous for all
x ∈ U , then we say that ϕ is a Keller’s differentiable map of class C1

c . The
higher directional derivatives and Ckc -mappings, k ≥ 2, are defined in the
obvious inductive fashion, see [10].

To define MCk-differentiability (or bounded differentiability), we define
the topology of a Fréchet space F with a translation invariant metric %, and
then introduce the metric concepts which strongly depend on the choice of
%. We consider only metrics of the following form

%(x, y) = sup
n∈N

1

2n
‖x− y‖F,n

1 + ‖x− y‖F,n
, (2.1)

where ‖·‖F,n is a collection of seminorms generating the topology of F . The

distance between two subsets A,B (a point to sets) is defined by

Dist(A,B) = inf{ %(x, y) | x ∈ A, y ∈ B }.
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We denote by ‖x‖F,% := %(x, 0F ) the distance of a point x form the origin

0F , and by B%(x, r) the open %-ball with center x and radius r > 0. Since %
is translation-invariant,

%(x, y) = ‖x− y‖F,% .

Let σ be a metric that defines the topology of a Fréchet space E. Let
Lσ,%(E,F ) be the set of all linear mappings L : E → F which are (globally)
Lipschitz continuous as mappings between metric spaces E and F , that is

Lip(L) := sup
x∈E\{0F }

%(L(x), 0F )

σ(x, 0F )
<∞,

where Lip(L) is the (minimal) Lipschitz constant of L.
The translation invariant metric

dσ,% : Lσ,%(E,F )× Lσ,%(E,F ) −→ [0,∞), (L,H) 7→ Lip(L−H)σ,% , (2.2)

on Lσ,%(E,F ) turns it into an Abelian topological group. We always topol-
ogize the space Lσ,%(E,F ) by the metric (2.2).

Let ϕ : U ⊆◦ E → F be a map. If ϕ is Keller’s differentiable, Dϕ(x) ∈
Lσ,%(E,F ) for all x ∈ U and the induced map Dϕ(x) : U → Lσ,%(E,F ) is
continuous, then ϕ is called bounded differentiable or MC1, and we write
ϕ(1) = ϕ′. We define for k > 1 mappings of the class MCk recursively. An
MCk-Fréchet manifold is a Fréchet manifold whose coordinate transition
functions are all MCk-mappings.

We recall the definition of nuclear Fréchet manifolds as we mainly work
with these manifolds. Let (B1, | · |1) and (B2, | · |2) be Banach spaces. A
linear operator T : B1 → B2 is called nuclear or trace class if it can be
written in the form

T (x) =
∞∑
j=1

λj〈x, xj〉yj ,

where 〈·, ·〉 is the duality pairing between B1 and its dual (B′1, | · |′1), xj ∈ B′1
with | xj |′1≤ 1, yj ∈ B2 with | y1 |2≤ 1, and λj are complex numbers such
that

∑
j | λj |<∞.

If ‖·‖F,i is a seminorm on a Fréchet space F , we denote by Fi the Banach

space given by completing F using the seminorm ‖·‖F,i, there is a natural

map from F to Fi whose kernel is ker ‖·‖F,i. A Fréchet space F is called

nuclear if for any seminorm ‖·‖F,i, we can find a larger seminorm ‖·‖F,j so
that the natural induced map from Fj to Fi is nuclear. A nuclear Fréchet
manifold is a manifold modeled on a nuclear Fréchet space.

Since nuclear operators factor over Hilbert spaces, each nuclear Fréchet
space admits a fundamental system of Hilbertian seminorms. Another key
feature of Fréchet nuclear spaces is that they have the Heine–Borel prop-
erty, that is, a closed bounded subset of such a space is compact. We have
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this advantage over Banach manifolds, since there is no infinite dimensional
Banach space which is nuclear.

A key example of an MC∞-Fréchet nuclear manifold is the manifold of
all smooth sections of a fiber bundle (such as the manifold of Riemannian
metrics) on a closed manifold.

3. Flow-invariant sets

Henceforth, we assume that k ≥ 2, and M is an MCk-Fréchet manifold
modeled on a Fréchet space F whose topology is defined by the metric (2.1).

We denote by Π : TM → M the tangent bundle, and by Tϕ (or ϕ∗) the
tangent map (the differential) of a map ϕ defined on M . For an MCr-vector
field X : U ⊆◦ F → F , r ≥ 1, let It(x0) denote its integral curve passing
through x0, i.e., I ′(t) = X(I(t)) with I(0) = x0.

We will need the following results.

Proposition 1 ([6], Proposition 5.1). Let ξ : U ⊆◦ F → F be an MCr, r ≥
1, vector field. Then, for p0 ∈ U , there is an MC1-integral curve ` : I → F
at p0. Furthermore, any two such curves are equal on the intersection of
their domains.

Corollary 1 ([6], Corollary 5.1). Suppose the hypotheses of the previous
proposition hold. Let It(p0) be the solution of `′(t) = ξ(`(t)), `(t0) = p0.
Then there is an open neighborhood U0 of p0 and a positive real number α
such that for every q ∈ U0 there exists a unique integral curve `(t) = It(q)
satisfying `(0) = q and `′(t) = ξ(`(t)) for all t ∈ (−α, α).

Theorem 1 ([9], Gronwall’s inequality). Let ϕ,ψ : [a, b) → R+ ∪ {0} be
continuous. If for a constant R and all t ∈ [a, b) we have the inequality

ϕ(t) ≤ R+

∫ t

a
ϕ(s)ψ(s)ds,

then ϕ(t) ≤ R exp
( ∫ t

0
ψ(s)ds

)
for all t ∈ [a, b).

Lemma 1. Let X : U ⊆◦ F → F be an MC1-vector field. Then, there
exists a neighborhood V of x0 ∈ U , and r > 0 such that, for every y ∈ V ,
there is a unique integral curve I satisfying

I(0) = y; I ′(t) = X(I(t)), −r ≤ t ≤ r.
Moreover, for some R > 0 we have

‖It(x)− It(y)‖F,% = eR|t| ‖x− y‖F,% .

Proof. Since X is MC1, it is bounded, say by R. Thus, for any x, y ∈ U
we have

‖X(x)− X(y)‖F,% ≤ R ‖x− y‖F,% .
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Let m > 0 be such that the closed %-ball B%(x0,m) lies in U , and ‖X(x)‖F,% ≤

n for all x in B%(x0,m). Now, let V = B%(x0,m/2) and r = min

{
1

R
,
m

2n

}
.

Then, for a fixed y ∈ V we have B%(p,m/2) ⊂ B%(x0,m), and therefore

‖X(z)‖F,% ≤ n, ∀z ∈ B%(y,m/2).

By Proposition 1 and Corollary 1, with x0 replaced by y and t0 by 0, there
exists an integral curve I(t) of X for t ∈ [−r, r] with I(0) = y.

Now, define the mapping Ψ(t) := ‖It(x)− It(y)‖F,%. Then,

Ψ(t) =

∥∥∥∥∫ t

0

(
X(Is(x))− X(Is(y)

)
ds+ x+ y

∥∥∥∥
F,%

≤ ‖x− y‖F,% +R

∫ t

0
Ψ(s)ds.

Therefore, by Gronwall’s inequality we obtain

‖It(x)− It(y)‖F,% = eR|t| ‖x− y‖F,% .
�

Definition 1. Let A ⊂ M and let V be an MC1-vector field on M . The
set A is called flow-invariant with respect to V, if whenever I(t) is the integral
curve of V with I(0) ∈ A (starting from A), then I(t) ∈ A for all t ≥ 0 in
the domain of I(·).

Theorem 2. Let M be a nuclear MCk-Fréchet manifold, and X : M →
TM an MC1-vector field. Let A ⊂ M be closed. Then A is flow-invariant
with respect to X if and only if for each x ∈ M there is a chart (x ∈ U, φ)
such that

lim
s→0

t−1%
(
φ(x) + sDφ(x)X(x), φ(U ∩A)

)
= 0. (3.3)

Proof. Suppose A is a flow-invariant set with respect to X. Let It(x)
denote the integral curve of X passing through x ∈ A, i.e., I ′(t) = X(I(t))
with I(0) = x. Let (U, φ) be a chart at x. For small s we have

%
(
φ(x)+sDφ(x)X(x), φ(U ∩A)

)
≤ %
(
φ(x) + sDφ(x)X(x), φ(I(h))

)
= sup

n∈N

1

2n
‖φ(I(h))− φ(x)− sDφ(x)X(x)‖F,%

1 + ‖φ(I(h))− φ(x)− sDφ(x)X(x)‖F,%

= sup
n∈N

1

2n

|s|
∥∥∥∥φ(I(h))− φ(x)

s
−Dφ(x)X(x)

∥∥∥∥
F,%

1 + |s|
∥∥∥∥φ(I(h))− φ(x)

s
−Dφ(x)X(x)

∥∥∥∥
F,%
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≤ |s|N sup
n∈N

1

2n

∥∥∥∥φ(I(h))− φ(x)

s
−Dφ(x)X(x)

∥∥∥∥
F,%

1 +

∥∥∥∥φ(I(h))− φ(x)

s
−Dφ(x)X(x)

∥∥∥∥
F,%

,

where N = d1/se+1 in the last inequality, whence we obtain Equation (3.3).
Now, suppose that Equation (3.3) holds. It is sufficient to prove I(t) ∈ A

for small t. Let x = I(0) ∈ A, and let (U, φ) be a chart at x. Since X is
MC1, it is bounded by some constant R > 0. Near x, say B%(x, r) (for some
r > 0), we have

‖φ(X(x1))− φ(X(x2))‖F,% ≤ R ‖φ(x1)− φ(x2)‖F,% ,
and therefore by Lemma 1 we get

‖φ(It(x1))− φ(It(x2))‖F,% ≤ e
tR ‖φ(x1)− φ(x2)‖F,% .

We may assume ‖φ(It(x))− φ(x)‖F,% ≤
r

2
. Define the mapping

Ψ(t) := %
(
φ(It(x) ∩ U), φ(A ∩ U)

)
.

We have Ψ(0) = 0, so for small t, Ψ(t) < r/2. Since F is a nuclear Fréchet
space, and so the Heine–Borel Theorem is available for F , by closedness of
A we obtain

%
(
φ(It(x) ∩ U), φ(A ∩ U)

)
= ‖φ(It(x))− φ(yt)‖F,% , for some yt ∈ A.

Therefore, ‖φ(yt)− φ(x)‖F,% < r.

For small s, we have ‖φ(Is(yt))− φ(x)‖F,% < r, so that

Ψ(t+ s) = inf
z∈A

{
‖φ(It+s(x))− φ(z)‖F,%

}
≤ inf

z∈A

{
‖φ(It+s(x))− φ(Is(yt))‖F,% +

+ ‖φ(Is(yt))− φ(yt)− sDφ(yt)X(yt)‖F,% +

+ ‖φ(yt) + sDφ(yt)X(yt)− φ(z)‖F,%
}

= ‖φ(It+s(x))− φ(Is(yt))‖F,% +

+ ‖φ(Is(yt))− φ(yt)− sDφ(yt)X(yt)‖F,% +

+ %
(
φ(yt) + sDφ(yt)X(yt), φ(A ∩ U)

)
≤ eRt ‖φ(yt)− φ(It(x))‖F,% + ‖φ(Is(yt))− φ(yt)− sDφ(yt)X(yt)‖F,%

+ %
(
φ(yt) + sDφ(yt)X(yt), φ(A ∩ U)

)
.

Consequently,

Ψ(t+ s)−Ψ(t)

s
≤
(eRs − 1

s

)
Ψ(t) +

∥∥∥∥φ(Is(yt))− φ(yt)

s
−Dφ(yt)X(yt)

∥∥∥∥
F,%

+
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+
1

s
%
(
φ(yt) + sDφ(yt)X(yt), φ(A ∩ U)

)
.

Thus

lim sup
s→0

Ψ(t+ s)−Ψ(t)

s
≤ RΨ(t).

Hence, like in Gronwall’s inequality we obtain

Ψ(t) ≤ eRtΨ(0),

whence Ψ(t) = 0, which concludes the proof. �

Note that in the proof of the theorem we used the nuclear property of
a Fréchet space F to find the distance minimizer point yt. However, there
may be other ways to prove this theorem by not assuming the nuclearness of
spaces. But this does not restrict us that much, because the most important
Fréchet manifolds, manifolds of mappings, are nuclear.

4. Applications to critical point theory

In this section, we follow the ideas in [5] and [12]. First, we recall the
definition of a Finsler metric for MCk-Fréchet manifolds.

Definition 2. Let F be a Fréchet space, T a topological space and V =
T × F the trivial bundle with fiber F over T . A Finsler structure for V is
a collection of continuous functions ‖·‖V,n : V → R+, n ∈ N, such that the
following conditions hold.

(F1): For b ∈ T fixed, ‖x‖bF,n := ‖(b, x)‖V,n is a collection of seminorms on
F which gives the topology of F .

(F2): Given k > 1 and x0 ∈ T , there exists a neighborhood W of x0 such
that

1

k
‖x‖x0F,n ≤ ‖x‖

w
F,n ≤ k ‖x‖

x0
F,n for all w ∈W,n ∈ N, x ∈ F.

Let ‖·‖M,n : TM → R+ be a collection of continuous functions, n ∈ N.

We say that {‖·‖M,n}n∈N is a Finsler structure for TM , if for a given x ∈M
there exists a bundle chart ψ : U × F ' TM |U with x ∈ U such that

{‖·‖V,n ◦ ψ
−1}n∈N

is a Finsler structure for V = U × F .
An MCk-Fréchet Finsler manifold is a Fréchet manifold together with

a Finsler structure on its tangent bundle. Regular (in particular nuclear)
manifolds admit Finsler structures.

If {‖·‖M,n}n∈N is a Finsler structure for M , then we can obtain a graded

Finsler structure, denoted by (‖·‖M,n)n∈N, that is ‖·‖M,i ≤ ‖·‖M,i+1 for all
i ∈ N.
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The length of an MC1-curve γ : [a, b] → M for the n-th component is
defined by

Ln(γ) =

∫ b

a

∥∥γ′(t)∥∥γ(t)
M,n

dt.

The length of a piecewise path with respect to the n-th component is the
sum over the curves constituting the path. On each connected component
of M , the distance is defined by

ρn(x, y) = inf
γ
Ln(γ),

where infimum is taken over all piecewise MC1-curves connecting x to y.
Thus, we obtain an increasing sequence of metrics ρn(x, y). Define the dis-
tance ρ by

ρ(x, y) =

∞∑
n=1

1

2n
· ρn(x, y)

1 + ρn(x, y)
. (4.4)

The distance ρ defined in (4.4) is a metric for M which is bounded by
1. Also, the topology induced by this metric coincides with the original
topology of M by [5, Theorem 4.6].

An MCk-vector field X : M → TM has a unique MCk-local flow, see [8,
Theorem 4]. It follows from the theorem that the union of the domains of
all integral curves of an MCk-vector field X : M → TM, (k ≥ 1) through
x ∈ M is an open interval which we denote by Ix = (T−x , T

+
x ), where T−x

(resp. T+
x ) are the sup (resp., inf ) of the times of existence of the integral

curves. Let DX :=
⋃
x∈M ({x} × Ix), then we have the map F : DX → M

defined on the entire DX by letting F(x, t) be the local flow of X at x. We
call this map the flow determined by X, and we call DX the domain of the
flow which is open in M × R, see [8, Lemma 1].

Let (M, ρ) be an MCk(k ≥ 2) Fréchet Finsler manifold, c a real number,
and ε a positive real number. Let ϕ : M → R be an MC1-mapping. Define
the following sets:

(1) ϕc := {x ∈M | ϕ(x) ≤ c },
(2) Cϕ(c) := {x ∈M | ϕ(x) = c and Dϕ(x) = 0 },
(3) N (Cϕ(c), ε) := {x ∈M | ρ(x,Cϕ(c)) < ε }.

Proposition 2. Let ϕ : M → R be an MC1-mapping, X : M → TM
an MC1-vector field, and F : DX → M the flow determined by X. Suppose
c ∈ R, and the following holds.

(C.1) If (xn) ⊂M is a sequence such that ϕ(xn)→ c and Dϕ(xn)(X(xn))→
0, then (xn) has a convergent subsequence.

(C.2) There is ε0 such that for x ∈ ϕc+ε0, F(x, t) is defined, and ϕ(F(x, t))
is non-increasing for t ∈ [0, 1].

Then we obtain:
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(D.1) F(x, t) = x, for all x /∈ ϕ−1([c− ε0, c+ ε0]) and t ∈ [0, 1],
(D.2) F

(
ϕc+δ \ U , 1

)
⊂ ϕc−δ for some δ ∈ (0, ε0), and any critical neigh-

borhood U of Cϕ(c).

Proof. It follows from (C.1) that Cϕ(c) is compact. Hence there are posi-

tive constants δ < δ0 and m such that for all n ∈ N
(E.1) ‖X(x)‖xF,n ≤ m, ∀x ∈ Nδ0(Cϕ(c)),

(E.2) Cϕ(c) ⊂ Nδ(Cϕ(c))
⊂ Nδ0(Cϕ(c))

⊂ U .

It follows from (C.1) and (C.2) that there exist positive numbers c and ε1, ε0
such that

Dϕ(x)(X(x)) ≤ −c, ∀x ∈ ϕ−1[c− ε1, c+ ε1] \ Nδ(Cϕ(c)). (4.5)

Now, pick a fixed x ∈ ϕc+δ \U . Since otherwise (C.2) implies (D.1), we may
assume that

F(x, t) ∈ ϕ−1(c− δ, c+ δ], ∀t ∈ [0, 1) (4.6)

Now, suppose that

F(x, t) /∈ Nδ(Cϕ(c)), ∀t ∈ [0, 1], (4.7)

and

δ <
1

2
min

{
2ε0, c,

c(δ − δ0)
m

}
. (4.8)

Therefore, from (4.5)–(4.8) it follows that

ϕ(F(x, 1)) = ϕ(x) +

∫ 1

0

d

dt

(
ϕ(F(x, t))

)
dt

≤ c+ ε+

∫ 1

0
Dϕ(F(x, t))

(
X(F(x, t))

)
dt

≤ c− ε.

Thus, for any δ which satisfies (4.8) the statement (D.2) is valid. If the
assumption (4.7) is false, by (E.2) there are s1 ∈ (0, 1) and s2 ∈ (0, s1) such
that

ρ(F(x, s1),Cϕ(c)) = δ, ρ(F(x, s2),Cϕ(c)) = δ0.

Thus, by (E.1) and (E.2) for all n ∈ N we obtain that

δ0 − δ ≤
∫ s1

s2

∥∥∥∥dF(x, t)

dt

∥∥∥∥F(x,t)

F,n

dt (4.9)

≤ m(s1 − s2).

It follows from (C.2), (4.9), (4.8) and (4.5) that

ϕ(F(x, t)) = ϕ(x) +

∫ 1

0

d

dt

(
Dϕ(F(x, t))(X(F(x, t)))

)
dt
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≤ c+ ε+

∫ 1

0

d

dt

(
ϕ(F(x, t))

)
dt

≤ c+ ε−m(s1 − s2)
≤ c− ε.

Thus, even if (4.7) is false, the statement (D.2) is verified.
Now, define an MC1-mapping h over M by

h(x) =

{
1, x ∈ ϕ−1[c− ε1, c+ ε1],

0, otherwise.

Also, define

X(x) = X(x)h(x).

Then, by repeating the above arguments for X(x) we can easily verify (C.1),

and (C.2) is also true if we exchange F by the flow determined by X(x). �

Theorem 3. Suppose M is a nuclear MCk-Fréchet manifold, k ≥ 2. Let
ϕ : M → R be an MC1-mapping, A ⊂M a closed subset, and ϕ |A bounded
from below. Let X : M → TM be an MC1-vector field such that for each
x ∈M there is a chart (x ∈ U, φ) such that

lim
s→0

t−1%
(
φ(x) + sDφ(x)X(x), φ(U ∩A)

)
= 0.

Also, suppose we have (C.1) and (C.2) with c = infA ϕ(a). Then c is a
critical value of ϕ.

Proof. Define the set

A := { S ⊂ A ∩ ϕc+ε0 | S is compact subset of M }.

It follows from Theorem 2 that A is flow-invariant with respect to X. There-
fore, the integral curve F(x, ·) of X remains in A if x ∈ A. Now, by (C.2) we
obtain that if S ∈ A, then

F(S, 1) exists and F(S, 1) ∈ A.

From the definition of A, we see that

c = inf
S∈A

max
x∈A

ϕ(x). (4.10)

Since ϕ is bounded from below on A, the number c cannot be −∞. We
claim that c is a critical value. Because otherwise, if we employ U = ∅ in
Proposition 2, for some positive δ we will obtain

F(ϕc+δ) ⊂ ϕc−δ.

Hence, there exists S ∈ A such that F(S, 1) ⊂ ϕc−δ, which contradicts
(4.10). �
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