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Construction of continuous controlled K-g-fusion
frames in Hilbert spaces

PRASENJIT GHOSH AND TAPAS KUMAR SAMANTA

ABSTRACT. We present the notion of continuous controlled K-g-fusion
frame in a Hilbert space which is generalization of discrete controlled
K-g-fusion frame. We discuss some characterizations of a continuous con-
trolled K-g-fusion frame. A relationship between a continuous controlled
K-g-fusion frame and a quotient operator has been studied. Finally, sta-
bility of a continuous controlled g-fusion frame has been described.

1. Introduction

In 1952, Duffin and Schaeffer [I0] introduced frame for a Hilbert space to
study some fundamental problems in non-harmonic Fourier series. Later on,
after some decades, frame theory was popularized by Daubechies et al. [§].

A frame for a Hilbert space was defined as a sequence of basis-like elements
in that Hilbert space. A sequence { f;};-, € H is called a frame for a
separable Hilbert space (H, (-, -)), if there exist positive constants 0 <

A < B < oo such that

oo
AP <D 1 f) 12 < Bl fI? forall f e H.
i=1
For the past few years many other types of frames were proposed such as
K-frame [13], fusion frame [5], g-frame [26], g-fusion frame [16], 24] and K-
g-fusion frame [I] etc. Ghosh and Samanta [I5] have discussed generalized
atomic subspaces for operators in Hilbert spaces.
Controlled frame is one of the newest generalizations of frame. Balaz
et al.[4] introduced controlled frame to improve the numerical efficiency
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of interactive algorithms for inverting the frame operator. In recent times,
several generalizations of controlled frame namely, controlled K-frame [21],
controlled g-frame [22], controlled fusion frame [19], controlled g-fusion frame
[25], controlled K-g-fusion frame [23] etc. have appeared. Continuous frames
were proposed by Kaiser [18] and these were independently studied by Ali
et al. [2]. At present, frame theory has been widely used in signal and image
processing, filter bank theory, coding and communications, system modeling
and so on.

In this paper, continuous controlled K-g-fusion frames in Hilbert spaces
are studied and some of their properties are going to be established. Under
some sufficient conditions, we will see that any continuous controlled K-g-
fusion frame is equivalent to a continuous K-g-fusion frame. A necessary and
sufficient condition for a continuous controlled g-fusion Bessel family to be a
continuous controlled K-g-fusion frame with the help of a quotient operator
is established. At the end, we study some stability results of continuous
controlled g-fusion frames.

Throughout this paper, H is considered to be a separable Hilbert space
with associated inner product (-, -) and H is the collection of all closed
subspaces of H, Iy is the identity operator on H, B( H1, H9) is a collec-
tion of all bounded linear operators from H; to Hs. In particular B(H )
denotes the space of all bounded linear operators on H. For S € B(H ), we
write N (S) and R (S) for the null space and the range of S, respectively.
Also, Py € B(H) is the orthonormal projection onto a closed subspace
M C H. GB(H) denotes the set of all bounded linear operators which
have bounded inverse.If S, R € GB(H), then R*, R~! and SR also
belong to G B( H ). Finally, G BT (H ) is the set of all positive operators in
GB(H) and T, U are invertible operators in GB ( H ).

2. Preliminaries

In this section, we recall some necessary definitions and theorems.

Theorem 1 ([7]). Let Hi, Ho be two Hilbert spaces and U : Hy — Ho
be a bounded linear operator with closed range R(U). Then there exists a
bounded linear operator UT : Hy — Hy suchthat UU'x = x forallz €
R(U).

The operator Ut defined in Theorem [1|is called the pseudo-inverse of U.

Theorem 2 (Douglas’ factorization theorem, [9]). Let S,V € B(H).
Then the following conditions are equivalent.
(7)) R(S) CR(V).
(i) SS* < A2V V* for some A\ > 0.
(1) S = VW for some bounded linear operator W on H.
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Theorem 3 ([7]). The set S(H) of all self-adjoint operators on H is
a partially ordered set with respect to the partial order < which is defined
for R, S € S(H) by
R<Se(Rf, f)<(Sf f) VfeH

Definition 1 (J20]). A self-adjoint operator U : H; — H; is called
positive if (Uz, z) > 0 for all x € H;.In notation, we can write U >
0. A self-adjoint operator V : Hy — Hj is called a square root of U if
V2 = U. If, in addition, V' > 0, then V is called a positive square root of
U and is denoted by V = U'/2,

Theorem 4 ([20]). The positive square root V : Hy — Hi of an ar-
bitrary positive self-adjoint operator U : Hi — Hi exists and is unique.
Further, the operator V. commutes with every bounded linear operator on
Hi which commutes with U.

In a complex Hilbert space, every bounded positive operator is self-adjoint
and any two bounded positive operators commute with each other.

Theorem 5 ([12]). Let M C H be a closed subspace and T € B(H).
Then Py T* = Py T* Pyop. If T is a unitary operator (i.e T*T =
Iy ), then Pz T = T Pyy.

Definition 2. [24] Let { W; },_ ; be a collection of closed subspaces of H
and {v;},;.; be a collection of positive weights, { H; },_ ; be a sequence
of Hilbert spaces and let A; € B(H, Hj) for each j € J.Then A =
{(Wj, Aj, vj) }jes is called a generalized fusion frame or a g-fusion frame
for H with respect to { Hj }, ; if there exist constants 0 < A < B < o0
such that

AP < 30 o A Pw (DIF < BIFI? vieH (1)

jeJ
The constants A and B are called the lower and upper bounds of the g-
fusion frame, respectively. If A = B, then A is called a tight g-fusion
frame and if A = B = 1, then we say A is a Parseval g-fusion frame. If A

satisfies only the right inequality of it is called a g-fusion Bessel sequence
in H with a bound B.

Define the space

P ((HYyep) = Usdies 5 € Hy 3014517 < o0
jeJ
with inner product given by

({fitjes - {gjtics) = Z <fj,9j>Hj'

jedJ



44 PRASENJIT GHOSH AND TAPAS KUMAR SAMANTA

Clearly 12 ({H] Hie J) is a Hilbert space with the pointwise operations [1].

Definition 3 ([25]). Let {W;},_; be a collection of closed subspaces
of H and {v;},.; be a collection of positive weights. Let {H; },_; bea
sequence of Hilbert spaces, T, U € GB(H ) and A; € B(H, H;) for each
j € J.Then the family Ay = {(Wj, Aj, v;) };; isa (T, U)-controlled
g-fusion frame for H if there exist constants 0 < A < B < oo such that

AFIP <D wP (A Pw,Uf A Pw, Tf) < B|fII* ¥V feH (2

=i
If A = B, then Apy is called a (T, U )-controlled tight g-fusion frame and
if A = B = 1, then we say that Apy is a (T, U )-controlled Parseval
g-fusion frame. If Ary satisfies only the right inequality of , then it is
called a (T, U )-controlled g-fusion Bessel sequence in H.

Definition 4. [25] Let Ary be a (T, U )-controlled g-fusion Bessel se-
quence in H with a bound B.The synthesis operator T : Kp, — H is
defined as

Te ({vj (T* Pw, Af A Py, U)'/? f}jg)

= Y v}T*Pw,AjA; Py, U f
jeJ
for all f € H and the analysis operator 15 : H — Ky, is given by
T f = {vj (T* Pw, A; Ay Py, U )Y f}AeJ VfeH,
j

where

ICAj = {{Uj (T*PWjA;A]‘PWjU)l/Q f}

<12 ({H}e, )
The frame operator S¢ : H — H is defined as follows:

Sof =TcTaf = Z v}T* Py, A; A\;Pw,Uf V f € H,
jeJ

:fEH}

jedJ

and it is easy to verify that
(Scf, f)=> v} (AjPw,Uf, AjPw,Tf) VfeH
jedJ
Furthermore, if Ay isa (7T, U )-controlled g-fusion frame with bounds A

and B, then Alg < S¢ < Blg.Hence, S¢ is a bounded, invertible,
self-adjoint and positive linear operator. It is easy to verify that

B lIy < S5 < ATy,
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Definition 5 ([23]). Let K € B(H) and {Wj},_; be a collection of
closed subspaces of H and {v; }j ¢ ;7 be a collection of positive weights. Let
{Hj};c; be a sequence of Hilbert spaces, T,U € GB(H) and A; €
B(H, Hj) for each j € J.Then the family Apy = {(Wj, Aj, vj)},c;
isa (7, U)-controlled K-g-fusion frame for H if there exist constants 0 <
A < B < oo such that

ANK*fII? < Y vP (N Pw,UF, A Pw,Tf) < B|f|*VfeH
jeJ
Definition 6 ([I1]). Let F : X — H be such that, for each h € H, the
mapping * — Pp(,)(h) is measurable (i.e. is weakly measurable) and
v : X — RT beameasurable function and let { K}, y be a collection of
Hilbert spaces. For each x € X, suppose that A, € B(F (z), K, ). Then
Arp = {(F(z),As,v(x))},cx iscalled a generalized continuous fusion

frame or a gc-fusion frame for H with respect to (X, p) and v, if there
exists 0 < A < B < oo such that

2
A||h||2s/v%)HAxPF(x)(h)H du < BI|h|)? Vh e H,
X

where Pp ;) is the orthogonal projection onto the subspace F (x). More-
over, Ar is called a tight gc-fusion frame for H if A = B and Parseval if
A = B = 1. If we have only the upper bound, we call A a Bessel gc-fusion
mapping for H.

Let K = @,cx K, and L2 (X, K) be the collection of all measurable
functions ¢ : X — K such that for each z € X, p(z) € K, and
[ le(z)||?dp < oo. Tt can be verified that L?(X, K) is a Hilbert
X

space with inner product given by

(6.0) = [ (9(2), ¢ () du
b's
for ¢, p € L?2(X, K).
Definition 7 ([I1]). Let Ap = {(F(x), Az, v(x))},cx be a Bessel

gc-fusion mapping for H. Then the gc-fusion pre-frame operator or synthesis
operator T,p : L2 (X, K) — H is defined by

(Tyr (o)) = [ v(2) (Priay i (o(2)),h),
X
where ¢ € L? (X, K) and h € H. Then T, r is a bounded linear mapping
and its adjoint operator is given by
T)p: H = L*(X,K), Tp(h) = {v(2) A Ppiay(h) }, s b € H,
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and Sgr = Ty Tg*F is called a gc-fusion frame operator. Thus, for each
fiheH,
(Sgr(f), h) = /“2(90) (Pr(oyMjAe Proy fr b))
X

The operator S, is bounded, self-adjoint, positive and invertible on H .

3. Continuous controlled K-g-fusion frame

In this section, a continuous version of controlled K-g-fusion frame for H
is presented. We expand some of the recent results on controlled K-g-fusion
frames to continuous controlled K-g-fusion frames.

Definition 8. Let K € B(H) and F : X — H be a mapping,
v : X — RT be a measurable function and { K, }, .y be a collection
of Hilbert spaces. For each x € X, suppose that A, € B(F(z), K;)
and T, U € GBT (H).Then Apy = {(F(z), Ay, v(2))},cx is called
a continuous (7, U )-controlled K-g-fusion frame for H with respect to
(X, n) and v, if

(i) for each f € H, the mapping z — Pp(,)(f) is measurable (i.e.
is weakly measurable ),

(73) there exist constants 0 < A < B < oo such that

AIK*f? < /v2<x> (A Py U fo Ay Py T 1) dpa
X
< B|f? 3)

forall f € H, where Pp(,) is the orthogonal projection onto the subspace
F (x).The constants A, B are called the frame bounds.

Furthermore,

(1) if only the last inequality of holds, then A7y is called a contin-

uous (T, U )-controlled K-g-fusion Bessel family for H,

(¢3) if T = Iy, then Apy is called a continuous (Ip, U )-controlled
K-g-fusion frame for H,

(t91) if T = U = Iy, then Ary is called a continuous K-g-fusion frame
for H,

(i) if K = Iy, then Ary is called a continuous (7, U )-controlled
g-fusion frame for H [17].

Remark 1. If the measure space X = N and p is the counting mea-
sure then a continuous (7', U )-controlled g-fusion frame will be the discrete
(T, U )-controlled g-fusion frame.
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Example 1. Let H = R? and {eq, e, e3} be the standard orthonor-
mal basis for H. Consider
B = {:CE]R?’ Dz <1},
Then it is a measure space equipped with the Lebesgue measure u. Suppose
{B1, Bg, B3} isapartition of B where pu(B1) > pu(B2) > u(Bsg) > 1.
Let H = { Wy, Wyo, W3}, where Wy =3pan {e1, es }, Wo=3pan {eo, e3}
and W3 = Span {e1, es }. Define
Wi if = € Bj,
F:B—-H by F(x)= (W, if 2 € By,
Wy if x € Bs,

and
1 if ¢ e By,
v:B — [0,00) by v(z)=2 if € By,
-1 if = € B3.

It is easy to verify that F' and v are measurable functions. For each = € B,
define the operators

Az)(f) = u(lBk)U’ o) en [ e I,

where k is such that x € By and K : H — H is defined by
K61 261,K62 :O,Keg = €3.

It is easy to verify that K*e; = ey, K*eqy = 0, K*e3 = egs.Now, for
any f € H, we have
2

=[{fre) I+ [(fres)|* < IFI2

3

> (fren) K" e

i=1
LetT(flquy f3):(5f174f255f3)andU(flaf?? f3):<f617 f;)f;))
be two operators on H.Then it is easy to verify that T, U € GBT (H)
and TU = UT. Now, for any f = ( f1, fo2, f3) € H, we have

/02($) (AMz)PpoyUf, AM(x)PpoyT [) dps

I f1* =
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This implies that
5 15
S22 [0 (2) (A @RV £ A (0)Pr(a T T ) dit
B
16 .
< — .
< D)5

Thus A7y is a continuous (7T, U )-controlled K-g-fusion frame for R3.

Proposition 1. Let Apy be a continuous (T, U )-controlled g-fusion
Bessel family for H with bound B. Then there exists a unique bounded linear
operator Sc : H — H such that

(Scfig) = [ 02 (@) (T Proy A A Pray U . 9) di
X
for all f, g € H.Furthermore, if Apy is a continuous (T, U )-controlled
K-g-fusion frame for H, then AK K* < Sc < Bly.

Proof. Proof of this proposition follows directly from Proposition 3.3 of
[17].

Furthermore, if Ay is a continuous (7T, U )-controlled K-g-fusion frame
for H then by it is easy to verify that AK K* < S¢ < BlIjy. 0

The operator defined in Proposition [1| is called the frame operator for
Ary.

Definition 9. Let A7y be a continuous (7', U )-controlled g-fusion Bessel
family for H.Then the bounded linear operator T¢ : L2 (X, K) — H de-
fined by

(Te®,g) = [ v3(2) (1" Priay AL A Prioy U £ 9) di
X
where for all f € H,

o = {v(:z:) (T* Pp (o) Af Ay Py U )2 f}xeX

and g € H, is called the synthesis operator. Its adjoint operator, described
by

Tog = {v(x) (T* P o) AJ Ao Pray U)? 9}

is called the analysis operator.

:/lceX7

Next we will see that continuous controlled g-fusion Bessel families for H
become continuous controlled g-fusion frames for H under some sufficient
conditions.
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Theorem 6. Let the families Ary = {(F (), Az, v(z))},cx and
I'ry = {(F(z), Teyv(x))},ex betwo continuous (T, U )-controlled g-
fusion Bessel families for H with bounds B and D, respectively. Suppose
that Tc and T/, are their synthesis operators such that T, TZ = K *. Then
Ary and Try are a continuous (T, U )-controlled K-g-fusion frame and
a continuous (T, U )-controlled K *-g-fusion frame for H, respectively.

Proof. For each f € H, we have
KIS = (K" f K )2 = (T, (T8) K f)°
<Nz () K £ |)°

:/ 2) ( Ay Py U fy Ay Py T f ) dpty %
X

/7)2(33) (Yo Pp(o ) UK* f, Lo PryTK* f) dpy

X
<DIKFI? [ 02 (2) (A Prioy UL A Pray TF ) di
X
élHK*fH2</ 2) {(Ae Pr(y U fo Ao Pr(oyT ) d
D = F( ) F( M-
X

This shows that A7y is a continuous (7', U )-controlled K-g-fusion frame
for H with bounds 1/D and B.Similarly, it can be shown that I'ry is a
continuous (7T, U )-controlled K *-g-fusion frame for H. O

In the following theorem, we will see that any continuous controlled K-g-
fusion frame is a continuous K -g-fusion frame and conversely any continuous
K-g-fusion frame is a continuous controlled K-g-fusion frame under some
sufficient conditions.

Theorem 7. Let T,U € GBY(H) and SgpT = T Syp.If the op-
erator K commutes with T and U, then Ary is a continuous (T, U )-
controlled K -g-fusion frame for H if and only if Ay is a continuous K -g-
fusion frame for H, where Syp is the continuous g-fusion frame operator

defined by

(Syr f. f) :/v2<x>< oy A2 As P £ f) dpias f € H.
X

Proof. First we suppose that Ary is a continuous K-g-fusion frame for
H with bounds A and B.Then, for each f € H, we have

ANKf|? < /v2<x> | Au Proy £1|” die < B S

X
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Now, according to Lemma 3.10 of [3], we can deduce that
mm'AKK* < TS;pU < MM BlIy,

where m, m’ and M, M’ are positive constants. Then for each f € H, we
have

mm' A || K*f||* < /UQ(x)<TPF( VAS Ay Pro U £, f) dpa
X
MM'B| |2

IN

This shows that

mm! A K*f||? < /v2<x> (Ao Prioy U fy Ao Prioy T 1) dps
X
< MM'B||f|>.

Hence Ary is a continuous (7', U )-controlled K-g-fusion frame for H.

Conversely, suppose that Apy is a continuous (7', U )-controlled K-g-
fusion frame for H with bounds A and B.Now, for each f € H, we have

A|K*fI?=A H(TU)1/2(TU)71/2K*fH2
- 4zv ”2K*<TU>*/2fH2

<c/ A oPr () U(TU) Y2 f, AP () (TU)*1/2f>duI

= C’/UQ(:::) <A P UY2T=1/2 7, AIPF(x)T1/2U_1/2f>dux
X

I
Q

/v2 *1/2T1/2Pp( VAL A, Pr, )U1/2T71/2f f>d,uac

X
<U 1/27“1/2 Ul/QT_l/Zf f> <SgFf7f>

= C [ v (0) (Proy AL A Prion £ 1) din
X
where C' = H( Ut/ 2H . This implies that
A * 2 /
—— |K < A, P dptg.
oy 1 S [0 @) A e £

X
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On the other hand, it is easy to verify that
[ o2 @) 182 Prgar £ e

- ((TU)=2(TU) 2 Sy0 £ F )
= ((TU)Y 25,0 1, (TU) /2 1)
= (Syr (TU)(TU) V2 £ (TU)TY2F )
= (TS,rU(TU) "2 f (TU) T2 )
= (Se(TU)=1 2 g (TU)T2f)

< BTy s

Thus, Ary is a continuous K-g-fusion frame for H.This completes the
proof. O

In the next two theorems, we will construct a continuous controlled g-
fusion frame of new type from a given continuous controlled K-g-fusion
frame by using an invertible bounded linear operator.

Theorem 8. Let Ary be a continuous (T, U)-controlled K-g-fusion
frame for H with bounds A, B and V € B(H) be an invertible operator
on H such that V* commutes with T and U. Then the family given by
I'ry = {(VF(xz), Ay Pp(yV* v(x)) }xGX is a continuous (T, U)-
controlled VKV *-g-fusion frame for H.

Proof. Since Pp,\V* = PF( yV*Pyp(g) forall o € X, the map-

ping f = Pyr(.)f, [ € H is weakly measurable. Now, for each f € H,
using Theorem [5) I7 We have

/’1)2(1,')<A$PF( )V PVF UfAPF( )V PVF Tf>d,u¢c

/v2(x) (A Pe(o) VU f, Ay Pe (o) VT f) dptg
X
‘/zﬁ ) (Ae Pp(o ) UV f, Ny Pp(o) TV [) dpe
X

< BVELI? < BIVIPIFIP
On the other hand, for each f € H, we get

A

WII(VKV )

|[VE*V*f|?

E
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<SA|K*VEF®
) (A Ppoy UV f, Ay Ppoy TV f) dpiy

X
= /UQ(JJ) <AxPF($)V*Uf, Ampp(x)V*Tf>dux
X
/UQ ) { AePr o)V * Py g (o)U f, AaPr () V Py p ()T f ) dpta.
X

Thus I'ry is a continuous (77, U )-controlled V' K V *-g-fusion frame for H
with bounds A/ ||V ||? and B||V ||2. O

Theorem 9. Let V. € B(H) be an invertible operator such that (V ~1)*
commutes with T and U. Let Ty = { (V F (), Ay Py V*, v(x)) }xeX
be a continuous (T, U)-controlled K-g-fusion frame for H, for some K €
B(H). Then Ary is a continuous (T, U )-controlled V =1 K V-g-fusion
frame for H.

Proof. Since I'ry is a continuous (7', U )-controlled K-g-fusion frame for
H, for each f € H, there exist constants A, B > 0 such that

AK*f?
g/UQ(a:)<AxPF( WPy p (o U, AP (\V Py p ()T ) dpte

b'e
< B|fII*. (4)
Now, for each f € H, using Theorem [5 we have

A
2

H (V- IKV)® f” |veE*(v-1) £

V2
< vy

< [0 @) (AaPr) VU (V) £ MPr) VT (V) £ s
v2(x)<A$PF(x)v*(V*1)*Uf, AmPF(I)V*(V’l)*Tf>d,uI

v (2) (Aa Pp(o)U fo Ao Py T f ) dpta.
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On the other hand, for each f € H, we have

/v2( ) (Aa Pp(oy U f, Ao Pp ()T f ) dpia
X

=/02(m)<AzPF( WU (V) FAPe) VT (V) F ) dps
X

<B|(v) s < B IV IR oy @)

Thus, A7y is a continuous (7, U )-controlled V ~! K V-g-fusion frame for
H. O

In the following theorem, we will see that every continuous controlled g-
fusion frame is a continuous controlled K-g-fusion frame and the converse
is also true under some condition.

Theorem 10. Let K € B(H). Then

(1) every continuous (T, U )-controlled g-fusion frame is a continuous
(T, U)-controlled K -g-fusion frame,

(73) if R(K) is closed, every continuous (T, U )-controlled K-g-fusion
frame is a continuous (T, U )-controlled g-fusion frame for R (K ).

Proof. (i) Let Ary be a continuous (7T, U )-controlled g-fusion frame for
H with bounds A and B.Then, for each f € H, we have

A

HK||2”K FI? < AllfI?

< [ 2(0) (M Poio) U S AP TF) e < BISI
X

Hence Ary is a continuous (7, U )-controlled K-g-fusion frame for H with

A
bounds ——— and B.
I K[

(74) Let Ary be a continuous (7, U )-controlled K-g-fusion frame for H
with bounds A and B.Since R (K ) is closed, by Theorem (1} there exists
an operator KT € B(H) such that KK'f = f Vf € R(K).Then for
each f € R(K),

A *
e 1P < ALK )
g/ 2) (Ao Pr(ayU fo Au Pr(oy T F) dpa < BI|FII%

X
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Thus Ary is a continuous (7, U )-controlled g-fusion frame for R (K)

A
with bounds — and B. O
| K|

Theorem 11. Let K € B(H), T,U € GB*(H) and Ary be a
continuous (T, U )-controlled K-g-fusion frame for H with frame bounds
A B.If V € B(H) with R(V) C R(K), then Ary is a continuous
(T, U)-controlled V -g-fusion frame for H.

Proof. Since Apy is a continuous (T, U )-controlled K-g-fusion frame
for H, for each f € H, we have

AK*f)? s/v2<x><AxPF<x>Uf, AoPr (o) T f)dus < BI| £
X

Since R(V') € R(K ), by Theorem [2] there exists some A > 0 such that
VV* < XK K*. Thus, for each f € H, we have

A * *
SIS < AKf)?
< [ 0*(2) (A Pr() U S A Pr(ay T £) dua < B £
X
Hence A7y is a continuous (7', U )-controlled V-g-fusion frame for H. O

In the following theorem, we will construct a continuous controlled K-
g-fusion frame by using a continuous controlled g-fusion frame under some
sufficient conditions.

Theorem 12. Let K € B(H) be an invertible operator on H and Ay
be a continuous (T, U )-controlled g-fusion frame for H with frame bounds
A, B and S¢ be the frame operator. Suppose SCTIK* commutes with T

and U. Then Try = { (K Sg ' F (), Ay Pr(o)Sg ' K* v (2))}, s

a continuous (T, U )-controlled K-g-fusion frame for H with the corre-
sponding frame operator K Sz L=,

Proof. Let V = K S5 '. Then V is invertible on H and V* = S; 'K *.
It is easy to verify that

* — * 2
IK*fII? < B> ||Sg ' K* f||” Vf € H. (5)
Now, for each f € H, using Theorem [5, we have

/v%x)<AxPF<m>V*PVF(x>Uf, AePr o)V Py ()T f ) dps
X

= /vQ(:v) <A$Pp(x)V*Uf, AmPF(I)V*Tf> d,u,gc
X
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:/ﬁ(x)(AIPF(x)USC_lK*f, AxPF(m)TS(le*f>dux
X
B|Sz 12 1K™ f)?

IN

N

= FHKHZHJCW [using B~ Iy < S5' < AV g ).

On the other hand, for each f € H, we have

[ 02 @ APV Py U £, MaPr o)V Py p TS ) di

X

— /UQ(x)<AxPF(x)USC_1K*f, Ao PppyTSG K™ f) dpg
X

> A S KT 2 g 1K T oy @

Thus I'ry is a continuous (7T, U )-controlled K-g-fusion frame for H.
Furthermore, for each f € H, we have

/U2(x)<AxPF( WPy p(a U f, AoPr o)V Py p (T f) dpig
X

— /vz(x) (Ae Pr(o USG K* f, Ny Pp(y) TSG K™ f) dpg
X
= (ScSc 'K f, S5 'K*f) =(KS;'K*f, f).

This implies that K S5 LK * is the corresponding frame operator of I'pyr.
O

In the following theorem, we give a necessary and sufficient condition for
continuous controlled g-fusion Bessel family to be a continuous controlled
K-g-fusion frame with the help of quotient operator.

Theorem 13. Let K € B(H) and Ary be a continuous (T, U )-
controlled g-fusion Bessel family in H with frame operator Sc. Then Ary
is a continuous (T, U )-controlled K-g-fusion frame for H if and only if

the quotient operator [K*/Sém} 18 bounded.

Proof. First, we suppose that Apy is a continuous (7, U )-controlled
K-g-fusion frame for H with bounds A and B.Then for each f € H, we
have

AHK*fIIQS/ ) ( AsPr () U f. AuPr (o) T f it < B 12
X



56 PRASENJIT GHOSH AND TAPAS KUMAR SAMANTA

Thus, for each f € H, we have
2
ANK I <(Scf. f) = || s r |

Now, it is easy to verify that the quotient operator T : R (Sé/ 2) —

R(K*) defined by T (Sé/ 2 f) = K*f forevery f € H is well-defined
and bounded.
Conversely, suppose that the quotient operator [K */ Sé/ 2} is bounded.

Then, for each f € H, there exists some B > 0 such that
2
I f12 < B||s/°f| = B(Scf. f)

S KT )2 < B/v2<x> (As Pr(oy U fo Mo Py T F ) dts.
X

Thus A7y is a continuous (7T, U )-controlled K-g-fusion frame for H. O

Now, we establish that a quotient operator will be bounded if and only
if a continuous controlled K-g-fusion frame becomes continuous controlled
V K-g-fusion frame, for some V € B(H).

Theorem 14. Let K € B(H) and Ary be a continuous (T, U )-
controlled K -g-fusion frame for H with frame operator Sc. Let V. € B(H )
be an invertible operator on H such that V* commutes with T and U. Then
the following statements are equivalent.

(i) Try = { (VF(2), Ao Pp(\ V* v (x)) }xeX is a continuous
(T, U)-controlled V' K -g-fusion frame for H.
(ii) The quotient operator [(VKYk /Sé/2 V*} is bounded.

(131) The quotient operator [(VK)* / (VS V™ )1/2} is bounded.
Proof. (i) = (ii) Suppose 'ty is a continuous (7T, U )-controlled V' K-
g-fusion frame with bounds A and B.Then, for each f € H, we have
AIN(VE) fII”
< [ @) APV Py p U f MaPr o)V Py p (T £) dia

X
< B f]*

By Theorem [f] for each f € H, we have

/v2<x><AxPF<x)V*PVF<m>Uf, AePr o)V *Py ()T f ) dps
X
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(Ao Ppaoy VU f, Ao Pp(oy VT f) dpts

[
I

v (A Proy UV f, Ny Pp oy TV f) dpty

X
(ScV*f,V*f).
Thus, for each f € H, we have
* 2
Al(VE)" Fll
We define an operator

T 73(51/2 ) S R((VE)Y)
by

T (Sé“V*f) — (VK)*fVYfeH

It is easy verify that the quotient operator T' is well-defined and bounded

(1) = (uit) It is obvious.
(7it) = (4) Suppose that the quotient operator
[(VE)" / (VSeve)l2]

is bounded. Then, for each f € H, there exists B > 0 such that

2
I[(VE) fI* < B|[(VSev )/ 1.
Now, by @, for each f € H, we have

/vz(x)<AxPF( WPy p (U f, AaPr o)V Py p ()T f ) dpig
X

= (ScV*f,V*f) =

On the other hand, for each f € H, we have

/ () (AePp o)V * Py p U f, NePp(\V Py p ()T f ) dpa
X

/v%:) (Ao Priay UV f. Ay ooy TV ) dpia
X

< DU fI* < DIUIISI®

< (SeV*FV*f) = Hs(ljmv*fH?.

|(vsevarz s "= ey £,

Hence I'ry is a continuous (7T, U )-controlled V' K-g-fusion frame for H
This completes the proof

O

57
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4. Stability of a dual continuous controlled g-fusion frame

In frame theory, one of the most important problems is the stability of
a frame under some perturbation. Casazza and Chirstensen [6] have gener-
alized the Paley—Wiener perturbation theorem to perturbation of frame in
a Hilbert space. Ghosh and Samanta [14] discussed stability of a dual g-
fusion frame in a Hilbert space. In this section, we give an important result
on stability of perturbation of a continuous controlled K-g-fusion frame and
a dual continuous controlled g-fusion frame.

The following theorem provides a sufficient condition on a family Apy
to be a continuous controlled K-g-fusion frame in the presence of another
continuous controlled K-g-fusion frame.

Theorem 15. Let Apy be a continuous (T, U )-controlled g-fusion frame
for H and Sc be the frame operator. Assume that SCTl commutes with
T and U.Then Try = { (SCTlF(J:), AIPF(x)SCTl, v(z)) }xeX is a
continuous (T, U )-controlled g-fusion frame for H with the corresponding

frame operator SCTl.

Proof. Proof of this theorem directly follows from Theorem by putting
K = Iy. O

The family I'ry defined in Theorem [15]is called the canonical dual con-
tinuous (7, U )-controlled g-fusion frame of Ary. We now give the stability
result of the dual continuous controlled g-fusion frame.

Theorem 16. Let Ary and I'ry be two continuous (T, U )-controlled
g-fusion frames for H with bounds A1, B1 and Ao, Bo having their cor-
responding frame operators Sc and Sg:, respectively. Consider Arpy =
{(X(.’L‘), Ag, U(x>)}x€X and Oy = {(Y(l‘), Oz, U(x))}xeX as
the canonical dual continuous (T, U )-controlled g-fusion frames of Ary
and Uy, respectively. Assume that SC_1 and SCT,l commute with both T
and U. Then the following statements hold.

(i) If the condition

/UQ(Q;) (LU f, LyTf) — (M,UFf, MyT f)) dpy

X

< D |
holds for each f € H and for some D > 0 then for all f € H, we
have

/v2(x) (D Uf, D, Tf) — (E,Uf, E.TFf)) dps
X
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D 2
< =
< ol
where Ay Pp(yy = Ly, T'a Pg(z) = My and Ay Px(p) = Dy,
(ii) If for each f € H, there exists D > 0 such that

/v%) (T* (Pr o)Al Lo — Pa(oy T2 My) U fg) dua
X
< D112,

then

/1)2(3:) (T* (Px(s)ASDy — Py (0)©F Ex) Ufog) dpis

X
D 2
< — .
< 2l
Proof. (i) Since S¢ — S¢ is self-adjoint, we have
| S¢ = Ser || = S [ ((Sc — Scr) f, )]
= sup [(Scf, f)— (Scf. f)]
Ifll=1
= sup /112(1:)(<L$Uf, L, Tf) — (MUf, M,TFf))dp
I7I=115
< sup D|f|?* = D.
Ifll=1
Then
[Sct = Seit | < (1St I1Se = Ser I || Se ||
1 1 D
< —D— = ,
- AlDAQ A Ay (7)

Now, for each f € H, we have

/Uz(m) (Ae Px (i \U f, Ae Px ()T f ) dptee
X

02(2) { LaSG Py 1p()U fy LaSG Py p ()T f ) dita

N — S —

v3(2) (Aa Ppo)Sc ' U fo Ao Proy Sc ' T f ) dpa
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03 (2) (Mg Pr(o)USG f, Ao Pr(o) T SG ' f) dite

e

023 (2) (T* Pp (o) Af Ao Pr( ) USG f, SG ' F) dita

= (ScSg .85 f) =185 f)-

Similarly, it can be shown that

/vz( ) (©z Py (5)U f, Oz Py,

X

= (£, 8" 1)

Therefore, for each f € H, we have

f>d,uz

/v2(w) (D Uf, Do Tf) — (E,Uf, E.TFf)) dpty

X
= \<fa551f>—<f=55/1f>!=}<f7(5_ = Sc) £l
-1 2 2
<86t = St IFI2 < o IF112
Proof of (ii). In this case, we also find that
Sc — Ser || = S [ ((Sc = Scr) f. £
= sup [(Scf, f)—(Sc/ [, )]
Ifl=1
= s / e (T (Pp(ayAi Ly — P (o) TEM) UF, g) dpis

< sup D||f||2 D,ca,:v2(a:).

I fll=1
Then, for each f € H, we have
2 * * *
/U (2)(T* (Px(2)A5 Dy — Py (1107 E:) U f, g ) dpta

X
= \<(Sc‘1 = Sat) LY < NISet = 8kt

If -

[ fII?

- A A
This completes the proof.
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