Construction of continuous controlled *K*-*g*-fusion frames in Hilbert spaces

PRASENJIT GHOSH AND TAPAS KUMAR SAMANTA

ABSTRACT. We present the notion of continuous controlled K-g-fusion frame in a Hilbert space which is generalization of discrete controlled K-g-fusion frame. We discuss some characterizations of a continuous controlled K-g-fusion frame. A relationship between a continuous controlled K-g-fusion frame and a quotient operator has been studied. Finally, stability of a continuous controlled g-fusion frame has been described.

1. Introduction

In 1952, Duffin and Schaeffer [10] introduced frame for a Hilbert space to study some fundamental problems in non-harmonic Fourier series. Later on, after some decades, frame theory was popularized by Daubechies et al. [8].

A frame for a Hilbert space was defined as a sequence of basis-like elements in that Hilbert space. A sequence $\{f_i\}_{i=1}^{\infty} \subseteq H$ is called a frame for a separable Hilbert space $(H, \langle \cdot, \cdot \rangle)$, if there exist positive constants $0 < A \leq B < \infty$ such that

$$A || f ||^{2} \leq \sum_{i=1}^{\infty} |\langle f, f_{i} \rangle|^{2} \leq B || f ||^{2} \text{ for all } f \in H.$$

For the past few years many other types of frames were proposed such as K-frame [13], fusion frame [5], g-frame [26], g-fusion frame [16, 24] and K-g-fusion frame [1] etc. Ghosh and Samanta [15] have discussed generalized atomic subspaces for operators in Hilbert spaces.

Controlled frame is one of the newest generalizations of frame. Balaz et al. [4] introduced controlled frame to improve the numerical efficiency

https://doi.org/10.12697/ACUTM.2024.28.04

Corresponding author: Prasenjit Ghosh

Received October 6, 2023.

²⁰²⁰ Mathematics Subject Classification. 42C15, 46C07.

Key words and phrases. Frame, K-g-fusion frame, controlled frame, controlled K-g-fusion frame.

of interactive algorithms for inverting the frame operator. In recent times, several generalizations of controlled frame namely, controlled K-frame [21], controlled g-frame [22], controlled fusion frame [19], controlled g-fusion frame [25], controlled K-g-fusion frame [23] etc. have appeared. Continuous frames were proposed by Kaiser [18] and these were independently studied by Ali et al. [2]. At present, frame theory has been widely used in signal and image processing, filter bank theory, coding and communications, system modeling and so on.

In this paper, continuous controlled K-g-fusion frames in Hilbert spaces are studied and some of their properties are going to be established. Under some sufficient conditions, we will see that any continuous controlled K-gfusion frame is equivalent to a continuous K-g-fusion frame. A necessary and sufficient condition for a continuous controlled g-fusion Bessel family to be a continuous controlled K-g-fusion frame with the help of a quotient operator is established. At the end, we study some stability results of continuous controlled g-fusion frames.

Throughout this paper, H is considered to be a separable Hilbert space with associated inner product $\langle \cdot, \cdot \rangle$ and \mathbb{H} is the collection of all closed subspaces of H, I_H is the identity operator on H, $\mathcal{B}(H_1, H_2)$ is a collection of all bounded linear operators from H_1 to H_2 . In particular $\mathcal{B}(H)$ denotes the space of all bounded linear operators on H. For $S \in \mathcal{B}(H)$, we write $\mathcal{N}(S)$ and $\mathcal{R}(S)$ for the null space and the range of S, respectively. Also, $P_M \in \mathcal{B}(H)$ is the orthonormal projection onto a closed subspace $M \subset H$. $\mathcal{GB}(H)$ denotes the set of all bounded linear operators which have bounded inverse. If $S, R \in \mathcal{GB}(H)$, then R^*, R^{-1} and SR also belong to $\mathcal{GB}(H)$. Finally, $\mathcal{GB}^+(H)$ is the set of all positive operators in $\mathcal{GB}(H)$ and T, U are invertible operators in $\mathcal{GB}(H)$.

2. Preliminaries

In this section, we recall some necessary definitions and theorems.

Theorem 1 ([7]). Let H_1 , H_2 be two Hilbert spaces and $U : H_1 \to H_2$ be a bounded linear operator with closed range $\mathcal{R}(U)$. Then there exists a bounded linear operator $U^{\dagger} : H_2 \to H_1$ such that $UU^{\dagger}x = x$ for all $x \in \mathcal{R}(U)$.

The operator U^{\dagger} defined in Theorem 1 is called the pseudo-inverse of U.

Theorem 2 (Douglas' factorization theorem, [9]). Let $S, V \in \mathcal{B}(H)$. Then the following conditions are equivalent.

- (i) $\mathcal{R}(S) \subseteq \mathcal{R}(V)$.
- (ii) $SS^* \leq \lambda^2 VV^*$ for some $\lambda > 0$.
- (iii) S = VW for some bounded linear operator W on H.

Theorem 3 ([7]). The set S(H) of all self-adjoint operators on H is a partially ordered set with respect to the partial order \leq which is defined for $R, S \in S(H)$ by

$$R \leq S \Leftrightarrow \langle Rf, f \rangle \leq \langle Sf, f \rangle \quad \forall f \in H.$$

Definition 1 ([20]). A self-adjoint operator $U : H_1 \to H_1$ is called positive if $\langle Ux, x \rangle \geq 0$ for all $x \in H_1$. In notation, we can write $U \geq$ 0. A self-adjoint operator $V : H_1 \to H_1$ is called a square root of U if $V^2 = U$. If, in addition, $V \geq 0$, then V is called a positive square root of U and is denoted by $V = U^{1/2}$.

Theorem 4 ([20]). The positive square root $V : H_1 \to H_1$ of an arbitrary positive self-adjoint operator $U : H_1 \to H_1$ exists and is unique. Further, the operator V commutes with every bounded linear operator on H_1 which commutes with U.

In a complex Hilbert space, every bounded positive operator is self-adjoint and any two bounded positive operators commute with each other.

Theorem 5 ([12]). Let $M \subset H$ be a closed subspace and $T \in \mathcal{B}(H)$. Then $P_M T^* = P_M T^* P_{\overline{TM}}$. If T is a unitary operator (i.e $T^*T = I_H$), then $P_{\overline{TM}} T = T P_M$.

Definition 2. [24] Let $\{W_j\}_{j \in J}$ be a collection of closed subspaces of Hand $\{v_j\}_{j \in J}$ be a collection of positive weights, $\{H_j\}_{j \in J}$ be a sequence of Hilbert spaces and let $\Lambda_j \in \mathcal{B}(H, H_j)$ for each $j \in J$. Then $\Lambda =$ $\{(W_j, \Lambda_j, v_j)\}_{j \in J}$ is called a generalized fusion frame or a g-fusion frame for H with respect to $\{H_j\}_{j \in J}$ if there exist constants $0 < A \leq B < \infty$ such that

$$A \| f \|^{2} \leq \sum_{j \in J} v_{j}^{2} \| \Lambda_{j} P_{W_{j}}(f) \|^{2} \leq B \| f \|^{2} \quad \forall f \in H.$$
 (1)

The constants A and B are called the lower and upper bounds of the g-fusion frame, respectively. If A = B, then Λ is called a tight g-fusion frame and if A = B = 1, then we say Λ is a Parseval g-fusion frame. If Λ satisfies only the right inequality of (3) it is called a g-fusion Bessel sequence in H with a bound B.

Define the space

$$l^{2}\left(\left\{H_{j}\right\}_{j\in J}\right) = \left\{\left\{f_{j}\right\}_{j\in J} : f_{j} \in H_{j}, \sum_{j\in J} \|f_{j}\|^{2} < \infty\right\}$$

with inner product given by

$$\langle \, \{ \, f_{\,j} \, \}_{j \, \in \, J} \, , \, \{ \, g_{\,j} \, \}_{j \, \in \, J} \, \rangle \; = \; \sum_{j \, \in \, J} \, \langle \, f_{\,j} \, , \, g_{\,j} \, \rangle_{H_{j}} \, .$$

Clearly $l^2\left(\left\{H_j\right\}_{j\in J}\right)$ is a Hilbert space with the pointwise operations [1].

Definition 3 ([25]). Let $\{W_j\}_{j \in J}$ be a collection of closed subspaces of H and $\{v_j\}_{j \in J}$ be a collection of positive weights. Let $\{H_j\}_{j \in J}$ be a sequence of Hilbert spaces, $T, U \in \mathcal{GB}(H)$ and $\Lambda_j \in \mathcal{B}(H, H_j)$ for each $j \in J$. Then the family $\Lambda_{TU} = \{(W_j, \Lambda_j, v_j)\}_{j \in J}$ is a (T, U)-controlled g-fusion frame for H if there exist constants $0 < A \leq B < \infty$ such that

$$A \| f \|^{2} \leq \sum_{j \in J} v_{j}^{2} \left\langle \Lambda_{j} P_{W_{j}} U f, \Lambda_{j} P_{W_{j}} T f \right\rangle \leq B \| f \|^{2} \ \forall f \in H.$$
(2)

If A = B, then Λ_{TU} is called a (T, U)-controlled tight g-fusion frame and if A = B = 1, then we say that Λ_{TU} is a (T, U)-controlled Parseval g-fusion frame. If Λ_{TU} satisfies only the right inequality of (2), then it is called a (T, U)-controlled g-fusion Bessel sequence in H.

Definition 4. [25] Let Λ_{TU} be a (T, U)-controlled *g*-fusion Bessel sequence in H with a bound B. The synthesis operator $T_C : \mathcal{K}_{\Lambda_j} \to H$ is defined as

$$T_{C} \left(\left\{ v_{j} \left(T^{*} P_{W_{j}} \Lambda_{j}^{*} \Lambda_{j} P_{W_{j}} U \right)^{1/2} f \right\}_{j \in J} \right) \\ = \sum_{j \in J} v_{j}^{2} T^{*} P_{W_{j}} \Lambda_{j}^{*} \Lambda_{j} P_{W_{j}} U f$$

for all $f \in H$ and the analysis operator $T_C^* : H \to \mathcal{K}_{\Lambda_j}$ is given by

$$T_{C}^{*} f = \left\{ v_{j} \left(T^{*} P_{W_{j}} \Lambda_{j}^{*} \Lambda_{j} P_{W_{j}} U \right)^{1/2} f \right\}_{j \in J} \quad \forall f \in H,$$

where

$$\mathcal{K}_{\Lambda_{j}} = \left\{ \left\{ v_{j} \left(T^{*} P_{W_{j}} \Lambda_{j}^{*} \Lambda_{j} P_{W_{j}} U \right)^{1/2} f \right\}_{j \in J} : f \in H \right\}$$
$$\subset l^{2} \left(\left\{ H_{j} \right\}_{j \in J} \right).$$

The frame operator $S_C : H \to H$ is defined as follows:

$$S_C f = T_C T_C^* f = \sum_{j \in J} v_j^2 T^* P_{W_j} \Lambda_j^* \Lambda_j P_{W_j} U f \ \forall f \in H,$$

and it is easy to verify that

$$\langle S_C f, f \rangle = \sum_{j \in J} v_j^2 \langle \Lambda_j P_{W_j} U f, \Lambda_j P_{W_j} T f \rangle \quad \forall f \in H.$$

Furthermore, if Λ_{TU} is a (T, U)-controlled g-fusion frame with bounds A and B, then $AI_H \leq S_C \leq BI_H$. Hence, S_C is a bounded, invertible, self-adjoint and positive linear operator. It is easy to verify that

$$B^{-1}I_H \leq S_C^{-1} \leq A^{-1}I_H.$$

Definition 5 ([23]). Let $K \in \mathcal{B}(H)$ and $\{W_j\}_{j \in J}$ be a collection of closed subspaces of H and $\{v_j\}_{j \in J}$ be a collection of positive weights. Let $\{H_j\}_{j \in J}$ be a sequence of Hilbert spaces, $T, U \in \mathcal{GB}(H)$ and $\Lambda_j \in \mathcal{B}(H, H_j)$ for each $j \in J$. Then the family $\Lambda_{TU} = \{(W_j, \Lambda_j, v_j)\}_{j \in J}$ is a (T, U)-controlled K-g-fusion frame for H if there exist constants $0 < A \leq B < \infty$ such that

$$A \, \| \, K^* \, f \, \|^{\, 2} \, \leq \, \sum_{j \, \in \, J} \, v_j^{\, 2} \, \left\langle \, \Lambda_j \, P_{W_j} \, U \, f, \, \Lambda_j \, P_{W_j} \, T \, f \, \right\rangle \, \leq \, B \, \| \, f \, \|^{\, 2} \, \, \forall \, f \, \in \, H.$$

Definition 6 ([11]). Let $F : X \to \mathbb{H}$ be such that, for each $h \in H$, the mapping $x \to P_{F(x)}(h)$ is measurable (i.e. is weakly measurable) and $v : X \to \mathbb{R}^+$ be a measurable function and let $\{K_x\}_{x \in X}$ be a collection of Hilbert spaces. For each $x \in X$, suppose that $\Lambda_x \in \mathcal{B}(F(x), K_x)$. Then $\Lambda_F = \{(F(x), \Lambda_x, v(x))\}_{x \in X}$ is called a generalized continuous fusion frame or a *gc*-fusion frame for *H* with respect to (X, μ) and *v*, if there exists $0 < A \leq B < \infty$ such that

$$A \| h \|^{2} \leq \int_{X} v^{2}(x) \| \Lambda_{x} P_{F(x)}(h) \|^{2} d\mu \leq B \| h \|^{2} \quad \forall h \in H,$$

where $P_{F(x)}$ is the orthogonal projection onto the subspace F(x). Moreover, Λ_F is called a tight *gc*-fusion frame for H if A = B and Parseval if A = B = 1. If we have only the upper bound, we call Λ_F a Bessel *gc*-fusion mapping for H.

Let $K = \bigoplus_{x \in X} K_x$ and $L^2(X, K)$ be the collection of all measurable functions $\varphi : X \to K$ such that for each $x \in X, \varphi(x) \in K_x$ and $\int_X \|\varphi(x)\|^2 d\mu < \infty$. It can be verified that $L^2(X, K)$ is a Hilbert

space with inner product given by

$$\langle \phi, \varphi \rangle = \int_{X} \langle \phi(x), \varphi(x) \rangle d\mu$$

for $\phi, \varphi \in L^2(X, K)$.

Definition 7 ([11]). Let $\Lambda_F = \{ (F(x), \Lambda_x, v(x)) \}_{x \in X}$ be a Bessel *gc*-fusion mapping for *H*. Then the *gc*-fusion pre-frame operator or synthesis operator $T_{qF} : L^2(X, K) \to H$ is defined by

$$\langle T_{gF}(\varphi), h \rangle = \int_{X} v(x) \langle P_{F(x)} \Lambda_{x}^{*}(\varphi(x)), h \rangle,$$

where $\varphi \in L^2(X, K)$ and $h \in H$. Then T_{gF} is a bounded linear mapping and its adjoint operator is given by

$$T_{gF}^{*}: H \to L^{2}(X, K), \ T_{gF}^{*}(h) = \left\{ v(x) \Lambda_{x} P_{F(x)}(h) \right\}_{x \in X}, \ h \in H,$$

and $S_{gF} = T_{gF}T_{gF}^*$ is called a *gc*-fusion frame operator. Thus, for each $f, h \in H$,

$$\langle S_{gF}(f), h \rangle = \int_{X} v^{2}(x) \langle P_{F(x)} \Lambda_{x}^{*} \Lambda_{x} P_{F(x)} f, h \rangle.$$

The operator S_{gF} is bounded, self-adjoint, positive and invertible on H.

3. Continuous controlled *K*-*q*-fusion frame

In this section, a continuous version of controlled K-g-fusion frame for H is presented. We expand some of the recent results on controlled K-g-fusion frames to continuous controlled K-g-fusion frames.

Definition 8. Let $K \in \mathcal{B}(H)$ and $F : X \to \mathbb{H}$ be a mapping, $v : X \to \mathbb{R}^+$ be a measurable function and $\{K_x\}_{x \in X}$ be a collection of Hilbert spaces. For each $x \in X$, suppose that $\Lambda_x \in \mathcal{B}(F(x), K_x)$ and $T, U \in \mathcal{GB}^+(H)$. Then $\Lambda_{TU} = \{(F(x), \Lambda_x, v(x))\}_{x \in X}$ is called a continuous (T, U)-controlled K-g-fusion frame for H with respect to (X, μ) and v, if

- (i) for each $f \in H$, the mapping $x \to P_{F(x)}(f)$ is measurable (i.e. is weakly measurable),
- (*ii*) there exist constants $0 < A \leq B < \infty$ such that

$$A \| K^* f \|^2 \leq \int_X v^2(x) \left\langle \Lambda_x P_{F(x)} U f, \Lambda_x P_{F(x)} T f \right\rangle d\mu_x$$

$$\leq B \| f \|^2$$
(3)

for all $f \in H$, where $P_{F(x)}$ is the orthogonal projection onto the subspace F(x). The constants A, B are called the frame bounds.

Furthermore,

- (i) if only the last inequality of (3) holds, then Λ_{TU} is called a continuous (T, U)-controlled K-g-fusion Bessel family for H,
- (*ii*) if $T = I_H$, then Λ_{TU} is called a continuous (I_H, U) -controlled *K*-g-fusion frame for *H*,
- (*iii*) if $T = U = I_H$, then Λ_{TU} is called a continuous K-g-fusion frame for H,
- (*iv*) if $K = I_H$, then Λ_{TU} is called a continuous (T, U)-controlled g-fusion frame for H [17].

Remark 1. If the measure space $X = \mathbb{N}$ and μ is the counting measure then a continuous (T, U)-controlled g-fusion frame will be the discrete (T, U)-controlled g-fusion frame.

Example 1. Let $H = \mathbb{R}^3$ and $\{e_1, e_2, e_3\}$ be the standard orthonormal basis for H. Consider

$$\mathcal{B} = \left\{ x \in \mathbb{R}^3 : ||x|| \le 1 \right\}.$$

Then it is a measure space equipped with the Lebesgue measure μ . Suppose $\{B_1, B_2, B_3\}$ is a partition of \mathcal{B} where $\mu(B_1) \ge \mu(B_2) \ge \mu(B_3) > 1$. Let $\mathbb{H} = \{W_1, W_2, W_3\}$, where $W_1 = \overline{span} \{e_1, e_2\}, W_2 = \overline{span} \{e_2, e_3\}$ and $W_3 = \overline{span} \{e_1, e_3\}$. Define

$$F: \mathcal{B} \to \mathbb{H} \quad \text{by} \quad F(x) = \begin{cases} W_1 & \text{if} \quad x \in B_1, \\ W_2 & \text{if} \quad x \in B_2, \\ W_3 & \text{if} \quad x \in B_3, \end{cases}$$

and

$$v: \mathcal{B} \to [0, \infty) \quad \text{by} \quad v(x) = \begin{cases} 1 & \text{if} \quad x \in B_1, \\ 2 & \text{if} \quad x \in B_2, \\ -1 & \text{if} \quad x \in B_3. \end{cases}$$

It is easy to verify that F and v are measurable functions. For each $x \in \mathcal{B}$, define the operators

$$\Lambda(x)(f) = \frac{1}{\sqrt{\mu(B_k)}} \langle f, e_k \rangle e_k, \ f \in H,$$

where k is such that $x \in \mathcal{B}_k$ and $K : H \to H$ is defined by

$$Ke_1 = e_1, Ke_2 = 0, Ke_3 = e_3.$$

It is easy to verify that $K^*e_1 = e_1, K^*e_2 = 0, K^*e_3 = e_3$. Now, for any $f \in H$, we have

$$\|K^*f\|^2 = \left\|\sum_{i=1}^3 \langle f, e_k \rangle K^* e_k\right\|^2 = |\langle f, e_1 \rangle|^2 + |\langle f, e_3 \rangle|^2 \le \|f\|^2.$$

Let $T(f_1, f_2, f_3) = (5f_1, 4f_2, 5f_3)$ and $U(f_1, f_2, f_3) = \left(\frac{f_1}{6}, \frac{f_2}{3}, \frac{f_3}{6}\right)$ be two operators on *H*. Then it is easy to verify that $T, U \in \mathcal{GB}^+(H)$ and TU = UT. Now, for any $f = (f_1, f_2, f_3) \in H$, we have

$$\int_{\mathcal{B}} v^{2}(x) \left\langle \Lambda(x) P_{F(x)} U f, \Lambda(x) P_{F(x)} T f \right\rangle d\mu_{x}$$

$$= \sum_{i=1}^{3} \int_{\mathcal{B}_{i}} v^{2}(x) \left\langle \Lambda(x) P_{F(x)} U f, \Lambda(x) P_{F(x)} T f \right\rangle d\mu_{x}$$

$$= \frac{5}{6} f_{1}^{2} + \frac{16}{3} f_{2}^{2} + \frac{5}{6} f_{3}^{2}.$$

This implies that

$$\begin{aligned} \frac{5}{6} \left\| K^* f \right\|^2 &\leq \int_{\mathcal{B}} v^2 \left(x \right) \left\langle \Lambda \left(x \right) P_{F(x)} U f, \Lambda \left(x \right) P_{F(x)} T f \right\rangle d\mu_x \\ &\leq \frac{16}{3} \left\| f \right\|^2. \end{aligned}$$

Thus Λ_{TU} is a continuous (T, U)-controlled K-g-fusion frame for \mathbb{R}^3 .

Proposition 1. Let Λ_{TU} be a continuous (T, U)-controlled g-fusion Bessel family for H with bound B. Then there exists a unique bounded linear operator $S_C : H \to H$ such that

$$\langle S_C f, g \rangle = \int_X v^2(x) \langle T^* P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} U f, g \rangle d\mu_x$$

for all $f, g \in H$. Furthermore, if Λ_{TU} is a continuous (T, U)-controlled K-g-fusion frame for H, then $AKK^* \leq S_C \leq BI_H$.

Proof. Proof of this proposition follows directly from Proposition 3.3 of [17].

Furthermore, if Λ_{TU} is a continuous (T, U)-controlled K-g-fusion frame for H then by (3) it is easy to verify that $AKK^* \leq S_C \leq BI_H$. \Box

The operator defined in Proposition 1 is called the frame operator for Λ_{TU} .

Definition 9. Let Λ_{TU} be a continuous (T, U)-controlled *g*-fusion Bessel family for *H*. Then the bounded linear operator $T_C : L^2(X, K) \to H$ defined by

$$\langle T_C \Phi, g \rangle = \int_X v^2(x) \langle T^* P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} U f, g \rangle d\mu_x,$$

where for all $f \in H$,

$$\Phi = \left\{ v(x) \left(T^* P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} U \right)^{1/2} f \right\}_{x \in \mathcal{Y}}$$

and $g \in H$, is called the synthesis operator. Its adjoint operator, described by

$$T_{C}^{*}g = \left\{ v(x) \left(T^{*} P_{F(x)} \Lambda_{x}^{*} \Lambda_{x} P_{F(x)} U \right)^{1/2} g \right\}_{x \in X},$$

is called the analysis operator.

Next we will see that continuous controlled g-fusion Bessel families for H become continuous controlled g-fusion frames for H under some sufficient conditions.

Theorem 6. Let the families $\Lambda_{TU} = \{(F(x), \Lambda_x, v(x))\}_{x \in X}$ and $\Gamma_{TU} = \{(F(x), \Gamma_x, v(x))\}_{x \in X}$ be two continuous (T, U)-controlled *g*-fusion Bessel families for H with bounds B and D, respectively. Suppose that T_C and T'_C are their synthesis operators such that $T'_C T^*_C = K^*$. Then Λ_{TU} and Γ_{TU} are a continuous (T, U)-controlled K-g-fusion frame and a continuous (T, U)-controlled K^* -g-fusion frame for H, respectively.

Proof. For each $f \in H$, we have

$$\begin{split} \|K^*f\|^4 &= \langle K^*f, K^*f \rangle^2 = \langle T_C^*f, (T_C')^*K^*f \rangle^2 \\ &\leq \|T_C^*f\|^2 \| (T_C')^*K^*f \|^2 \\ &= \int_X v^2(x) \langle \Lambda_x P_{F(x)} Uf, \Lambda_x P_{F(x)} Tf \rangle d\mu_x \times \\ &\int_X v^2(x) \langle \Gamma_x P_{F(x)} UK^*f, \Gamma_x P_{F(x)} TK^*f \rangle d\mu_x \\ &\leq D \|K^*f\|^2 \int_X v^2(x) \langle \Lambda_x P_{F(x)} Uf, \Lambda_x P_{F(x)} Tf \rangle d\mu_x \\ &\Rightarrow \frac{1}{D} \|K^*f\|^2 \leq \int_X v^2(x) \langle \Lambda_x P_{F(x)} Uf, \Lambda_x P_{F(x)} Tf \rangle d\mu_x \end{split}$$

This shows that Λ_{TU} is a continuous (T, U)-controlled K-g-fusion frame for H with bounds 1/D and B. Similarly, it can be shown that Γ_{TU} is a continuous (T, U)-controlled K^* -g-fusion frame for H.

In the following theorem, we will see that any continuous controlled K-g-fusion frame is a continuous K-g-fusion frame and conversely any continuous K-g-fusion frame is a continuous controlled K-g-fusion frame under some sufficient conditions.

Theorem 7. Let $T, U \in \mathcal{GB}^+(H)$ and $S_{gF}T = TS_{gF}$. If the operator K commutes with T and U, then Λ_{TU} is a continuous (T, U)-controlled K-g-fusion frame for H if and only if Λ_{TU} is a continuous K-g-fusion frame for H, where S_{gF} is the continuous g-fusion frame operator defined by

$$\langle S_{gF}f, f \rangle = \int_{X} v^2(x) \langle P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)}f, f \rangle d\mu_x, f \in H.$$

Proof. First we suppose that Λ_{TU} is a continuous K-g-fusion frame for H with bounds A and B. Then, for each $f \in H$, we have

$$A \| K^* f \|^2 \le \int_X v^2 (x) \| \Lambda_x P_{F(x)} f \|^2 d\mu_x \le B \| f \|^2$$

Now, according to Lemma 3.10 of [3], we can deduce that

$$m m' A K K^* \leq T S_{gF} U \leq M M' B I_H,$$

where m, m' and M, M' are positive constants. Then for each $f \in H$, we have

$$m m' A \| K^* f \|^2 \leq \int_X v^2(x) \langle T P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} U f, f \rangle d\mu_x$$
$$\leq M M' B \| f \|^2.$$

This shows that

$$m m' A \| K^* f \|^2 \leq \int_X v^2(x) \left\langle \Lambda_x P_{F(x)} U f, \Lambda_x P_{F(x)} T f \right\rangle d\mu_x$$
$$\leq M M' B \| f \|^2.$$

Hence Λ_{TU} is a continuous (T, U)-controlled K-g-fusion frame for H.

Conversely, suppose that Λ_{TU} is a continuous (T, U)-controlled K-gfusion frame for H with bounds A and B. Now, for each $f \in H$, we have

$$\begin{aligned} A \| K^* f \|^2 &= A \left\| (TU)^{1/2} (TU)^{-1/2} K^* f \right\|^2 \\ &= A \left\| (TU)^{1/2} K^* (TU)^{-1/2} f \right\|^2 \\ &\leq C \int_X v^2 (x) \left\langle \Lambda_x P_{F(x)} U (TU)^{-1/2} f, \Lambda_x P_{F(x)} T (TU)^{-1/2} f \right\rangle d\mu_x \\ &= C \int_X v^2 (x) \left\langle \Lambda_x P_{F(x)} U^{1/2} T^{-1/2} f, \Lambda_x P_{F(x)} T^{1/2} U^{-1/2} f \right\rangle d\mu_x \\ &= C \int_X v^2 (x) \left\langle U^{-1/2} T^{1/2} P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} U^{1/2} T^{-1/2} f, f \right\rangle d\mu_x \\ &= C \left\langle U^{-1/2} T^{1/2} S_{gF} U^{1/2} T^{-1/2} f, f \right\rangle = C \left\langle S_{gF} f, f \right\rangle \\ &= C \int_X v^2 (x) \left\langle P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} f, f \right\rangle d\mu_x, \end{aligned}$$

where $C = \| (TU)^{1/2} \|^2$. This implies that

$$\frac{A}{\|(TU)^{1/2}\|^2} \|K^*f\|^2 \leq \int_X v^2(x) \|\Lambda_x P_{F(x)}f\|^2 d\mu_x.$$

On the other hand, it is easy to verify that

$$\int_{X} v^{2}(x) \|\Lambda_{x} P_{F(x)} f\|^{2} d\mu_{x}$$

$$= \left\langle (TU)^{-1/2} (TU)^{1/2} S_{gF} f, f \right\rangle$$

$$= \left\langle (TU)^{1/2} S_{gF} f, (TU)^{-1/2} f \right\rangle$$

$$= \left\langle S_{gF} (TU) (TU)^{-1/2} f, (TU)^{-1/2} f \right\rangle$$

$$= \left\langle TS_{gF} U (TU)^{-1/2} f, (TU)^{-1/2} f \right\rangle$$

$$= \left\langle S_{C} (TU)^{-1/2} f, (TU)^{-1/2} f \right\rangle$$

$$\leq B \| (TU)^{-1/2} \|^{2} \| f \|^{2}.$$

Thus, Λ_{TU} is a continuous *K*-*g*-fusion frame for *H*. This completes the proof.

In the next two theorems, we will construct a continuous controlled g-fusion frame of new type from a given continuous controlled K-g-fusion frame by using an invertible bounded linear operator.

Theorem 8. Let Λ_{TU} be a continuous (T, U)-controlled K-g-fusion frame for H with bounds A, B and $V \in \mathcal{B}(H)$ be an invertible operator on H such that V^* commutes with T and U. Then the family given by $\Gamma_{TU} = \{ (VF(x), \Lambda_x P_{F(x)} V^*, v(x)) \}_{x \in X}$ is a continuous (T, U)controlled $V K V^*$ -g-fusion frame for H.

Proof. Since $P_{F(x)}V^* = P_{F(x)}V^*P_{VF(x)}$ for all $x \in X$, the mapping $f \to P_{VF(x)}f$, $f \in H$ is weakly measurable. Now, for each $f \in H$, using Theorem 5, we have

$$\int_{X} v^{2}(x) \left\langle \Lambda_{x} P_{F(x)} V^{*} P_{VF(x)} U f, \Lambda_{x} P_{F(x)} V^{*} P_{VF(x)} T f \right\rangle d\mu_{x}$$

$$= \int_{X} v^{2}(x) \left\langle \Lambda_{x} P_{F(x)} V^{*} U f, \Lambda_{x} P_{F(x)} V^{*} T f \right\rangle d\mu_{x}$$

$$= \int_{X} v^{2}(x) \left\langle \Lambda_{x} P_{F(x)} U V^{*} f, \Lambda_{x} P_{F(x)} T V^{*} f \right\rangle d\mu_{x}$$

$$\leq B \|V^{*} f\|^{2} \leq B \|V\|^{2} \|f\|^{2}.$$

On the other hand, for each $f \in H$, we get

$$\frac{A}{\|V\|^{2}} \| (VKV^{*})^{*} f \|^{2} = \frac{A}{\|V\|^{2}} \| VK^{*}V^{*} f \|^{2}$$

$$\leq A \| K^* V^* f \|^2$$

$$= \int_X v^2(x) \langle \Lambda_x P_{F(x)} U V^* f, \Lambda_x P_{F(x)} T V^* f \rangle d\mu_x$$

$$= \int_X v^2(x) \langle \Lambda_x P_{F(x)} V^* U f, \Lambda_x P_{F(x)} V^* T f \rangle d\mu_x$$

$$= \int_X v^2(x) \langle \Lambda_x P_{F(x)} V^* P_{VF(x)} U f, \Lambda_x P_{F(x)} V^* P_{VF(x)} T f \rangle d\mu_x$$

Thus Γ_{TU} is a continuous (T, U)-controlled VKV^* -g-fusion frame for H with bounds $A / \|V\|^2$ and $B \|V\|^2$.

Theorem 9. Let $V \in \mathcal{B}(H)$ be an invertible operator such that $(V^{-1})^*$ commutes with T and U. Let $\Gamma_{TU} = \{ (VF(x), \Lambda_x P_{F(x)}V^*, v(x)) \}_{x \in X}$ be a continuous (T, U)-controlled K-g-fusion frame for H, for some $K \in \mathcal{B}(H)$. Then Λ_{TU} is a continuous (T, U)-controlled $V^{-1}KV$ -g-fusion frame for H.

Proof. Since Γ_{TU} is a continuous (T, U)-controlled K-g-fusion frame for H, for each $f \in H$, there exist constants A, B > 0 such that

$$A \| K^* f \|^2$$

$$\leq \int_X v^2(x) \left\langle \Lambda_x P_{F(x)} V^* P_{VF(x)} Uf, \Lambda_x P_{F(x)} V^* P_{VF(x)} Tf \right\rangle d\mu_x$$

$$\leq B \| f \|^2.$$
(4)

Now, for each $f \in H$, using Theorem 5, we have

$$\frac{A}{\|V\|^{2}} \left\| \left(V^{-1} K V \right)^{*} f \right\|^{2} = \frac{A}{\|V\|^{2}} \left\| V^{*} K^{*} (V^{-1})^{*} f \right\|^{2}
\leq A \left\| K^{*} (V^{-1})^{*} f \right\|^{2}
\leq \int_{X} v^{2} (x) \left\langle \Lambda_{x} P_{F(x)} V^{*} U (V^{-1})^{*} f, \Lambda_{x} P_{F(x)} V^{*} T (V^{-1})^{*} f \right\rangle d\mu_{x}
= \int_{X} v^{2} (x) \left\langle \Lambda_{x} P_{F(x)} V^{*} (V^{-1})^{*} U f, \Lambda_{x} P_{F(x)} V^{*} (V^{-1})^{*} T f \right\rangle d\mu_{x}
= \int_{X} v^{2} (x) \left\langle \Lambda_{x} P_{F(x)} U f, \Lambda_{x} P_{F(x)} T f \right\rangle d\mu_{x}.$$

52

On the other hand, for each $f \in H$, we have

$$\int_{X} v^{2}(x) \left\langle \Lambda_{x} P_{F(x)} U f, \Lambda_{x} P_{F(x)} T f \right\rangle d\mu_{x}$$

= $\int_{X} v^{2}(x) \left\langle \Lambda_{x} P_{F(x)} V^{*} U \left(V^{-1} \right)^{*} f, \Lambda_{x} P_{F(x)} V^{*} T \left(V^{-1} \right)^{*} f \right\rangle d\mu_{x}$
 $\leq B \left\| \left(V^{-1} \right)^{*} f \right\|^{2} \leq B \left\| V^{-1} \right\|^{2} \| f \|^{2} [by (4)].$

Thus, Λ_{TU} is a continuous (T, U)-controlled $V^{-1}KV$ -g-fusion frame for H.

In the following theorem, we will see that every continuous controlled g-fusion frame is a continuous controlled K-g-fusion frame and the converse is also true under some condition.

Theorem 10. Let $K \in \mathcal{B}(H)$. Then

- (i) every continuous (T, U)-controlled g-fusion frame is a continuous (T, U)-controlled K-g-fusion frame,
- (ii) if $\mathcal{R}(K)$ is closed, every continuous (T, U)-controlled K-g-fusion frame is a continuous (T, U)-controlled g-fusion frame for $\mathcal{R}(K)$.

Proof. (i) Let Λ_{TU} be a continuous (T, U)-controlled g-fusion frame for H with bounds A and B. Then, for each $f \in H$, we have

$$\frac{A}{\|K\|^{2}} \|K^{*}f\|^{2} \leq A \|f\|^{2}
\leq \int_{X} v^{2}(x) \langle \Lambda_{x} P_{F(x)} Uf, \Lambda_{x} P_{F(x)} Tf \rangle d\mu_{x} \leq B \|f\|^{2}.$$

Hence Λ_{TU} is a continuous (T, U)-controlled *K-g*-fusion frame for *H* with bounds $\frac{A}{\|K\|^2}$ and *B*.

(*ii*) Let Λ_{TU} be a continuous (T, U)-controlled K-g-fusion frame for H with bounds A and B. Since $\mathcal{R}(K)$ is closed, by Theorem 1, there exists an operator $K^{\dagger} \in \mathcal{B}(H)$ such that $KK^{\dagger}f = f \ \forall f \in \mathcal{R}(K)$. Then for each $f \in \mathcal{R}(K)$,

$$\frac{A}{\|K^{\dagger}\|^{2}} \|f\|^{2} \leq A \|K^{*}f\|^{2}
\leq \int_{X} v^{2}(x) \langle \Lambda_{x} P_{F(x)} U f, \Lambda_{x} P_{F(x)} T f \rangle d\mu_{x} \leq B \|f\|^{2}.$$

Thus Λ_{TU} is a continuous (T, U)-controlled *g*-fusion frame for $\mathcal{R}(K)$ with bounds $\frac{A}{\|K^{\dagger}\|^2}$ and *B*.

Theorem 11. Let $K \in \mathcal{B}(H)$, $T, U \in \mathcal{GB}^+(H)$ and Λ_{TU} be a continuous (T, U)-controlled K-g-fusion frame for H with frame bounds A, B. If $V \in \mathcal{B}(H)$ with $\mathcal{R}(V) \subset \mathcal{R}(K)$, then Λ_{TU} is a continuous (T, U)-controlled V-g-fusion frame for H.

Proof. Since Λ_{TU} is a continuous (T, U)-controlled K-g-fusion frame for H, for each $f \in H$, we have

$$A \| K^* f \|^2 \le \int_X v^2(x) \langle \Lambda_x P_{F(x)} U f, \Lambda_x P_{F(x)} T f \rangle d\mu_x \le B \| f \|^2.$$

Since $\mathcal{R}(V) \subset \mathcal{R}(K)$, by Theorem 2, there exists some $\lambda > 0$ such that $VV^* \leq \lambda KK^*$. Thus, for each $f \in H$, we have

$$\begin{aligned} &\frac{A}{\lambda} \| V^* f \|^2 \le A \| K^* f \|^2 \\ &\le \int_X v^2(x) \left\langle \Lambda_x P_{F(x)} U f, \Lambda_x P_{F(x)} T f \right\rangle d\mu_x \le B \| f \|^2 \end{aligned}$$

Hence Λ_{TU} is a continuous (T, U)-controlled V-g-fusion frame for H. \Box

In the following theorem, we will construct a continuous controlled Kg-fusion frame by using a continuous controlled g-fusion frame under some sufficient conditions.

Theorem 12. Let $K \in \mathcal{B}(H)$ be an invertible operator on H and Λ_{TU} be a continuous (T, U)-controlled g-fusion frame for H with frame bounds A, B and S_C be the frame operator. Suppose $S_C^{-1}K^*$ commutes with T and U. Then $\Gamma_{TU} = \left\{ \left(K S_C^{-1} F(x), \Lambda_x P_{F(x)} S_C^{-1} K^*, v(x) \right) \right\}_{x \in X}$ is a continuous (T, U)-controlled K-g-fusion frame for H with the corresponding frame operator $K S_C^{-1} K^*$.

Proof. Let $V = K S_C^{-1}$. Then V is invertible on H and $V^* = S_C^{-1} K^*$. It is easy to verify that

$$\|K^*f\|^2 \le B^2 \|S_C^{-1}K^*f\|^2 \quad \forall f \in H.$$
(5)

Now, for each $f \in H$, using Theorem 5, we have

$$\int_{X} v^{2}(x) \left\langle \Lambda_{x} P_{F(x)} V^{*} P_{VF(x)} U f, \Lambda_{x} P_{F(x)} V^{*} P_{VF(x)} T f \right\rangle d\mu_{x}$$
$$= \int_{X} v^{2}(x) \left\langle \Lambda_{x} P_{F(x)} V^{*} U f, \Lambda_{x} P_{F(x)} V^{*} T f \right\rangle d\mu_{x}$$

$$= \int_{X} v^{2}(x) \left\langle \Lambda_{x} P_{F(x)} U S_{C}^{-1} K^{*} f, \Lambda_{x} P_{F(x)} T S_{C}^{-1} K^{*} f \right\rangle d\mu_{x}$$

$$\leq B \| S_{C}^{-1} \|^{2} \| K^{*} f \|^{2}$$

$$\leq \frac{B}{A^{2}} \| K \|^{2} \| f \|^{2} [\text{ using } B^{-1} I_{H} \leq S_{C}^{-1} \leq A^{-1} I_{H}].$$

On the other hand, for each $f \in H$, we have

$$\int_{X} v^{2}(x) \left\langle \Lambda_{x} P_{F(x)} V^{*} P_{VF(x)} U f, \Lambda_{x} P_{F(x)} V^{*} P_{VF(x)} T f \right\rangle d\mu_{x}$$

$$= \int_{X} v^{2}(x) \left\langle \Lambda_{x} P_{F(x)} U S_{C}^{-1} K^{*} f, \Lambda_{x} P_{F(x)} T S_{C}^{-1} K^{*} f \right\rangle d\mu_{x}$$

$$\geq A \left\| S_{C}^{-1} K^{*} f \right\|^{2} \geq \frac{A}{B^{2}} \| K^{*} f \|^{2} \text{ [by (5)]}.$$

Thus Γ_{TU} is a continuous (T, U)-controlled K-g-fusion frame for H. Furthermore, for each $f \in H$, we have

$$\int_{X} v^{2}(x) \langle \Lambda_{x} P_{F(x)} V^{*} P_{VF(x)} U f, \Lambda_{x} P_{F(x)} V^{*} P_{VF(x)} T f \rangle d\mu_{x}$$

$$= \int_{X} v^{2}(x) \langle \Lambda_{x} P_{F(x)} U S_{C}^{-1} K^{*} f, \Lambda_{x} P_{F(x)} T S_{C}^{-1} K^{*} f \rangle d\mu_{x}$$

$$= \langle S_{C} S_{C}^{-1} K^{*} f, S_{C}^{-1} K^{*} f \rangle = \langle K S_{C}^{-1} K^{*} f, f \rangle.$$

This implies that $K S_C^{-1} K^*$ is the corresponding frame operator of Γ_{TU} .

In the following theorem, we give a necessary and sufficient condition for continuous controlled g-fusion Bessel family to be a continuous controlled K-g-fusion frame with the help of quotient operator.

Theorem 13. Let $K \in \mathcal{B}(H)$ and Λ_{TU} be a continuous (T, U)controlled g-fusion Bessel family in H with frame operator S_C . Then Λ_{TU} is a continuous (T, U)-controlled K-g-fusion frame for H if and only if the quotient operator $\left[K^* / S_C^{1/2}\right]$ is bounded.

Proof. First, we suppose that Λ_{TU} is a continuous (T, U)-controlled K-g-fusion frame for H with bounds A and B. Then for each $f \in H$, we have

$$A \| K^* f \|^2 \le \int_X v^2(x) \langle \Lambda_x P_{F(x)} U f, \Lambda_x P_{F(x)} T f \rangle d\mu_x \le B \| f \|^2.$$

Thus, for each $f \in H$, we have

$$A \| K^* f \|^2 \le \langle S_C f, f \rangle = \| S_C^{1/2} f \|^2.$$

Now, it is easy to verify that the quotient operator $T : \mathcal{R}\left(S_{C}^{1/2}\right) \to$ $\mathcal{R}(K^*)$ defined by $T\left(S_C^{1/2}f\right) = K^*f$ for every $f \in H$ is well-defined and bounded.

Conversely, suppose that the quotient operator $\left[K^*/S_C^{1/2}\right]$ is bounded. Then, for each $f \in H$, there exists some B > 0 such that

$$\|K^* f\|^2 \leq B \left\| S_C^{1/2} f \right\|^2 = B \left\langle S_C f, f \right\rangle$$

$$\Rightarrow \|K^* f\|^2 \leq B \int_X v^2(x) \left\langle \Lambda_x P_{F(x)} U f, \Lambda_x P_{F(x)} T f \right\rangle d\mu_x.$$

Thus Λ_{TU} is a continuous (T, U)-controlled K-g-fusion frame for H.

Now, we establish that a quotient operator will be bounded if and only if a continuous controlled K-g-fusion frame becomes continuous controlled V K-g-fusion frame, for some $V \in \mathcal{B}(H)$.

Theorem 14. Let $K \in \mathcal{B}(H)$ and Λ_{TU} be a continuous (T, U)controlled K-g-fusion frame for H with frame operator S_C . Let $V \in \mathcal{B}(H)$ be an invertible operator on H such that V^* commutes with T and U. Then the following statements are equivalent.

- (i) $\Gamma_{TU} = \left\{ \left(VF(x), \Lambda_x P_{F(x)} V^*, v(x) \right) \right\}_{x \in X}$ is a continuous (T, U)-controlled VK-g-fusion frame for H. (ii) The quotient operator $\left[(VK)^* / S_C^{1/2} V^* \right]$ is bounded.

(iii) The quotient operator
$$\left[(VK)^* / (VS_CV^*)^{1/2} \right]$$
 is bounded.

Proof. (i) \Rightarrow (ii) Suppose Γ_{TU} is a continuous (T, U)-controlled VKg-fusion frame with bounds A and B. Then, for each $f \in H$, we have

$$A \| (VK)^* f \|^2$$

$$\leq \int_X v^2(x) \langle \Lambda_x P_{F(x)} V^* P_{VF(x)} U f, \Lambda_x P_{F(x)} V^* P_{VF(x)} T f \rangle d\mu_x$$

$$\leq B \| f \|^2.$$

By Theorem 5, for each $f \in H$, we have

$$\int_{X} v^{2}(x) \left\langle \Lambda_{x} P_{F(x)} V^{*} P_{VF(x)} U f, \Lambda_{x} P_{F(x)} V^{*} P_{VF(x)} T f \right\rangle d\mu_{x}$$

$$= \int_{X} v^{2}(x) \left\langle \Lambda_{x} P_{F(x)} V^{*} U f, \Lambda_{x} P_{F(x)} V^{*} T f \right\rangle d\mu_{x}$$

$$= \int_{X} v^{2}(x) \left\langle \Lambda_{x} P_{F(x)} U V^{*} f, \Lambda_{x} P_{F(x)} T V^{*} f \right\rangle d\mu_{x}$$

$$= \left\langle S_{C} V^{*} f, V^{*} f \right\rangle.$$
(6)

Thus, for each $f \in H$, we have

$$A \| (VK)^* f \|^2 \le \langle S_C V^* f, V^* f \rangle = \left\| S_C^{1/2} V^* f \right\|^2.$$

We define an operator

$$T: \mathcal{R}\left(S_C^{1/2}V^*\right) \to \mathcal{R}((VK)^*)$$

by

$$T\left(S_C^{1/2}V^*f\right) = (VK)^*f \ \forall f \in H.$$

It is easy verify that the quotient operator T is well-defined and bounded. (*ii*) \Rightarrow (*iii*) It is obvious.

 $(iii) \Rightarrow (i)$ Suppose that the quotient operator

$$\left[(VK)^{*} / (VS_{C}V^{*})^{1/2} \right]$$

is bounded. Then, for each $f \in H$, there exists B > 0 such that

$$\| (VK)^* f \|^2 \le B \| (VS_CV^*)^{1/2} f \|^2.$$

Now, by (6), for each $f \in H$, we have

$$\int_{X} v^{2}(x) \left\langle \Lambda_{x} P_{F(x)} V^{*} P_{VF(x)} U f, \Lambda_{x} P_{F(x)} V^{*} P_{VF(x)} T f \right\rangle d\mu_{x}$$

= $\left\langle S_{C} V^{*} f, V^{*} f \right\rangle = \left\| (V S_{C} V^{*})^{1/2} f \right\|^{2} \ge \frac{1}{B} \| (V K)^{*} f \|^{2}$

On the other hand, for each $f \in H$, we have

$$\int_{X} v^{2}(x) \left\langle \Lambda_{x} P_{F(x)} V^{*} P_{VF(x)} U f, \Lambda_{x} P_{F(x)} V^{*} P_{VF(x)} T f \right\rangle d\mu_{x}$$

$$= \int_{X} v^{2}(x) \left\langle \Lambda_{x} P_{F(x)} U V^{*} f, \Lambda_{x} P_{F(x)} T V^{*} f \right\rangle d\mu_{x}$$

$$\leq D \| U^{*} f \|^{2} \leq D \| U \|^{2} \| f \|^{2}.$$

Hence Γ_{TU} is a continuous (T, U)-controlled VK-g-fusion frame for H. This completes the proof.

4. Stability of a dual continuous controlled *g*-fusion frame

In frame theory, one of the most important problems is the stability of a frame under some perturbation. Casazza and Chirstensen [6] have generalized the Paley–Wiener perturbation theorem to perturbation of frame in a Hilbert space. Ghosh and Samanta [14] discussed stability of a dual gfusion frame in a Hilbert space. In this section, we give an important result on stability of perturbation of a continuous controlled K-g-fusion frame and a dual continuous controlled g-fusion frame.

The following theorem provides a sufficient condition on a family Λ_{TU} to be a continuous controlled *K*-*g*-fusion frame in the presence of another continuous controlled *K*-*g*-fusion frame.

Theorem 15. Let Λ_{TU} be a continuous (T, U)-controlled g-fusion frame for H and S_C be the frame operator. Assume that S_C^{-1} commutes with T and U. Then $\Gamma_{TU} = \left\{ \left(S_C^{-1} F(x), \Lambda_x P_{F(x)} S_C^{-1}, v(x) \right) \right\}_{x \in X}$ is a continuous (T, U)-controlled g-fusion frame for H with the corresponding frame operator S_C^{-1} .

Proof. Proof of this theorem directly follows from Theorem 12, by putting $K = I_H$.

The family Γ_{TU} defined in Theorem 15 is called the canonical dual continuous (T, U)-controlled g-fusion frame of Λ_{TU} . We now give the stability result of the dual continuous controlled g-fusion frame.

Theorem 16. Let Λ_{TU} and Γ_{TU} be two continuous (T, U)-controlled g-fusion frames for H with bounds A_1, B_1 and A_2, B_2 having their corresponding frame operators S_C and $S_{C'}$, respectively. Consider $\Delta_{TU} =$ $\{(X(x), \Delta_x, v(x))\}_{x \in X}$ and $\Theta_{TU} = \{(Y(x), \Theta_x, v(x))\}_{x \in X}$ as the canonical dual continuous (T, U)-controlled g-fusion frames of Λ_{TU} and Γ_{TU} , respectively. Assume that S_C^{-1} and $S_{C'}^{-1}$ commute with both Tand U. Then the following statements hold.

(i) If the condition

$$\left| \int_{X} v^{2}(x) \left(\left\langle L_{x} U f, L_{x} T f \right\rangle - \left\langle M_{x} U f, M_{x} T f \right\rangle \right) d\mu_{x} \right| \\ \leq D \| f \|^{2}$$

holds for each $f \in H$ and for some D > 0 then for all $f \in H$, we have

$$\left| \int_{X} v^{2}(x) \left(\left\langle D_{x} U f, D_{x} T f \right\rangle - \left\langle E_{x} U f, E_{x} T f \right\rangle \right) d\mu_{x} \right|$$

58

$$\leq \frac{D}{A_1 A_2} \|f\|^2,$$
where $\Lambda_x P_{F(x)} = L_x$, $\Gamma_x P_{G(x)} = M_x$ and $\Delta_x P_{X(x)} = D_x$,
 $\Theta_x P_{Y(x)} = E_x.$
(ii) If for each $f \in H$, there exists $D > 0$ such that
$$\left| \int_X v^2(x) \left\langle T^* \left(P_{F(x)} \Lambda_x^* L_x - P_{G(x)} \Gamma_x^* M_x \right) Uf, g \right\rangle d\mu_x \right|$$

$$\leq D \|f\|^2,$$
then
$$\left| \int_X v^2(x) \left\langle T^* \left(P_{X(x)} \Delta_x^* D_x - P_{Y(x)} \Theta_x^* E_x \right) Uf, g \right\rangle d\mu_x \right|$$

$$\leq \frac{D}{A_1 A_2} \|f\|^2.$$

Proof. (i) Since $S_C - S_{C'}$ is self-adjoint, we have

$$\|S_{C} - S_{C'}\| = \sup_{\|f\|=1} |\langle (S_{C} - S_{C'})f, f\rangle|$$

= $\sup_{\|f\|=1} |\langle S_{C}f, f\rangle - \langle S_{C'}f, f\rangle|$
= $\sup_{\|f\|=1} \left| \int_{X} v^{2}(x) (\langle L_{x}Uf, L_{x}Tf\rangle - \langle M_{x}Uf, M_{x}Tf\rangle) d\mu_{x} \right|$
 $\leq \sup_{\|f\|=1} D \|f\|^{2} = D.$

Then

$$\|S_{C}^{-1} - S_{C'}^{-1}\| \leq \|S_{C}^{-1}\| \|S_{C} - S_{C'}\| \|S_{C'}^{-1}\|$$

$$\leq \frac{1}{A_{1}} D \frac{1}{A_{2}} = \frac{D}{A_{1}A_{2}}.$$
 (7)

Now, for each $f \in H$, we have

$$\int_{X} v^{2}(x) \left\langle \Delta_{x} P_{X(x)} U f, \Delta_{x} P_{X(x)} T f \right\rangle d\mu_{x}$$

$$= \int_{X} v^{2}(x) \left\langle L_{x} S_{C}^{-1} P_{S_{C}^{-1}F(x)} U f, L_{x} S_{C}^{-1} P_{S_{C}^{-1}F(x)} T f \right\rangle d\mu_{x}$$

$$= \int_{X} v^{2}(x) \left\langle \Lambda_{x} P_{F(x)} S_{C}^{-1} U f, \Lambda_{x} P_{F(x)} S_{C}^{-1} T f \right\rangle d\mu_{x}$$

$$= \int_{X} v^{2}(x) \left\langle \Lambda_{x} P_{F(x)} U S_{C}^{-1} f, \Lambda_{x} P_{F(x)} T S_{C}^{-1} f \right\rangle d\mu_{x}$$

$$= \int_{X} v^{2}(x) \left\langle T^{*} P_{F(x)} \Lambda_{x}^{*} \Lambda_{x} P_{F(x)} U S_{C}^{-1} f, S_{C}^{-1} f \right\rangle d\mu_{x}$$

$$= \left\langle S_{C} S_{C}^{-1} f, S_{C}^{-1} f \right\rangle = \left\langle f, S_{C}^{-1} f \right\rangle.$$

Similarly, it can be shown that

$$\int_{X} v^{2}(x) \left\langle \Theta_{x} P_{Y(x)} U f, \Theta_{x} P_{Y(x)} T f \right\rangle d\mu_{x}$$
$$= \left\langle f, S_{C'}^{-1} f \right\rangle.$$

Therefore, for each $f \in H$, we have

$$\left| \int_{X} v^{2}(x) \left(\langle D_{x} U f, D_{x} T f \rangle - \langle E_{x} U f, E_{x} T f \rangle \right) d\mu_{x} \right|$$

= $\left| \langle f, S_{C}^{-1} f \rangle - \langle f, S_{C'}^{-1} f \rangle \right| = \left| \langle f, \left(S_{C}^{-1} - S_{C'}^{-1} \right) f \rangle \right|$
 $\leq \left\| S_{C}^{-1} - S_{C'}^{-1} \right\| \| f \|^{2} \leq \frac{D}{A_{1} A_{2}} \| f \|^{2}.$

Proof of (ii). In this case, we also find that

$$\begin{split} \| S_{C} - S_{C'} \| &= \sup_{\|f\|=1} |\langle (S_{C} - S_{C'}) f, f \rangle| \\ &= \sup_{\|f\|=1} |\langle S_{C} f, f \rangle - \langle S_{C'} f, f \rangle| \\ &= \sup_{\|f\|=1} \left| \int_{X} c_{x} \langle T^{*} (P_{F(x)} \Lambda_{x}^{*} L_{x} - P_{G(x)} \Gamma_{x}^{*} M_{x}) Uf, g \rangle d\mu_{x} \\ &\leq \sup_{\|f\|=1} D \| f \|^{2} = D, c_{x} = v^{2} (x). \end{split}$$

Then, for each $f \in H$, we have

$$\begin{aligned} & \left| \int_{X} v^{2}(x) \left\langle T^{*} \left(P_{X(x)} \Delta_{x}^{*} D_{x} - P_{Y(x)} \Theta_{x}^{*} E_{x} \right) U f, g \right\rangle d\mu_{x} \right. \\ & = \left| \left\langle \left(S_{C}^{-1} - S_{C'}^{-1} \right) f, f \right\rangle \right| \leq \left\| S_{C}^{-1} - S_{C'}^{-1} \right\| \| f \|^{2} \\ & \leq \frac{D}{A_{1} A_{2}} \| f \|. \end{aligned}$$

This completes the proof.

60

Acknowledgements

The authors would like to thank the editor and the referees for their helpful suggestions and comments to improve this paper.

References

- R. Ahmadi, G. Rahimlou, V. Sadri, and R. Zarghami Farfar, Constructions of Kg fusion frames and their duals in Hilbert spaces, Bull. Transilv. Univ. Brasov. 13 (2020), 17–32. DOI
- [2] S. T. Ali, J. P. Antonie, and J. P. Gazeau, Continuous frames in Hilbert spaces, Ann. Phys. 222 (1993), 1–37. DOI
- [3] N. Assila, S. Kabbaj, and B. Moalige, Controlled K-fusion frame for Hilbert space, Moroccan J. Pure Appl. Anal. 7 (2021), 116–133. DOI
- [4] P. Balazs, J. P. Antonie, and A. Grybos, Weighted and controlled frames: mutual relationship and first numerical properties, Int. J. Wavelets Multiresolut. Inf. Process. 14 (2010), 109–132. DOI
- [5] P. Casazza and G. Kutyniok, Frames of subspaces, Cotemp. Math. 345 (2004), 87– 114.
- [6] P. Casazza and O. Christensen, Perturbation of operators and applications to frame theory, J. Fourier Anal. Appl. 3 (1997), 543–557. DOI
- [7] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhauser, 2008.
- [8] I. Daubechies, A. Grossmann, and Y. Mayer, *Painless nonorthogonal expansions*, J. Math. Phys. 27 (1986), 1271–1283. DOI
- R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space. Proc. Amer. Math. Soc. 17 (1966), 413–415.
- [10] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341–366. DOI
- [11] M. H. Faroughi, A. Rahimi, and R. Ahmadi, *GC-fusion frames*, Methods Funct. Anal. Topol. 16 (2010), 112–119.
- [12] P. Gavruta, On the duality of fusion frames, J. Math. Anal. Appl. 333 (2007), 871– 879. DOI
- [13] L. Gavruta, Frames for operator, Appl. Comput. Harmon. Anal. 32 (2012), 139–144. DOI
- [14] P. Ghosh and T. K. Samanta, Stability of dual g-fusion frame in Hilbert spaces, Methods Funct. Anal. Topol. 26 (2020), 227–240. DOI
- [15] P. Ghosh and T. K. Samanta, Generalized atomic subspaces for operators in Hilbert spaces, Math. Bohem. 147 (2022), 325–345. DOI
- [16] P. Ghosh and T. K. Samanta, Generalized fusion frame in tensor product of Hilbert spaces, J. Indian Math. Soc. 89 (2022), 58–71.
- [17] P. Ghosh and T. K. Samanta, Continuous controlled generalized fusion frames in Hilbert spaces, J. Indian Math. Soc. (to appear)
- [18] G. Kaiser, A Friendly Guide to Wavelets, Birkhauser, 1994.
- [19] A. Khosravi and K. Musazadeh, Controlled fusion frames, Methods Funct. Anal. Topol. 18 (2012), 256–265.
- [20] E. Kreyzig, Introductory Functional Analysis with Applications. Wiley, New York, 1989.
- [21] M. Nouri, A. Rahimi, and Sh. Najafizadeh, Controlled K-frames in Hilbert spaces, Int. J. Anal. Appl. 4 (2015), 39–50.

- [22] A. Rahimi and A. Fereydooni, Controlled g-frames and their g-multipliers in Hilbert spaces, Analele Stiintifice ale Univ. Ovidius Constanta, Ser. Mat. 21 (2013), 223–236. DOI
- [23] G. Rahimlou, V. Sadri and R. Ahmadi, Construction of controlled K-g-fusion frame in Hilbert spaces, U. P. B. Sci. Bull., Series A, 82 (2020) 111–120. URL
- [24] V. Sadri, Gh. Rahimlou, R. Ahmadi, and R. Zarghami Farfar, Constructions of gfusion frame of Hilbert spaces, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 23 (2020), 205015. DOI
- [25] H. Shakoory, R. Ahamadi, N. Behzadi, and S. Nami, (C, C')-controlled g-fusion frames, Iran. J. Math. Sci. 18 (2023), 179–191. DOI
- [26] W. Sun, *G-frames and G-Riesz bases*, J. Math. Anal. Appl. **322** (2006), 437–452. DOI

DEPARTMENT OF MATHEMATICS, BARWAN N. S. HIGH SCHOOL (HS), MURSHIDABAD, 742132, WEST BENGAL, INDIA

 $E\text{-}mail\ address:\ \texttt{prasenjitpuremath} \texttt{Qgmail.com}$

Department of Mathematics, Uluberia College, Uluberia, Howrah, 711315, West Bengal, India

E-mail address: mumpu_tapas5@yahoo.co.in

62