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Statistical Killing vector fields on the Hopf
hypersurfaces in the complex space forms

Esmaiel Abedi, Mohamad Ilmakchi, Nasibeh Moghannian,
and Najma Mosadegh

Abstract. Statistical Killing vector field is introduced and Hopf hyper-
surfaces of complex space forms with the condition of being structural
statistical Killing vector field are studied. It is shown that these hyper-
surfaces have at most three distinct constant principal curvatures.

1. Introduction

The geometry of statistical manifolds is in the intersection of some re-
search areas such as information geometry, affine differential geometry and
Hessian geometry. It has been shown that this branch of geometry has
emerged from the study of the geometric structure of the natural differential
on the manifolds of the probability distribution and includes a Riemannian
metric, which is defined by Fisher information and a one-parameter fam-
ily of symmetric connections, called statistical connections, dependent on
the Levi-Civita connection. That is an interesting relationship between two
types of connections.

In 1980, statistical structure was introduced and it has played an impor-
tant role in information geometry research. Then, Furuhata [3] surveyed
the hypersurfaces in the statistical manifolds, he presented the curvature
condition of a statistical manifold to accept a standard hypersurface as the
first step in the theory of statistical manifolds, after which he wrote about
submanifolds in statistical manifolds. Sasakian statistical manifolds were
studied by Furuhata et al. in [4], where a notion of Sasakian statistical
structure was introduced and a real hypersurface in holomorphic statistical
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manifold was given to accept such a structure. In addition, Milijevic [7]
discussed about statistical hypersurfaces with shape operators by one or two
constant eigenvalues. Moreover, in [8], she studied CR statistical submani-
fold of maximal CR-dimension with umbilical shape operator in holomorphic
statistical manifolds and stated an extension of results in the CR statistical
submanifolds in complex space forms.

The CR-submanifolds of complex manifolds, with particular emphasis
on CR-submanifolds of complex projective space were classified by Mirjana
and Masafumi [2]. One of the significant cases here is the creation of a link
between Riemannian and statistical manifolds, in order to generalize some
features and results found in Riemannian manifolds to statistical manifolds
under a few conditions.

In 2021, Deshmukh and Belova [10] studied Killing vector fields, the in-
filtration of unit Killing vector field on Riemannian manifolds, to show the
necessary and sufficient conditions for a hypersurface M to be isometric to
sphere.

In 1986, Kimura [6] showed that M is a homogeneous hypersurface if
and only if M has constant principal curvatures and he also obtained a
characterization of certain complex submanifolds in a complex projective
space CPn. Then Niebergall and Ryan [9] studied real hypersurfaces in
complex space forms and discussed about the number of principal curvatures
in these hypersurfaces. In 2006, Berndt and Diaz-Ramos [5] classified all of
the real hypersurfaces in the complex hyperbolic space with three distinct
constant principal curvatures. Then Chen and Maeda [1] collected all these
spaces in Theorems A and B, when they are Hopf hypersurfaces by constant
principal curvatures, and stated that these hypersurfaces are tubes of radius
r over a hyperplane CPn−1 where 0 < r < π

2 , totally geodesic CP k (1 ≤ k ≤
n − 2) where 0 < r < π

2 , complex hyperquadric CQn−1 where 0 < r < π
4 ,

CP 1×CP
n−1
2 where 0 < r < π

4 and n ≥ 5 is odd, complex Grassmann CG2,5

where 0 < r < π
4 and n = 9, Hermitian symmetric space SO(10)/U5 where

0 < r < π
4 and n = 15, in the complex projective space. Also they are tubes

of radius r over CHk (k = 0, n− 1) where 0 < r <∞, CHk (1 ≤ k ≤ n− 2)
where 0 < r < ∞, RHn where 0 < r < ∞ and a horosphere in CHn in the
complex hyperbolic space.

In recent years much more attention is paid to statistical structure not
only by applied mathematicians but also in other sciences such as physics
and computer science, because of interdisciplinary research.

In this paper, we introduce statistical Killing vector fields and we study the
statistical contact Hopf hypersurfaces in the complex space forms, such that
the structural vector field ξ is a statistical Killing vector field. We show that
these types of hypersurfaces have three distinct constant principal curvatures
in the non-flat complex space forms which are classified in references [5, 6]
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and [9]. Then, in a particular case, we discuss about these hypersurfaces in
the Euclidean space.

2. Preliminaries

Prior to presenting the main result, we recall and introduce some defini-
tions and lemmas which are used intensively in our study.

Let (M, g) be an n-dimensional Riemannian manifold, ∇ be a symmetric
connection onM and let Γ(TM) denote the sections of tangent bundle. The
torsion tensor of ∇ is defined by

T∇(X,Y ) = ∇XY −∇YX − [X,Y ] ,

for any X,Y ∈ Γ(TM).
A pair (∇, g) is called a statistical structure on M if

(∇Xg)(Y,Z) = (∇Y g)(X,Z)

holds for X,Y, Z ∈ Γ(TM). Then (M,∇, g) is called a statistical manifold.
The dual connection ∇∗ of ∇ is defined by

Xg(Y,Z) = g(∇XY,Z) + g(Y,∇∗
XZ),

for anyX,Y, Z ∈ Γ(TM). It is not difficult to see that if (∇, g) is a statistical
structure on M , so (∇∗, g) is as well. Let K be a tensor field of type (1, 2).
We define

KXY = ∇XY −∇g
XY, (1)

where KX is a self-adjoint operator, that is g(KXY,Z) = g(Y,KXZ) and
∇g is the Levi-Civita connection in which

∇g
XY =

1

2
(∇XY +∇∗

XY ).

Let (M̄, ḡ, J) be a complex manifold with the complex structure J , where
J2 = −1 and the Hermitian metric ḡ. Let (M, g) be a Riemannian submani-
fold of M̄ , that is g induces a metric on M . In addition, HxM = JTxM ∩
TxM is the holomorphic tangent space of M at x ∈M .

The submanifoldM of M̄ is called a CR-submanifold ifHxM has constant
dimension for any x ∈M , and the constant complex dimension is called the
CR-dimension of M .

The complex manifold (M, g) with Hermitian metric is a Kähler manifold
when ∇g

XJ = 0 for any X ∈ T (M).
From [2] we recall that the Riemannian curvature tensor for any X,Y, Z ∈

Γ(TM̄) is defined by

R̄g(X,Y )Z = ∇̄g
X∇̄g

Y Z − ∇̄g
Y ∇̄

g
XZ − ∇̄g

[X,Y ]Z. (2)
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Let R̄ be a curvature tensor. The sectional curvature of (M̄, ḡ) for Π =
span{X,Y } is defined by

k(X,Y ) =
ḡ(R̄(X,Y )Y,X)

ḡ(X,X)ḡ(Y, Y )− ḡ(X,Y )2
,

for any X,Y ∈ Γ(TM̄).
A Kähler manifold M̄ is called a complex space form, when, for any X ∈

Γ(TM̄), the holomorphic sectional curvature plans spanned by {X, JX} are
constant.

Let (M2n+1, g) be a Riemannian hypersurface of the complex space form
(M̄2n+2(k), ḡ, J), ∇g be the Levi-Civita connection of M2n+1, and ∇ be
a statistical connection; that is (M2n+1,∇, g) is a statistical hypersurface
of M̄2n+2(k). A quadruple (g, φ, ξ, η) is called an almost contact metric
structure on M2n+1 if ξ = −JN is the structural vector field, N is a local
unit normal vector field on the hypersurface, η is a 1-form on M2n+1, where
η(X) = g(X, ξ) and φ is a skew-symmetric tensor field, where (JX)⊤ = φX.
We clearly have

φ2X = −X + η(X)ξ,

so (M2n+1, g, φ, ξ, η) is called an almost contact manifold.
The hypersurface M2n+1 is called a Hopf hypersurface if the structural

vector field ξ is the eigenvector of A; that means, Aξ = αξ, where A is the
shape operator of M2n+1 and α ∈ C∞(M2n+1).

A vector field U on a Riemannian manifold (M, g) is called a Killing vector
field if we have LUg = 0, where LUg is the Lie-derivative of the metric g
with respect to U . We have

0 = (LUg)(X,Y )

= Ug(X,Y )− g(LUX,Y )− g(X,LUY )

= g(∇g
XU, Y ) + g(X,∇g

Y U). (3)

Let a skew-symmetric tensor field Ψ of type (1, 1) be defined by

Ψ(X,Y ) = g(∇g
XU, Y )− g(X,∇g

Y U).

Clearly, equation (3) is equivalent to

2g(∇g
XU, Y ) = 2g(ψX, Y ),

where

Ψ(X,Y ) = 2g(ψX, Y ).

Therefore, the existence of a Killing vector field on a manifold is equivalent
to

∇g
XU = ψX.
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Definition 1. Let (M2n+1,∇, g) be a statistical manifold. Then the
vector field U on M2n+1 is called a statistical Killing vector field when
∇XU = ψX for any X ∈M2n+1.

Clearly we have
∇g

XU = ψX −KUX, (4)

where X ∈ Tp(M
2n+1) and K is defined in (1).

We have the following Gauss and Wingarten formulas:

∇̄g
XY = ∇g

XY + h(X,Y ), (5)

∇̄g
XN = −AX +DXN, (6)

where D is a normal connection and h is the second fundamental form of
M2n+1. Furthermore, we have h(X,Y ) = g(AX,Y )N .

By taking the covariant derivative from both sides of JX = φX + η(X)N
and as this structure is Kählerian, we obtain

∇g
Xξ = φAX. (7)

Based on these relations, we have

∇̄g
X(JY ) = J∇̄g

XY = J(∇g
XY + h(X,Y ))

= φ(∇g
XY ) + η(∇g

XY )N + J(h(X,Y ))

= φ(∇g
XY ) + η(∇g

XY )N − g(AX,Y )ξ. (8)

On the other hand

∇̄g
X(JY ) = ∇̄g

X(φY + η(Y )N)

= ∇̄g
X(φY ) + ḡ(∇̄g

Xξ, Y )N + ḡ(ξ, ∇̄g
XY )N + η(Y )∇̄g

XN

= (∇)gX(φY ) + h(X,φY ) + ḡ(∇̄g
Xξ, Y )N + ḡ(ξ, ∇̄g

XY )N

+η(Y )(−AX +DXN). (9)

By comparing the tangential parts of (8) and (9) we have

φ(∇g
XY )− g(AX,Y )ξ = ∇g

X(φY )− η(Y )AX

= (∇g
Xφ)Y + φ(∇g

XY )− η(Y )AX.

Therefore,
(∇g

Xφ)Y = η(Y )AX − g(AY,X)ξ. (10)

If M2n+1 is a hypersurface from the complex space form M̄2n+2(k), the
following (well-known) Gauss equation is [2]

ḡ(R̄(X,Y )Z,W ) = g(R(X,Y )Z,W )− {g(AY,Z)g(AX,W )

−g(AX,Z)g(AY,W )},
where

R̄(X,Y )Z = k{ḡ(Y,Z)X − ḡ(X,Z)Y + ḡ(JY, Z)JX − ḡ(JX,Z)JY

−2ḡ(JX, Y )JZ},
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and k is a constant sectional curvature for X,Y, Z ∈ Γ(TM2n+1). We obtain
the Codazzi equation

g((∇g
XA)Y −∇g

YA)X,Z) = kg({ḡ(Y,Z)X − ḡ(X,Z)Y + ḡ(JY, Z)JX

−ḡ(JX,Z)JY − 2ḡ(JX, Y )JZ}, N), (11)

where N is a local unit normal vector field in M2n+1.
At the end of this section, we bring a lemma that is used to obtain the

important results.

Lemma 1 ([2]). If M2n+1 is a Hopf hypersurface from the complex space
form M̄2n+2(k) and if X ∈ ξ⊥ is an eigenvector of the shape operator A with
eigenvalue λ, then JX is an eigenvector of A with eigenvalue µ and we have
2k + αλ = µ(2λ− α).

3. The statistical hypersurfaces of complex space forms

We prove the following lemmas which are significant for the proof of the
main theorem.

Lemma 2. Let (M2n+1,∇) be a statistical Hopf hypersurface in the com-
plex space form M̄2n+2(k) and ξ be a statistical Killing vector field. Then
the curvature tensor

R(X,Y )ξ = Rg(X,Y )ξ+(∇XK)(Y, ξ)−(∇YK)(X, ξ)−K(∇XY, ξ)+K(∇YX, ξ)

holds for any X,Y ∈ Γ(TM).

Proof. By directly applying

∇Xξ = ∇g
Xξ +KXξ

in (2), we have

R(X,Y )ξ = ∇X(∇g
Y ξ +KY ξ)−∇Y (∇g

Xξ +KXξ)−∇g
[X,Y ]ξ −K[X,Y ]ξ

= Rg(X,Y )ξ + (∇XK)(Y, ξ)− (∇YK)(X, ξ)−K(∇XY, ξ)

+K(∇YX, ξ),

which finishes the proof. □

Remark 1. In the above Lemma, Rg(X,Y )ξ is the Riemannian curvature
tensor, where

Rg(X,Y )ξ = (∇g
Xψ)Y − (∇g

Y ψ)X − (∇g
XKξ)Y + (∇g

YKξ)X.

Lemma 3. Let (M2n+1,∇) be a statistical Hopf hypersurface in the com-
plex space form M̄2n+2(k) and ξ be a statistical Killing vector field. Then
Kξξ = 0.
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Proof. By applying (4) and (5), if we insert X = ξ, then

0 = ∇ξξ −Kξξ

= ψξ −Kξξ,

therefore, ψξ = Kξξ.
On the other hand, from the equations (4) and (7) we have

0 = g(φAX, ξ) = g(∇g
Xξ, ξ) = g(ψX −KξX, ξ),

hence
g(ψX, ξ) = g(KξX, ξ).

Since ψ is skew-symmetric, we have Kξξ = −ψξ. Therefore, Kξξ = 0. □

Lemma 4. Let (M2n+1,∇) be a statistical Hopf hypersurface in the com-
plex space form M̄2n+2(k). Then we have

trace∇ξKξ = 0.

Proof. Let {ei}2n+1
i=1 be a parallel frame field onM2n+1 such that the shape

operator A is diagonal on the frame field. Then, from (7) and Lemma 3, we
obtain

trace∇ξKξ = trace(∇g
ξKξ +Kξξ) = trace∇g

ξKξ

=
2n+1∑
i=1

g(∇g
ξKξei, ei) =

2n+1∑
i=1

g(∇g
ξ(−φAei + ψei), ei)

=

2n+1∑
i=1

−g((∇g
ξφA)ei, ei) + g((∇g

ξψ)ei, ei).

Considering that A is symmetric and φ,ψ are skew-symmetric, it is easy to
conclude that the above equation is zero. □

Lemma 5. Let (M2n+1,∇) be a statistical Hopf hypersurface in the com-
plex space form M̄2n+2(k). Then

|ψ|2 = |A|2 − α2 − |Kξ|2.

Proof. Let {ei}2n+1
i=1 be a parallel frame field on M2n+1, then we have

2n+1∑
i=1

g(φAei, φAei) =
2n+1∑
i=1

−g(φ2Aei, Aei)

=

2n+1∑
i=1

−g(−Aei + η(Aei)ξ, Aei)

= |A|2 − |Aξ|2

= |A|2 − α2.
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On the other hand,

2n+1∑
i=1

g(φAei, φAei) =

2n+1∑
i=1

g(ψei −Kξei, ψei −Kξei) = |ψ|2 + |Kξ|2.

Therefore, by comparing, we have

|ψ|2 = |A|2 − α2 − |Kξ|2.

□

Lemma 6. Let (M2n+1,∇) be a statistical Hopf hypersurface from Cn+1

and ξ be a structural vector field. Then we have the equation

Ric(ξ, ξ) =

n∑
i=1

α(λi + µi).

Proof. Let {ei, φei, ξ}ni=1 be an adopted frame field on M2n+1 in which
e1, . . . , en are principal directions, also the shape operator A on M2n+1

satisfies Aei = λiei, Aφei = µiφei and Aξ = αξ. If the ambient man-
ifold is Cn+1, from the Codazzi formula for X,Y ∈ T (M2n+1) we have
φ(∇g

XA)Y −φ(∇g
YA)X = 0. On the other hand, from the equations (7) and

(2), we have

Rg(X,Y )ξ = (∇g
Xφ)AY − (∇g

Y φ)AX + φ(∇g
XA)Y − φ(∇g

YA)X. (12)

Then, by taking into account the equations (10) and (12), the Ricci tensor
is given by

Ric(ξ, ξ) =

n∑
i=1

g(Rg(ei, ξ)ξ, ei)

=

n∑
i=1

g((∇eiφ)Aξ − (∇eiK)Aξ, ei)− g((∇ξφ)Aei − (∇ξK)Aei, ei)

+g(φ((∇eiA)ξ −KeiAξ), ei)− g(φ((∇ξA)ei −KξAei), ei)

=
n∑

i=1

η(Aξ)g(Aei, ei)− η(Aei)g(Aξ, ei)

=
n∑

i=1

α(λi + µi).

□

Proposition 1. Let (M2n+1,∇) be a statistical Hopf hypersurface in the
complex space form M̄2n+2(k). Let the structural vector field ξ be a statistical
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Killing vector field on M2n+1, and X ∈ ξ⊥ be an eigenvector of the shape
operator A, that is, AX = λX. Then Xα = ξλ = 0.

Proof. From(11) we obtain

∇X(AY )−A∇XY−∇Y (AX)+A∇YX = k{g(X, ξ)φY−g(Y, ξ)φX−2g(φX, Y )ξ}.
If we insert Y = ξ in the above equation, it yields

∇X(Aξ)−A∇Xξ +∇ξ(AX)−A∇ξX = −kφX. (13)

If we multiply both sides of (13) in X, we have

g(∇X(Aξ)−A∇Xξ +∇ξ(AX)−A∇ξX,X) = 0,

thus

g((Xα)ξ+αφAX,X)−g((ξλ)X+λ(∇ξX−KξX)−A(∇ξX−KξX), X) = 0,

and therefore ξλ = 0. Similarly, by multiplying both sides of (13) in ξ, we
have Xα = 0. □

Theorem 1. Let (M2n+1,∇) be a statistical Hopf hypersurface in the
complex space form M̄2n+2(k), where the structural vector field ξ is a statis-
tical Killing vector field. Then we have

2|Kξ|2 ≥ −(2n+ 1)k. (14)

Proof. Let {ei, φei, ξ}ni=1 be an adopted frame field on M2n+1. Now ap-
plying Lemma 2, Lemma 4 and Lemma 5, the Ricci tensor is computed as
follows:

Ric(ξ, ξ) =
n∑

i=1

g(Rg(ei, ξ)ξ, ei)

=
n∑

i=1

{g((∇g
eiψ)ξ, ei)− g((∇g

ξψ)ei, ei)− g((∇g
eiKξ)ξ, ei)

+g((∇g
ξKξ)ei, ei)}

= |ψ|2 − |Kξ|2

= |A|2 − α2 − 2|Kξ|2. (15)

Furthermore, from (11) and(12) we obtain the Ricci tensor

Ric(ξ, ξ) =

n∑
i=1

{k{ḡ(ei, ei)ḡ(ξ, ξ)− ḡ(ei, ξ)ḡ(ξ, ei) + ḡ(Jξ, ξ)ḡ(Jei, ei)

−ḡ(Jei, ξ)ḡ(Jξ, ei)− 2ḡ(Jei, ξ)ḡ(Jξ, ei)}
+{αg(Aei, ei)− g(Aei, ξ)g(Aξ, ei)}}

= (2n+ 3)k +
n∑

i=1

α(λi + µi)
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= (2n+ 1)k + 2
n∑

i=1

λiµi. (16)

Then, by comparing the coefficients of Ric(ξ, ξ) in (15) and (16), we arrive
at

|A|2 − α2 − 2|Kξ|2 = (2n+ 1)k + 2

n∑
i=1

λiµi,

and therefore
n∑

i=1

(λi − µi)
2 = 2|Kξ|2 + (2n+ 1)k,

so 2|Kξ|2 ≥ −(2n+ 1)k. □

Corollary 1. Let (M2n+1,∇) be a statistical Hopf hypersurface in the
complex space form M̄2n+2(k), where the vector field ξ is a statistical Killing
vector field. If the equality holds in (14), then (M2n+1,∇) has at most three
distinct constant principal curvatures.

Proof. If we have λi = µi, from Lemma 1 we obtain

λ2i − αλi − k = 0. (17)

Hence we have at most 3 eigenvalues. If we take the derivative from (17)
with respect to ξ, we get −(ξα)λi = 0. Because of λi ̸= 0, ξα = 0. From
Proposition 1 we deduce that α is a constant. Since α is a constant and the
eigenvalues of A span Tp(M

2n+1), the result is valid. It is worth noting that
these hypersurfaces are classified in references [5, 6, 9]. □

Corollary 2. Let (M2n+1,∇) be a statistical Hopf hypersurface of Cn+1,
and ξ be a statistical Killing vector field. If K(., ξ) = 0, then M2n+1 is either
a totally umbilical hypersurface or M2n+1 is a totally geodesic hypersurface.

Proof. If the ambient manifold is Cn+1 from Theorem 1, we have

0 ≤
n∑

i=1

(λi − µi)
2 = 2|Kξ|2.

Then, from [2], if the ambient manifold is a Euclidean space and M2n+1 has
two distinct constant principal curvatures, then one of them must be zero.
From (17), in the Euclidean space we have λi(λi − α) = 0, where we deduce
that λi = 0 or λi = α. Then we have one of the following.

1. When λi ̸= 0, then λi = α for any i = 1, 2, ..., n, hence the hypersur-
face is totally umbilical and isometric to a sphere.

2. When λi = 0 and α ̸= 0 for some i = 1, 2, ..., n, then the hypersurface
is isometric to a cylinder.

3. When λi = 0 and α = 0 for any i = 1, 2, ..., n, then the hypersurface
is totally geodesic.
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□

Let Pn(H) be a Hyperbolic projective space. Then we have the following
corollary.

Corollary 3. There exists no totally umbilical statistical Hopf hypersur-
face with the statistical Killing vector field ξ in the Pn(H) by the sectional
curvature k < −2

2n+1 | Kξ |2.
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