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On h-almost conformal η-Ricci-Bourguignon
solitons in a perfect fluid spacetime

Sampa Pahan

Abstract. The primary object of the paper is to study h-almost confor-
mal η-Ricci-Bourguignon soliton in an almost pseudo-symmetric Lorent-
zian Kähler spacetime manifold when some different curvature tensors
vanish identically. We have also explored the conditions under which
an h-almost conformal Ricci-Bourguignon soliton is steady, shrinking or
expanding in different perfect fluids such as stiff matter, dust fluid, dark
fluid and radiation fluid. We have observed in a perfect fluid spacetime
with h-almost conformal η-Ricci-Bourguignon soliton to be a manifold
of constant Riemannian curvature under some certain conditions. We
have gone on to refine the classification of the potential function with
respect to gradient h-almost conformal η-Ricci-Bourguignon soliton in
a perfect fluid spacetime with torse-forming vector field ξ. Finally, we
have developed an example of h-almost conformal η-Ricci-Bourguignon
soliton.

1. Introduction

In 1915, Albert Einstein enunciated in a seminal paper the concept of
general relativity which establishes the fundamental relationship between
the physics and the geometry of spacetimes. Spacetime symmetries are used
in the study of exact solutions of Einstein’s field equations of general rela-
tivity. A special subcategory of a pseudo Riemannian manifold, called the
Lorentzian manifold, plays a pivotal role in the study of general relativity.
The spacetime of general relativity and cosmology can be modeled as a con-
nected 4-dimensional time-oriented Lorentzian manifold with the Lorentzian
metric g having a signature (−,+,+,+). Lorentzian manifolds are called
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perfect fluid spacetimes if Ricci tensor is of the form

S = ag + bη ⊗ η, (1)

where a, b are scalar functions, η is a 1-form and g(X, ξ) = η(X) for all X,
and g(ξ, ξ) = −1.

A perfect fluid having no shear, stress, viscosity or heat conduction, can
be completely identified by its rest-frame mass density and isotropic pressure
and it is also characterized by an energy-momentum tensor T of type (0, 2)
which is of the form [16]:

T (X,Y ) = ρg(X,Y ) + (σ + ρ)η(X)η(Y ), (2)

where σ is the energy density, ρ is the isotropic pressure, η(X) = g(X, ξ)
is a 1-form such that g(ξ, ξ) = −1. If ρ = 0, the perfect fluid spacetime
will be a dust matter fluid [8]. The perfect fluid represents radiation fluid if
σ = 3p [8]; if ρ = −σ, then perfect fluid is known as dark energy era [8]. If
ρ = σ, then a perfect fluid is referred to as stiff matter. In [23], Zeldovich
introduced the equation of state of stiff matter fluid to explain a cold gas of
baryons and applied it to his cosmological model.

The Einstein’s field equations upon adding a cosmological constant gov-
erning the perfect fluid motion [16] can be defined as

κT (X,Y ) = S(X,Y ) + (α− r

2
)g(X,Y ), (3)

for any X,Y ∈ χ(M), where r is the scalar curvature of g, α is the cos-
mological constant, κ is the gravitational constant with κ ≈ 8πG, G is the
universal gravitational constant.

Using the equations (2) and (3), we have

S(X,Y ) = (κp− α+
r

2
)g(X,Y ) + κ(σ + p)η(X)η(Y ). (4)

Let (M4, g) be a perfect fluid spacetime satisfying (4). After contracting (4)
with g(ξ, ξ) = −1, we derive

r = 4α+ κ(σ − 3ρ). (5)

A non-flat n(> 2)-dimensional Riemannian manifold is said to be an al-
most pseudo-symmetric manifold [9] if its curvature tensor R satisfies the
condition

(∇VR)(X,Y, Z,W ) = [A(V ) +B(V )]R(X,Y, Z,W ) +A(X)R(V, Y, Z,W )

+A(Y )R(X,V, Z,W ) +A(Z)R(X,Y, V,W )

+A(W )R(X,Y, Z, V ), (6)

where A,B are two nonzero 1-forms defined by g(V, ς) = A(V ), B(V ) =
g(V, θ), where X,Y, Z, V,W ∈ χ(M). Here ς and θ are called the associated
vector fields corresponding to the 1-forms A and B respectively.
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The concept of a soliton flows from the idea of a ’solitary wave’, which
manifests itself when the dispersive and nonlinear effects of the medium of
translation cancel each other out. In mathematical terms, therefore, a soliton
is a particular solution of a set of nonlinear partial differential equations
that represent a system of superposed waves in a particular medium. In
that sense, a Ricci flow is a soliton for a Riemannian metric. The concept
of a Ricci flow was formulated in the early 1980s by R. Hamilton, who
was motivated by Eells and Sampson’s work on harmonic map heat flow
[12, 14]. Ricci flow is an evolution equation on a smooth manifold M with
a Riemannian metric g(t) defined as

∂

∂t
g(t) = −2S.

Ricci soliton, which is a natural generalization of an Einstein manifold, is
defined on a semi-Riemannian manifold (M, g) by

S +
1

2
£Y g = µg,

where £Y is the Lie derivative along the vector field Y , S is the Ricci tensor
of (M, g) and µ is a real constant. If Y = ∇f for some function f on M ,
the Ricci soliton transforms into a gradient Ricci soliton. A soliton becomes
shrinking, steady or expanding when µ > 0, µ = 0 or µ < 0, respectively.

Basu and Bhattacharyya [3] constructed the notion of conformal Ricci
soliton, defined as

£V g + 2S + [2µ− (p+
2

n
)]g = 0, (7)

where £V is the Lie derivative along the vector field V , p is a scalar non-
dynamical field (time dependent scalar field), µ is constant and n is the
dimension of the manifold.

In 1979, the idea of the Ricci-Bourguignon flow (or RB flow) as a gen-
eralization of Ricci flow was developed by Jean-Pierre Bourguignon [4] us-
ing some unpublished work of Lichnerowicz and a paper of Aubin [1]. The
Ricci-Bourguignon flow is an evolution equation for metrics on a Riemannian
manifold given by

∂

∂t
g(t) = −2(S − rΛg), (8)

where Λ ∈ R is a constant and r is the scalar curvature of the Riemannian
metric g. It should be observed that the right hand side of the evolution
equation (8) is of special interest for special values of Λ [11], in particular:
1) Λ = 1

2 , the Einstein tensor S − r
2g (Einstein soliton),

2) Λ = 1
n , the traceless Ricci tensor S − r

ng,

3) Λ = 1
2(n−1) , the Schouten tensor S − r

2(n−1)g (Schouten soliton),

4) Λ = 0, the Einstein tensor S (Ricci soliton).
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Dwivedi [11] introduced the concept of Ricci-Bourguignon solitons which
generalize Ricci solitons. In the paper, the author explained integral formu-
las for compact gradient Ricci-Bourguignon solitons and compact gradient
Ricci-Bourguignon almost solitons.

A Riemannian manifold (M, g) is called a Ricci-Bourguignon soliton (or
RB soliton) if there exists a smooth vector field V satisfying the equation

S +
1

2
£V g = (µ+ rΛ)g (9)

for some real constant µ and the Lie derivative £V g. Ricci-Bourguignon
soliton appears as a self-similar solution to Ricci-Bourguignon flow and often
arises as a limit of dilation of singularities in the Ricci-Bourguignon flow [5].
The Ricci-Bourguignon soliton is said to be shrinking, steady or expanding
if µ is positive, zero or negative, respectively.

If the vector field V is the gradient of a smooth function f , then g is called
a gradient Ricci-Bourguignon soliton and the equation (9) becomes

∇∇f + S = (µ+ rΛ)g. (10)

Proceeding from the identities (7) and (9) above, we will now introduce
new entities: (a) h-almost conformal Ricci-Bourguignon soliton which gen-
eralizes both conformal soliton and Ricci-Bourguignon soliton, and (b) h-
almost conformal η-Ricci-Bourguignon soliton which generalizes both con-
formal soliton and η-Ricci-Bourguignon soliton.

An n-dimensional complete Riemannian or pseudo-Riemannian manifold
(M, g) is said to be an h-almost conformal Ricci-Bourguignon soliton, de-
noted by (Mn, g, h, V, µ), if there exists a smooth vector field V satisfying
the equation

S +
h

2
£V g = (µ− 1

2
(p+

2

n
) + rΛ)g (11)

for some smooth functions h and µ and the Lie derivative £V g. The h-
almost conformal Ricci-Bourguignon soliton is said to be shrinking, steady
or expanding if µ is positive, zero or negative, respectively.

If the vector field V is the gradient of a smooth function f , then the soliton
equation becomes

h∇∇f + S = (µ− 1

2
(p+

2

n
) + rΛ)g, (12)

and the soliton is called an h-almost gradient conformal Ricci-Bourguignon
soliton.

An n-dimensional complete Riemannian or pseudo-Riemannian manifold
(M, g) is said to be an h-almost conformal η-Ricci-Bourguignon soliton, de-
noted by (Mn, g, h, ξ, µ, β), if there exists a smooth vector field V satisfying
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the equation

S +
h

2
£V g = (µ− 1

2
(p+

2

n
) + rΛ)g + βη ⊗ η, (13)

where h and µ are smooth functions, β is a real constant and η is a 1-form.
The h-almost conformal Ricci-Bourguignon soliton is said to be shrinking,
steady or expanding if µ is positive, zero or negative, respectively.

If we consider the soliton vector field as a gradient of a smooth function
f , then the soliton equation becomes

h∇∇f + S = (µ− 1

2
(p+

2

n
) + rΛ)g + βη ⊗ η, (14)

and the soliton is called a gradient h-almost conformal η-Ricci-Bourguignon
soliton.

In 2020, Siddiqi and Siddiqui [20] investigated the geometrical features
of a perfect fluid spacetime in terms of conformal Ricci soliton and confor-
mal η-Ricci soliton with torse-forming vector field ξ. Praveena et al. [19]
published their study on solitons of almost pseudo symmetric Kählerian
space-time manifold. In the paper they showed that solitons are steady,
expanding or shrinking under different relations of isotropic pressure, the
cosmological constant, energy density and gravitational constant. In 2022,
Azami [2] constructed a noncompact, complete nontrivial gradient h-Ricci-
Bourguignon soliton isometric to Euclidean space and also showed that a
compact nontrivial h-almost Ricci-Bourguignon soliton is isometric to a Eu-
clidean sphere under some certain conditions. Chaturvedi et al. [6] explored
η-Ricci-Yamabe solitons in a Bochner flat Lorentzian Kähler space-time
manifolds. Dey and Roy [10] have provided the ideas of some characteri-
zation of general relativistic spacetime with an η-Ricci-Bourguignon soliton.
Chaubey and Suh [7] have explored the properties of Fischer-Marsden con-
jecture and Ricci-Bourguignon solitons within the framework of generalized
Sasakian-space-forms with β-Kenmotsu structure.

Motivated by the above outcomes and explorations, we discover in this
paper the properties of perfect fluid spacetime if the Lorentzian metrics
are h-almost conformal η-Ricci-Bourguignon soliton and gradient h-almost
conformal η-Ricci-Bourguignon soliton.

The sections of this paper are ordered as follows: in Section 2, basic prop-
erties of a Lorentzian Kähler spacetime manifold are given. The next section
investigates cases where an h-almost conformal Ricci-Bourguignon soliton on
an almost pseudo symmetric Lorentzian Kähler spacetime manifold is steady,
shrinking or expanding; in different perfect fluids like stiff matter, dust fluid,
dark fluid and radiation fluid when the spacetime is quasi-conformally flat,
conharmonically flat, pseudo-projectively flat and W2-flat. In Section 4,
we find that a perfect fluid spacetime with an h-almost conformal η-Ricci-
Bourguignon soliton is a manifold of constant Riemannian curvature under
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the property Q ·P = 0 when ξ is a torse-forming vector field. Also, we evolve
the classification of the potential function of a gradient h-almost conformal
η-Ricci-Bourguignon soliton in a perfect fluid spacetime with torse-forming
vector field ξ. In the last section, we construct an example of an h-almost
conformal η-Ricci-Bourguignon soliton.

2. Basic properties of Lorentzian Kähler spacetime manifolds

An n-dimensional pseudo-Riemannian manifold (M, g) endowed with a
Lorentzian metric g is said to be a Lorentzian Kähler manifold if the following
conditions hold:

J2Z = −Z, g(JZ, JY ) = g(Z, Y ), (15)

(∇ZJ)(Y ) = 0, g(JX, Y ) = −g(X, JY ), (16)

where J is a (1, 1) tensor. We know that in a Kähler manifold the Riemann-
ian curvature tensor R and the Ricci tensor S fulfils the conditions:

R(JX, JY, Z,W ) = R(X,Y, Z,W ), (17)

S(JX, JY ) = S(X,Y ), S(JX, Y ) = −S(X, JY ). (18)

Let us assume {ei}1≤i≤4 to be an orthonormal frame field, that is g(ei, ej) =

εijδij , i, j ∈ 1, 2, 3, 4, with ε11 = −1, εii = −1, i ∈ (2, 3, 4), εij = 0, i, j ∈
1, 2, 3, 4, i 6= j. Let ξ =

∑n
i=1 ξ

iei, then we can write

− 1 = g(ξ, ξ) =
∑

1≤i,j≤4

ξiξjg(ei, ej) =

4∑
i=1

εiiξ
i2 (19)

and

η(ei) = g(ei, ξ) =
4∑
j=1

ξig(ei, ej) = εiiξ
i. (20)

3. Almost pseudo symmetric Lorentzian Kähler spacetime
manifolds

In this section, we will investigate h-almost conformal η-Ricci-Bourguignon
soliton of almost pseudo symmetric and some different curvature tensor in a
4-dimensional Lorentzian Kähler spacetime manifold (M4, g) whose timelike
velocity vector field is ξ. Now taking the place of the potential vector field
V = ξ, the equation (13) becomes

S(X,Y ) +
h

2
£ξg(X,Y ) = (µ− 1

2
(p+

2

n
) + rΛ)g(X,Y ) + βη(X)η(Y ). (21)

The following definitions will be useful to prove the main results in this
section.
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Definition 3.1 ([22]). A 4-dimensional Riemannian manifold (M, g) is
said to be quasi-conformally flat if its quasi-conformal curvature tensor

C?(X,Y )Z = a0R(X,Y )Z + a1[S(Y,Z)X − S(X,Z)Y + g(Y,Z)QX

−g(X,Z)QY ]− 1

4
(
a0
3

+ 2a1)r[g(Y,Z)X−g(X,Z)Y ],(22)

for all vector fields X,Y, Z and with a0, a1 being constants, vanishes identi-
cally.

Definition 3.2 ([15]). A 4-dimensional Riemannian manifold (M, g) is
said to be conharmonically flat if its conharmonic curvature tensor

L(X,Y )Z = R(X,Y )Z +
1

2
[S(X,Z)Y − S(Y,Z)X

+g(X,Z)QY − g(Y, Z)QX], (23)

for all vector fields X,Y, Z, vanishes identically.

Definition 3.3 ([18]). A 4-dimensional Riemannian manifold (M, g) is
said to be pseudo-projectively flat if its pseudo-projective curvature tensor

P?(X,Y )Z = a0R(X,Y )Z + a1[S(Y,Z)X − S(X,Z)Y ]

−r
4

(
a0
3

+ a1)[g(Y, Z)X − g(X,Z)Y ], (24)

for all vector fields X,Y, Z and with a0, a1 being constants, vanishes identi-
cally.

Definition 3.4 ([17]). A 4-dimensional Riemannian manifold (M, g) is
said to be W2-flat if its W2 curvature tensor

W2(X,Y )Z = R(X,Y )Z +
1

3
[g(X,Z)QY − g(Y,Z)QX], (25)

for all vector fields X,Y, Z, vanishes identically.

Now we prove our main theorems.

Theorem 3.5. In an almost pseudo quasi-conformally flat symmetric
Lorentzian Kähler spacetime manifold admitting Einstein field equation with
cosmological constant, the h-almost conformal Ricci-Bourguignon soliton
(g, ξ, h, µ,Λ) is

shrinking, if p > 1
2 [(κ(3ρ− σ)− 4α)( a02a1

− 4Λ + 1)− 1],

steady, if p = 1
2 [(κ(3ρ− σ)− 4α)( a02a1

− 4Λ + 1)− 1],

expanding, if p < 1
2 [(κ(3ρ− σ)− 4α)( a02a1

− 4Λ + 1)− 1].

Proof. Taking covariant derivative of the equation (17) we have

(∇VR)(X,Y, Z,W ) = (∇VR)(JX, JY, Z,W ). (26)
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Using (6) in the equation (26) we obtain

A(X)R(V, Y, Z,W ) +A(Y )R(X,V, Z,W )

= A(JX)R(V, JY, Z,W ) +A(JY )R(JX, V, Z,W ).
(27)

Using Definition 3.1 of quasi-conformally flat manifold, the equation (27)
gives

A(X)[− a1(S(Y,Z)g(V,W )− S(V,Z)g(Y,W )

+ g(Y,Z)S(V,W )− g(V,Z)S(Y,W ))

+
r

4
(
a0
3

+ 2a1)(g(Y, Z)g(V,W )− g(V,Z)g(Y,W ))]

+A(Y )[−a1(S(V,Z)g(X,W )− S(X,Z)g(V,W )

+ g(V,Z)S(X,W )− g(X,Z)S(V,W ))

+
r

4
(
a0
3

+ 2a1)(g(V,Z)g(X,W )− g(X,Z)g(V,W ))]

= A(JX)[−a1(S(JY, Z)g(V,W )− S(V,Z)g(JY,W )

+ g(JY, Z)S(V,W )− g(V,Z)S(JY,W ))

+
r

4
(
a0
3

+ 2a1)(g(JY, Z)g(V,W )− g(V,Z)g(JY,W ))]

+A(JY )[−a1(S(V,Z)g(JX,W )− S(JX,Z)g(V,W )

+ g(V,Z)S(JX,W )− g(JX,Z)S(V,W ))

+
r

4
(
a0
3

+ 2a1)(g(V,Z)g(JX,W )− g(JX,Z)g(V,W ))].

(28)

On contracting X = ς = ei, 1 ≤ i ≤ 4, in the equation (28) we derive

− 4a1[S(Y, Z)g(V,W )− S(V,Z)g(Y,W ) + g(Y, Z)S(V,W )

− g(V,Z)S(Y,W )] + r(
a0
3

+ 2a1)[g(Y, Z)g(V,W )− g(V,Z)g(Y,W )]

− 2a1[S(V,Z)g(Y,W )− S(Y,Z)g(V,W ) + g(V,Z)S(Y,W )

− g(Y, Z)S(V,W )] +
r

2
(
a0
3

+2a1)[g(V,Z)g(Y,W )−g(Y, Z)g(V,W )] = 0.

(29)

Taking V = W = ei, 1 ≤ i ≤ 4, we acquire

S(Y, Z) =
r

4
(
a0
2a1

+ 1)g(Y,Z). (30)

Using equation (21) in the equation (30), it follows that

[µ− 1

2
(p+

1

2
) + rΛ]g(Y,Z) + βη(Y )η(Z)− h

2
(£ξg)(Y, Z) =

r

4
g(Y,Z). (31)

Multiplying equation (31) by εii, putting Y = Z = ei, 1 ≤ i ≤ 4, and then
using equations (19) and (20), we attain

4µ− β = r(
a0
2a1
− 4Λ + 1) + 2(p+

1

2
) + hdivξ. (32)
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Putting Y = Z = ξ in (32), we get

−µ+ β = −r
4

(
a0
2a1

+ 1) + rΛ− 1

2
(p+

1

2
). (33)

Using equations (32) and (33), we have

β =
h

3
divξ (34)

and

µ =
h

3
divξ +

r

4
(
a0
2a1
− 4Λ + 1) +

1

2
(p+

1

2
). (35)

Again using equation (5), we obtain

µ =
h

3
divξ + (

4α+ κ(σ − 3ρ)

4
)(
a0
2a1
− 4Λ + 1) +

1

2
(p+

1

2
). (36)

Since for the h-almost conformal Ricci-Bourguignon soliton β = 0, the equa-
tion (36) becomes

µ = (
4α+ κ(σ − 3ρ)

4
)(
a0
2a1
− 4Λ + 1) +

1

2
(p+

1

2
).

Hence the theorem is proved. �

Corollary 3.6. In an almost pseudo quasi-conformally flat symmetric
Lorentzian Kähler spacetime manifold admitting Einstein field equation with
cosmological constant, the h-almost conformal Ricci-Bourguignon soliton
(g, ξ, h, µ,Λ) for stiff matter is

shrinking, if p > (κρ− 2α)( a02a1
− 4Λ + 1)− 1

2 ,

steady, if p = (κρ− 2α)( a02a1
− 4Λ + 1)− 1

2 ,

expanding, if p < (κρ− 2α)( a02a1
− 4Λ + 1)− 1

2 .

Corollary 3.7. In an almost pseudo quasi-conformally flat symmetric
Lorentzian Kähler spacetime manifold admitting Einstein field equation with
cosmological constant, the h-almost conformal Ricci-Bourguignon soliton
(g, ξ, h, µ,Λ) for the dark fluid is

shrinking, if p > 2(κρ− α)( a02a1
− 4Λ + 1)− 1

2 ,

steady, if p = 2(κρ− α)( a02a1
− 4Λ + 1)− 1

2 ,

expanding if p < 2(κρ− α)( a02a1
− 4Λ + 1)− 1

2 .

Corollary 3.8. In an almost pseudo quasi-conformally flat symmetric
Lorentzian Kähler spacetime manifold admitting Einstein field equation with
cosmological constant, the h-almost conformal Ricci-Bourguignon soliton
(g, ξ, h, µ,Λ) for the dust fluid is

shrinking, if (p+ 1
2) + 4α+σκ

2 ( a02a1
− 4Λ + 1) > 0,

steady, if (p+ 1
2) + 4α+σκ

2 ( a02a1
− 4Λ + 1) = 0,

expanding, if (p+ 1
2) + 4α+σκ

2 ( a02a1
− 4Λ + 1) < 0.
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Corollary 3.9. In an almost pseudo quasi-conformally flat symmetric
Lorentzian Kähler spacetime manifold admitting Einstein field equation with
cosmological constant, the h-almost conformal Ricci-Bourguignon soliton
(g, ξ, h, µ,Λ) for the radiation fluid is

shrinking, if (p+ 1
2) + 2α( a02a1

− 4Λ + 1) > 0,

steady, if (p+ 1
2) + 2α( a02a1

− 4Λ + 1) = 0,

expanding, if (p+ 1
2) + 2α( a02a1

− 4Λ + 1) < 0.

Theorem 3.10. In an almost pseudo conharmonically flat symmetric
Lorentzian Kähler spacetime manifold admitting Einstein field equation with
cosmological constant, the h-almost conformal Ricci-Bourguignon soliton
(g, ξ, h, µ,Λ) is

shrinking, if p > (1 + 2Λ)(4α+ κ(σ − 3ρ))− 1
2 ,

steady, if p = (1 + 2Λ)(4α+ κ(σ − 3ρ))− 1
2 ,

expanding, if p < (1 + 2Λ)(4α+ κ(σ − 3ρ))− 1
2 .

Proof. From Definition 3.2 of conharmonically flat manifold, the equation
(26) becomes

A(X)[− 1

2
(S(V,Z)g(Y,W )− S(Y,Z)g(V,W ) + g(V,Z)S(Y,W )

− g(Y,Z)S(V,W ))] +A(Y )[−1

2
(S(X,Z)g(V,W )

− S(V,Z)g(X,W ) + g(X,Z)S(V,W )− g(V,Z)S(X,W ))]

= A(JX)[−1

2
(S(V,Z)g(JY,W )− S(JY, Z)g(V,W )

+ g(V,Z)S(JY,W )− g(JY, Z)S(V,W ))]

+A(JY )[−1

2
(S(JX,Z)g(V,W )− S(V,Z)g(JX,W )

+ g(JX,Z)S(V,W )− g(V,Z)S(JX,W ))].

(37)

Putting X = ς = ei, 1 ≤ i ≤ 4, we get

− 2[(S(V,Z)g(Y,W )− S(Y,Z)g(V,W ) + g(V,Z)S(Y,W )

− g(Y,Z)S(V,W ))]− [(S(Y, Z)g(V,W )− S(V,Z)g(Y,W )

+ g(Y,Z)S(V,W )− g(V,Z)S(Y,W ))] = 0. (38)

On contracting V = W = ei, 1 ≤ i ≤ 4, in the equation (38) we obtain

S(Y, Z) = −r
2
g(Y,Z). (39)

Using equation (21) in the equation (39), it can be written as

[µ − 1

2
(p+

1

2
) + rΛ]g(Y, Z) + βη(Y )η(Z)
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− h

2
(£ξg)(Y, Z) = −r

2
g(Y,Z). (40)

Multiplying equation (40) by εii and putting Y = Z = ei 1 ≤ i ≤ 4, and
then using the equations (19) and (20) we get

4µ− β = −2r − 4rΛ + 2(p+
1

2
) + hdivξ. (41)

Putting Y = Z = ξ, we obtain

−µ+ β = rΛ +
r

2
− 1

2
(p+

1

2
). (42)

Using equations (41) and (42) we have

β =
h

3
divξ

and

µ =
h

3
divξ − r(Λ +

1

2
) +

1

2
(p+

1

2
).

Again using equation (5), the above equation can be written as

µ =
h

3
divξ − (4α+ κ(σ − 3ρ))(Λ +

1

2
) +

1

2
(p+

1

2
). (43)

Since for the h-almost conformal Ricci-Bourguignon soliton β = 0, the equa-
tion (43) becomes

µ = −(4α+ κ(σ − 3ρ))(Λ +
1

2
) +

1

2
(p+

1

2
). (44)

Hence the theorem issues from three different signs of µ.
�
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Corollary 3.11. In an almost pseudo conharmonically flat symmetric
Lorentzian Kähler spacetime manifold admitting Einstein field equation with
cosmological constant, the h-almost conformal Ricci-Bourguignon soliton
(g, ξ, h, µ,Λ) for stiff matter is

shrinking, if p > 4(12 + Λ)(2α− κρ)− 1
2 ,

steady, if p = 4(12 + Λ)(2α− κρ)− 1
2 ,

expanding, if p < 4(12 + Λ)(2α− κρ)− 1
2 .

Corollary 3.12. In an almost pseudo conharmonically flat symmetric
Lorentzian Kähler spacetime manifold admitting Einstein field equation with
cosmological constant, the h-almost conformal Ricci-Bourguignon soliton
(g, ξ, h, µ,Λ) for the dark fluid is

shrinking, if p > 8(12 + Λ)(α− κρ)− 1
2 ,

steady, if p = 8(12 + Λ)(α− κρ)− 1
2 ,

expanding, if p < 8(12 + Λ)(α− κρ)− 1
2 .

Corollary 3.13. In an almost pseudo conharmonically flat symmetric
Lorentzian Kähler spacetime manifold admitting Einstein field equation with
cosmological constant, the h-almost conformal Ricci-Bourguignon soliton
(g, ξ, h, µ,Λ) for the dust fluid is

shrinking, if p > 2(12 + Λ)(4α+ κσ)− 1
2 ,

steady, if p = 2(12 + Λ)(4α+ κσ)− 1
2 ,

expanding, if p < 2(12 + Λ)(4α+ κσ)− 1
2 .

Corollary 3.14. In an almost pseudo conharmonically flat symmetric
Lorentzian Kähler spacetime manifold admitting Einstein field equation with
cosmological constant, the h-almost conformal Ricci-Bourguignon soliton
(g, ξ, h, µ,Λ) for the radiation fluid is

shrinking, if p > 8α(12 + Λ)− 1
2 ,

steady, if p = 8α(12 + Λ)− 1
2 ,

expanding, if p < 8α(12 + Λ)− 1
2 .

Theorem 3.15. In an almost pseudo symmetric pseudo-projectively flat
Lorentzian Kähler spacetime manifold admitting Einstein field equation with
cosmological constant, the h-almost conformal Ricci-Bourguignon soliton
(g, ξ, h, µ,Λ) is

shrinking, if p > (κ(3ρ− σ)− 4α)(12( a03a1
+ 1)− 2Λ)− 1

2 ,

steady, if p = (κ(3ρ− σ)− 4α)(12( a03a1
+ 1)− 2Λ)− 1

2 ,

expanding, if p < (κ(3ρ− σ)− 4α)(12( a03a1
+ 1)− 2Λ)− 1

2 .
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Proof. From Definition 3.3 of pseudo-projectively flat manifold, the equa-
tion (26) becomes

A(X)[− a1(S(Y, Z)g(V,W )− S(V,Z)g(Y,W ))

+
r

4
(
a0
3

+ a1)(g(Y, Z)g(V,W )− g(V,Z)g(Y,W ))]

+A(Y )[−a1(S(V,Z)g(X,W )− S(X,Z)g(V,W ))

+
r

4
(
a0
3

+ a1)(g(V,Z)g(X,W )− g(X,Z)g(V,W ))]

= A(JX)[−a1(S(JY, Z)g(V,W )− S(V,Z)g(JY,W ))

+
r

4
(
a0
3

+ a1)(g(JY, Z)g(V,W )− g(V,Z)g(JY,W ))]

+A(JY )[−a1(S(V,Z)g(JX,W )− S(JX,Z)g(V,W ))

+
r

4
(
a0
3

+ a1)(g(V,Z)g(JX,W )− g(JX,Z)g(V,W ))].

(45)

Putting X = ς = ei, 1 ≤ i ≤ 4, we get

− 4a1[S(Y, Z)g(V,W )− S(V,Z)g(Y,W )]

+ r(
a0
3

+ a1)[g(Y,Z)g(V,W )− g(V,Z)g(Y,W )]

− 2a1[S(V,Z)g(Y,W )− S(Y,Z)g(V,W )]

+
r

2
(
a0
3

+ a1)[g(V,Z)g(Y,W )− g(Y,Z)g(V,W )] = 0. (46)

Taking V = W = ei, 1 ≤ i ≤ 4, we achieve

S(Y, Z) =
r

4
(
a0
3a1

+ 1)g(Y,Z). (47)

Using equation (21) in the equation (47), we can write

[µ − 1

2
(p+

1

2
) + rΛ]g(Y,Z) + βη(Y )η(Z)− h

2
(£ξg)(Y, Z)

=
r

4
(
a0
3a1

+ 1)g(Y,Z). (48)

Multiplying equation (48) by εii and putting Y = Z = ei, 1 ≤ i ≤ 4, and
then using equations (19) and (20) we get

4µ− β = r(
a0
3a1
− 4Λ + 1) + 2(p+

1

2
) + hdivξ. (49)

Putting Y = Z = ξ we find

−µ+ β = −r
4

(
a0
3a1

+ 1) + rΛ− 1

2
(p+

1

2
). (50)

Using equations (49) and (50) we get

β =
h

3
divξ,
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µ =
h

3
divξ +

r

4
(
a0
3a1
− 4Λ + 1) +

1

2
(p+

1

2
).

Again using the equation (5), we can write from the above equation

µ =
h

3
divξ +

(4α+ κ(σ − 3ρ))

4
(
a0
3a1
− 4Λ + 1) +

1

2
(p+

1

2
). (51)

For the h-almost conformal Ricci-Bourguignon soliton β = 0. Therefore the
equation (51) becomes

µ =
(4α+ κ(σ − 3ρ))

4
(
a0
3a1
− 4Λ + 1) +

1

2
(p+

1

2
). (52)

Hence the theorem follows from three separate signs of µ. �

Corollary 3.16. In an almost pseudo symmetric pseudo-projectively flat
Lorentzian Kähler spacetime manifold admitting Einstein field equation with
cosmological constant, the h-almost conformal Ricci-Bourguignon soliton
(g, ξ, h, µ,Λ) for stiff matter is

shrinking, if p > (κρ− 2α)(( a03a1
+ 1)− 4Λ)− 1

2 ,

steady, if p = (κρ− 2α)(( a03a1
+ 1)− 4Λ)− 1

2 ,

expanding, if p < (κρ− 2α)(( a03a1
+ 1)− 4Λ)− 1

2 .

Corollary 3.17. In an almost pseudo symmetric pseudo-projectively flat
Lorentzian Kähler spacetime manifold admitting Einstein field equation with
cosmological constant, the h-almost conformal Ricci-Bourguignon soliton
(g, ξ, h, µ,Λ) for the dark fluid is

shrinking, if p > (κρ− 4α)(12( a03a1
+ 1)− 2Λ)− 1

2 ,

steady, if p = (κρ− 4α)(12( a03a1
+ 1)− 2Λ)− 1

2 ,

expanding, if p < (κρ− 4α)(12( a03a1
+ 1)− 2Λ)− 1

2 .

Corollary 3.18. In an almost pseudo symmetric pseudo-projectively flat
Lorentzian Kähler spacetime manifold admitting Einstein field equation with
cosmological constant, the h-almost conformal Ricci-Bourguignon soliton
(g, ξ, h, µ,Λ) for the dust fluid is

shrinking, if p+ 1
2 + (2κσ + 8α)(14( a03a1

+ 1)− Λ) > 0,

steady, if p+ 1
2 + (2κσ + 8α)(14( a03a1

+ 1)− Λ) = 0,

expanding, if p+ 1
2 + (2κσ + 8α)(14( a03a1

+ 1)− Λ) < 0.

Corollary 3.19. In an almost pseudo symmetric pseudo-projectively flat
Lorentzian Kähler spacetime manifold admitting Einstein field equation with
cosmological constant, the h-almost conformal Ricci-Bourguignon soliton
(g, ξ, h, µ,Λ) for the radiation fluid is

shrinking, if p+ 1
2 + 8α(14( a03a1

+ 1)− Λ) > 0,

steady, if p+ 1
2 + 8α(14( a03a1

+ 1)− Λ) = 0,

expanding, if p+ 1
2 + 8α(14( a03a1

+ 1)− Λ) < 0.
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Theorem 3.20. In an almost pseudo W2-flat symmetric Lorentzian
Kähler spacetime manifold admitting Einstein field equation with cosmologi-
cal constant, the h-almost conformal Ricci-Bourguignon soliton (g, ξ, h, µ,Λ)
is

shrinking, if p > 2(κ(3ρ− σ)− 4α)(1− Λ)− 1
2 ,

steady, if p = 2(κ(3ρ− σ)− 4α)(1− Λ)− 1
2 ,

expanding, if p < 2(κ(3ρ− σ)− 4α)(1− Λ)− 1
2 .

Proof. From Definition 3.4 of W2 flat manifold, the equation (26) becomes

A(X)[− 1

3
(S(Y,W )g(V,Z)− S(V,W )g(Y, Z)]

+A(Y )[−1

3
(S(V,W )g(X,Z)− S(X,W )g(V,Z)]

= A(JX)[−1

3
(S(JY,W )g(V,Z)− S(V,W )g(JY, Z)]

+A(JY )[−1

3
(S(V,W )g(JX,Z)− S(JX,W )g(V,Z)].

(53)

Putting X = ς = ei, 1 ≤ i ≤ 4, we get

(− 4

3
)[(S(Y,W )g(V,Z)− S(V,W )g(Y,Z)]

− 2

3
[(S(V,W )g(Y,Z)− S(Y,W )g(V,Z)] = 0.

(54)

On contracting V = W = ei, 1 ≤ i ≤ 4, in the equation (54) we obtain

S(Y, Z) = rg(Y,Z). (55)

Using the equation (21) in the equation (55), it can be written as

[µ− 1

2
(p+

1

2
) + rΛ]g(Y, Z) + βη(Y )η(Z)− h

2
(£ξg)(Y,Z) = rg(Y, Z). (56)

Multiplying the equation (56) by εii and putting Y = Z = ei, 1 ≤ i ≤ 4 and
then using the equations (19) and (20) we get

4µ− β = 4r − 4rΛ + 2(p+
1

2
) + hdivξ. (57)

Putting Y = Z = ξ we get

−µ+ β = rΛ− r − 1

2
(p+

1

2
). (58)

Using the equations (57) and (58) we have

β =
h

3
divξ

and

µ =
h

3
divξ + r(1− Λ) +

1

2
(p+

1

2
).
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Again using the equation (5), the above equation can be written as

µ =
h

3
divξ + (4α+ κ(σ − 3ρ))(1− Λ) +

1

2
(p+

1

2
). (59)

For the h-almost conformal Ricci-Bourguignon soliton, β = 0. Therefore the
equation (59) becomes

µ = (4α+ κ(σ − 3ρ))(1− Λ) +
1

2
(p+

1

2
). (60)

Hence the theorem ensues from three various signs of µ. �

Corollary 3.21. In an almost pseudo W2-flat symmetric Lorentzian
Kähler spacetime manifold admitting Einstein field equation with cosmologi-
cal constant, the h-almost conformal Ricci-Bourguignon soliton (g, ξ, h, µ,Λ)
for stiff matter is

shrinking, if p > 4(κρ− 2α)(1− Λ)− 1
2 ,

steady, if p = 4(κρ− 2α)(1− Λ)− 1
2 ,

expanding, if p < 4(κρ− 2α)(1− Λ)− 1
2 .

Corollary 3.22. In an almost pseudo W2-flat symmetric Lorentzian
Kähler spacetime manifold admitting Einstein field equation with cosmologi-
cal constant, the h-almost conformal Ricci-Bourguignon soliton (g, ξ, h, µ,Λ)
for the dark fluid is

shrinking, if p > (κρ− α)(1− Λ)− 1
2 ,

steady, if p = (κρ− α)(1− Λ)− 1
2 ,

expanding, if p < (κρ− α)(1− Λ)− 1
2 .

Corollary 3.23. In almost pseudo W2-flat symmetric Lorentzian Kähler
spacetime manifold admitting Einstein field equation with cosmological con-
stant, the h-almost conformal Ricci-Bourguignon soliton (g, ξ, h, µ,Λ) for the
dust fluid is

shrinking, if p+ 2(κσ + 4α)(1− Λ) + 1
2 > 0,

steady, if p+ 2(κσ + 4α)(1− Λ) + 1
2 = 0,

expanding, if p+ 2(κσ + 4α)(1− Λ) + 1
2 < 0.

Corollary 3.24. In almost pseudo W2-flat symmetric Lorentzian Kähler
spacetime manifold admitting Einstein field equation with cosmological con-
stant, the h-almost conformal Ricci-Bourguignon soliton (g, ξ, h, µ,Λ) for the
radiation fluid is

shrinking, if p+ 8α(1− Λ) + 1
2 > 0,

steady, if p+ 8α(1− Λ) + 1
2 = 0,

expanding, if p+ 8α(1− Λ) + 1
2 < 0.



ON h-ALMOST CONFORMAL η-RICCI-BOURGUIGNON SOLITONS 91

4. The h-almost conformal η-Ricci-Bourguignon soliton and
the gradient h-almost conformal η-Ricci-Bourguignon

soliton on a perfect fluid spacetime with torse-forming
vector field ξ

A vector field ξ on a semi-Riemannian manifold (M4, g) is called torse-
forming if it satisfies

∇Xξ = X + η(X)ξ, (61)

for any X ∈ χ(M).

From equation (61) it follows that

(£ξg)(X,Y ) = 2[g(X,Y ) + η(X)η(Y )]. (62)

Hence from equation (21), we can write

S(X,Y ) = (µ− 1

2
(p+

1

2
) + rΛ− 2h)g(X,Y ) + (β − 2h)η(X)η(Y ) (63)

and

QX = (µ− 1

2
(p+

1

2
) + rΛ− 2h)X + (β − 2h)η(X)ξ. (64)

Lemma 4.1. In perfect fluid spacetime with torse-forming vector field ξ,
the following relations hold [21] :

∇ξξ = 0, η(∇ξξ) = 0, (65)

(∇Xη)(Y ) = g(X,Y ) + η(X)η(Y ), (66)

R(X,Y )ξ = η(Y )X − η(X)Y, (67)

R(X, ξ)ξ = −X − η(X)ξ, (68)

η(R(X,Y )Z) = η(X)g(Y, Z)− η(Y )g(X,Z), (69)

R(ξ,X)Y = g(X,Y )ξ − η(Y )X, (70)

S(X, ξ) = 3η(X). (71)

Now, we study h-almost conformal η-Ricci-Bourguignon soliton on a per-
fect fluid spacetime satisfying the curvature condition Q · P = 0 where P is
the projective curvature tensor defined for a 4-dimensional semi-Riemannian
manifold as

P (X,Y )Z = R(X,Y )Z +
1

3
[S(X,Z)Y − S(Y, Z)X]. (72)

Theorem 4.2. Let (M4, g) be a perfect fluid spacetime with h-almost
conformal η-Ricci-Bourguignon soliton (g, ξ, µ,Λ, β), satisfying the property
Q · P = 0, where ξ is the torse-forming vector field. Then M is a manifold
of constant Riemannian curvature.
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Proof. Let us assume that the curvature property Q · P = 0 holds on M .
Then for X,Y, Z ∈ χ(M),

Q(P (X,Y ), Z)− P (QX,Y )Z − P (X,QY )Z − P (X,Y )QZ = 0. (73)

Using equation (72), we have

(µ − 1

2
(p+

1

2
) + rΛ− 2h)P (X,Y )Z

+ (β − 2h)η(P (X,Y )Z)ξ − (µ− 1

2
(p+

1

2
) + rΛ− 2h)P (X,Y )Z

− (β − 2h)η(X)P (ξ, Y )Z − (µ− 1

2
(p+

1

2
) + rΛ− 2h)P (X,Y )Z

− (β − 2h)η(Y )P (X, ξ)Z − (µ− 1

2
(p+

1

2
) + rΛ− 2h)P (X,Y )Z

− (β − 2h)η(Y )P (X,Y )ξ = 0. (74)

From identities (67)–(70), we see that

P (ξ, Y )Z = g(Y, Z)ξ − 1

3
S(Y,Z)ξ, (75)

P (X, ξ)Z = −g(X,Z)ξ +
1

3
S(X,Z)ξ, (76)

P (X,Y )ξ = 0, (77)

and

η(R(X,Y )Z) = η(X)g(Y,Z)− η(Y )g(X,Z)

+
1

3
[S(X,Z)η(Y )− S(Y,Z)η(X)]. (78)

Substituting equations 75–78 for (74), we get

−2(µ− 1

2
(p+

1

2
) + rΛ− 2h)P (X,Y )Z = 0. (79)

This implies that either P (X,Y )Z = 0 or µ− 1
2(p+ 1

2) + rΛ− 2h = 0.

Case 1: If µ− 1
2(p+ 1

2) + rΛ− 2h = 0, S(X,Y ) = (β− 2h)η(X)η(Y ), then
putting X = Y = ei, 1 ≤ i ≤ 4, the scalar curvature becomes r = 2h− β.

Case 2: If P (X,Y )Z = 0, then

R(X,Y )Z =
1

3
(S(Y,Z)X − S(X,Z)Y ). (80)

Replacing X = ξ in the above equation, we get g(Y, Z)ξ = 1
3S(Y,Z)ξ.

Inner product with ξ produces

S(Y,Z) = 3g(Y,Z). (81)

From the equations (80) and (81), we find R(X,Y )Z = g(Y,Z)X−g(X,Z)Y .
Therefore the manifold of constant Riemannian curvature −1. �
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Theorem 4.3. Let (M4, g) be a perfect fluid spacetime with gradient h-
almost conformal η-Ricci-Bourguignon soliton (g,∇f, µ,Λ, β) with h as a
nonzero constant and β = ξ(µ − a) where the timelike vector field ξ is the
torse-forming vector field. Then either the scalar fields a, b are related by
a = b or f is invariant under ξ.

Proof. Let the spacetime satisfy the gradient h-almost conformal η-Ricci-
Bourguignon soliton. Then from the equation (14), we can write

∇XDf =
1

h
[(µ− 1

2
(p+

1

2
) + rΛ)X + βη(X)ξ −QX]. (82)

Taking covariant derivative of the identity (82) with respect to Y and mul-
tiplying by h the above equation becomes

h∇Y∇XDf = −1

h
(Y h)[(µ− 1

2
(p+

1

2
)

+ rΛ)X + βη(X)ξ −QX] + (µ− 1

2
(p+

1

2
)

+ rΛ)∇YX + β∇Y (η(X)ξ)−∇Y (QX) + (Y µ)X

+ Λ(Xr)Y ]. (83)

Interchanging X by Y in the equation (83), we obtain

h∇X∇YDf = −1

h
(Xh)[(µ− 1

2
(p+

1

2
)

+ rΛ)Y + βη(Y )ξ −QY ] + (µ− 1

2
(p+

1

2
)

+ rΛ)∇XY + β∇X(η(Y )ξ)−∇X(QY ) + (Xµ)Y

+ Λ(Y r)X]. (84)

Also from the equation (82), we have

∇[X,Y ]Df =
1

h
((µ− 1

2
(p+

1

2
) + rΛ)[X,Y ] + βη([X,Y ])ξ −Q[X,Y ]). (85)

We know the Riemannian curvature tensor

hR(X,Y )Df = h∇X∇YDf − h∇Y∇XDf −∇[X,Y ]Df. (86)

From the identities (84), (85) and (86), the above expression will be

hR(X,Y )Df = −1

h
(Xh)[(µ− 1

2
(p+

1

2
)

+ rΛ)Y + βη(Y )ξ −QY ] +
1

h
(Y h)[(µ− 1

2
(p+

1

2
)

+ rΛ)X + β((∇Xη)(Y ))ξ + βη(Y )∇Xξ − (∇XQ)(Y )

+ (Xµ)Y + Λ(Xr)Y − β((∇Y η)(X))ξ − βη(X)∇Y ξ
+ (∇YQ)(X)− (Y µ)X − Λ(Y r)X. (87)
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For perfect fluid spacetime we have

QX = aX + bη(X)ξ.

Taking covariant derivative of the above equation with respect to Y and also
using the equation (61), we get

(∇YQ)(X) = (Y a)X + (Y b)η(X)ξ + bg(X,Y )ξ + bη(X)Y

+ 2bη(X)η(Y )ξ. (88)

Taking h as a constant, from the equation (88) it follows that

hR(X,Y )Df = βη(Y )X + (Xµ)Y + Λ(Xr)Y − βη(X)Y − (Y µ)X

− Λ(Y r)X + (Y a)X + (Y b)η(X)ξ − (Xa)Y

− (Xb)η(Y )ξ. (89)

Taking inner product with Z, the equation (89) can be written as

hg(R(X,Y )Df,Z) = βη(Y )g(X,Z) + (Xµ)g(Y, Z) + Λ(Xr)g(Y,Z)

− βη(X)g(Y, Z)− (Y µ)g(X,Z)− Λ(Y r)g(X,Z)

+ (Y a)g(X,Z) + (Y b)η(X)η(Z)− (Xa)g(Y, Z)

− (Xb)η(Y )η(Z). (90)

Putting X = Z = ei, 1 ≤ i ≤ 4, we obtain

hS(Y,Df) = 3βη(Y )− 3(Y µ) + Λ(ξr) + 3(Y a)− (Y b)− (ξb)η(Y )

− 4Λ(Y r). (91)

Taking Y = ξ in the above expression we get

h(a− b)g(ξ,Df) = −3β − 3(ξµ)− 3Λ(ξr) + 3(ξa). (92)

In a perfect fluid spacetime, r is a constant. So we can write

h(a− b)(ξf) = −3β − 3(ξµ) + 3(ξa). (93)

Using the condition β = ξ(µ − a) we have either a = b or ξf = 0 implies f
is invariant under velocity vector field ξ. Hence the theorem is proved. �

5. Example of the h-almost conformal η-Ricci-Bourguignon
soliton

We consider the four dimensional manifold M = {(x, y, z, u) ∈ R4 : u 6= 0}
where (x, y, z, u) are the standard coordinates in R4. The vector fields

e1 = eu
∂

∂x
, e2 = eu

∂

∂y
, e3 = eu

∂

∂z
, e4 =

∂

∂u
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are linearly independent at each point of M. Let g be the Riemannian metric
defined by

gij =

 1 for i = j = 1, 2, 3,
−1 for i = j = 4,
0 for i 6= j.

Let η be the 1-form defined by η(Z) = g(Z, e4) for any Z ∈ χ(M4). Now,
after some calculation, we have

[e1, e3] = [e2, e3] = [e1, e2] = 0, [e1, e4] = −e1, [e2, e4] = −e2, [e3, e4] = −e3.
The Riemannian connection ∇ of the metric is given by the Koszul’s formula

2g(∇XY,Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )− g(X, [Y, Z])

− g(Y, [X,Z]) + g(Z, [X,Y ]).

By Koszul’s formula we get,

∇e1e1 = e4,∇e2e2 = e4,∇e3e3 = e4,

∇e1e4 = −e1,∇e2e4 = −e2,∇e3e4 = −e3,
∇e1e2 = ∇e1e3 = ∇e2e1 = ∇e3e1 = ∇e3e2 = ∇e2e3 = 0.

∇e4e1 = ∇e4e2 = ∇e4e3 = ∇e4e4 = 0.

The nonzero Riemannian curvature tensors are given by
R(e1, e2)e2 = −e1, R(e1, e3)e3 = −e1, R(e1, e4)e4 = −e1, R(e1, e2)e1 = e2,
R(e1, e3)e1 = e3, R(e1, e4)e1 = e4, R(e2, e3)e3 = −e2, R(e2, e3)e2 = e3,
R(e2, e4)e2 = e4, R(e2, e4)e4 = −e2, R(e3, e4)e3 = e4, R(e4, e3)e4 = e3.

Now from the above results we have S(ei, ei) = −3 for i = 1, 2, 3, 4.
Contracting this we have r = −12.

Also we have

S(X,Y )+
h

2
[g(∇Xξ, Y )+g(∇Y ξ,X)] = (µ−1

2
(p+

1

2
)+rΛ)g(X,Y )+βη(X)η(Y ).

Here ξ = e4. So from the above, we get

µ = −3− h+ 12Λ +
1

2
(p+

1

2
)

and

µ = 3 + 12Λ + β +
1

2
(p+

1

2
).

Hence we have β = −h− 6 and µ = −h+ 12Λ + p
2 −

11
4 .

The h-almost conformal Ricci-Bourguignon soliton (g, ξ, h, µ,Λ) is shrink-
ing if p > 11

2 − 24Λ + 2h; steady if p = 11
2 − 24Λ + 2h; and expanding if

p < 11
2 − 24Λ + 2h.

Note. A soliton is a self-reinforcing single wave which arises from a
balance between nonlinear and dispersive effects that are associated with
physical system. Solitons preserve their shapes and speeds while propagating
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freely at constant velocity and revive it after collision with one more such
wave. The results of the paper fetches the new concept of h-almost conformal
η-Ricci-Bourguignon soliton in a perfect fluid spacetime. Any contribution in
this direction will bring new ideas of view on the geometry of the manifold.
There are some questions that arise from our article to study in further
research.
(i) Which of the results of our paper are also true for nearly Kähler spacetime
manifold or cokähler manifold?
(ii) What will happen in Section 4 in this paper without assuming ξ as a
torse-forming vector field?
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