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Stiffness parameter prediction for elastic supports
of non-uniform rods

Helle Hein and Ljubov Jaanuska

Abstract. The present research focuses on establishing the stiffness
parameter of elastic springs placed at the ends of non-uniform rods.
The governing equation for the longitudinal vibrations of the rod was
solved using the Haar wavelet integration method. The calculated nat-
ural frequency parameters closely aligned with those available in the
literature. The normalised values of the first ten natural frequency pa-
rameters were used in the feature vector to predict the stiffness parame-
ter of the springs. A feedforward neural network with two hidden layers
made accurate predictions when the range of each natural frequency pa-
rameter within its domain exceeded one. The insights garnered from this
study contribute to the design, optimisation and assessment of diverse
engineering applications.

1. Introduction

Over the past several decades, extensive research on uniform rods has been
conducted. Exact solutions for longitudinal vibration of homogeneous rods
can be found in [11]. A study of longitudinal vibrations of two uniform rods
coupled by translational springs was conducted by Kukla et al. [6] using
the Green function method. The authors derived the system’s frequency
equation by setting the determinant equal to zero; the determinant contained
2n unknown variables.

The design of modern and intricate structures necessitates the utilization
of non-uniform rods. Such rods exhibit variations in the cross sectional area
or material properties along the length. Due to the presence of multiple co-
efficients in the governing differential equation of motion, an exact analytical
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solution is possible under specific conditions involving certain cross-sectional
area functions and boundary conditions. For example, Raman [13] offered
general solutions that apply to rods with cross-sectional area variations de-
scribed by trigonometric or exponential functions, such as cos(x), sin(x),

e(−x
2). Kumar and Sujith [7] obtained exact analytical solutions for the

longitudinal vibration of rods with cross-sectional area changes expressed
as A(x) = (a + bx)n and A(x) = A0sin

2(ax + b). Horgan and Chan [4]
provided exact solutions for the vibrations of rods whose cross-section var-
ied as A(x) = A0[1 + α(x/l)]n when n = −1, 1, 2, and A(x) = A0e

(−αx/l).
Raj and Sujith [12] studied cross-sectional area variations of rods described

by A(x) = kxne(bx
2), A(x) = kxne(bx), and A(x) = ke(bx)e(ne

(mx)). In a
recent study, Raj and Sujith [12] solved the problem with cross-sectional

area A(x) = kxnebx
2

and A(x) = kxnebx. Guo and Yang [2] also investi-

gated the problem with cross-sectional area A(x) = A0e
ax+bx2 using Kum-

mer functions. Yardimoglu and Aydin [15] presented analytical solutions for
longitudinal vibrations of non-uniform rods with area variations of the form
A(x) = A0sin

n(ax + b) and A(x) = A0cos
n(ax + b). Li et al. [9] presented

analytical solutions for longitudinal vibrations of non-uniform rods with con-
centrated masses coupled by translational springs. In their study, cross-
sectional area variations were set to A(x) = ae(−bx/l) and A(x) = a(1 + bx)c.
In the solutions mentioned earlier, the equation of motion was solved using
Schrödinger equation, integral-equation-based method, or special functions,
such as Bessel, Neumann, Legendre, Hermite and Laguerre.

Recently, the wavelet transform has gained popularity in structural health
monitoring for two reasons. Firstly, the wavelets are effective in solving dif-
ferential and integral equations [10]. Secondly, the wavelet transform has
the capability to reveal concealed aspects of data that other techniques may
overlook. Importantly, the transform does not require the analysis of entire
structure [8, 3]. For instance, Hein and Feklistova [3] described and suc-
cessfully applied the Haar wavelet transformation method in the vibration
analysis of tapered beams.

In the field of engineering, the insights into the operational behavior of
supports and rods are essential. By comprehending the natural frequencies
and mode shapes, engineers can assess the dynamic behavior of rod-like
structures with different boundary conditions, evaluate potential resonant
frequencies, and take necessary measures to avoid undesirable vibrations that
may lead to structural failure or reduced performance. Despite the variety
of methods for analytical and computational analysis of non-uniform rods,
no simple and fast solutions applicable to the evaluation of elastic supports
have been proposed. Hereof, the objective of this research is to determine
the stiffness parameters of elastic supports positioned at the ends of non-
uniform rods. The approach encompasses the utilisation of the Haar wavelet
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integration technique to analyse 39601 non-uniform rods. In each scenario,
the stiffness parameters and the first ten natural frequency parameters are
computed. The resulting dataset is then employed to train a three-layered
feedforward artificial neural network (ANN). The trained predictive model
is accurate in estimating the stiffness parameters of elastic supports.

2. The governing equation of free vibrations of non-uniform
rods

The relevant non-uniform rod of length L, constant Young’s modulus E,
and constant mass density ρ is shown in Figure 1. The origin of the co-
ordinate system is at the left end of the rod, so that 0 ≤ x ≤ L. The
cross-sectional area varies continuously with the axial coordinate x. The
variation is described by the distribution function A(x). If A(x) is constant
along the length, the rod is considered as uniform.

w(x,t) A(x)

L x

Figure 1. Longitudinal vibration of a non-uniform rod with
an arbitrary varying cross-section.

The governing partial differential equation for the longitudinal vibration
of the rod with a varying cross-section is [12]

∂

∂x

[
EA(x)

∂w(x, t)

∂x

]
= ρA(x)

∂2w(x, t)

∂t2
, x ∈ (0, L), t ≥ 0, (1)

where w(x, t) represents the axial displacement of the rod at distance x at
time t. Assuming the displacement function varies harmonically with time
(a solution of the form w(x, t) = W (x)eiωt), equation (1) is reduced to the
following ordinary differential equation:

d2W (x)

dx2
+

1

A(x)

dA(x)

dx

dW (x)

dx
+ k2W (x) = 0, (2)

where W (x) represents the mode shape and

k2 =
ω2ρ

E
, (3)

k is the natural frequency parameter and ω is the circular frequency.
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Introducing the quantities

ξ =
x

L
, k2∗ = k2L2, (4)

the equation of motion for the longitudinal vibrations of rods is given as

d2W (ξ)

dξ2
+

1

A(ξ)

dA(ξ)

dξ

dW (ξ)

dξ
+ k2∗W (ξ) = 0, ξ ∈ [0, 1]. (5)

The longitudinal modal characteristics of the restrained rods can be
achieved by solving the governing equation and boundary conditions simul-
taneously. In the case of non-uniform rods with functionally distributed
cross-sectional area, the differential equation (5) has multiple coefficients;
hence, an analytical solution is not available. In the present research, it is
proposed to solve the differential equation with the aid of wavelets.

3. Integration of Haar wavelets

The Haar wavelet is one of the simplest wavelets which is discontinuous
and resembles a step function. The Haar wavelet family for ξ ∈ [0, 1] is
defined as follows:

hi(ξ) =


1 for ξ ∈ [ξ(1), ξ(2)),

−1 for ξ ∈ [ξ(2), ξ(3)),

0 elsewhere,

(6)

where

ξ(1) = k
m , ξ

(2) = k+0.5
m , ξ(3) = k+1

m . (7)

The integer m = 2j(j = 0, 1, . . . J) is the factor of scale; k = 0, 1, . . .m− 1 is
the factor of delay. The integer J determines the maximal level of resolution.
The index i in the system (6) is calculated as i = m + k + 1; the minimal
value for i is one (if j = 0, then m = 1, k = 0); the maximal value of i is 2M ,
which is 2J+1. If ξ ∈ [0, 1] and the index i is equal to one, the corresponding
scaling function is h1(ξ) = 1, elsewhere h1(ξ) = 0.

Hsiao and Wang [5] introduced the Haar coefficient matrix H(2M×2M)(i, l)
= hi(ξl). The collocation points are defined as:

ξl = l−0.5
2M , l = 1, 2, . . . , 2M. (8)

For the further research, the integrals of the wavelets are required

pα,i(ξ) =
∫ ξ
0 pαi−1,i(ξ)dξ, (9)

where α is the order of integration, i is the number of the wavelet. In (9),
p0,i(ξ) = hi(ξ). These integrals were calculated analytically by Lepik [8]. In
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the case of i = 1, the integral of the wavelet is pα,1(ξ) = ξα/α!. In the case
of i > 1, the integral of the wavelet is

pα,i(ξ) =



0 for ξ < ξ(1) ,

1
α!(ξ −

k
m)α for ξ ∈ [ξ(1), ξ(2)] ,

1
α! [(ξ −

k
m)α − 2(ξ − ξ(2))α)] for ξ ∈ [ξ(2), ξ(3)] ,

1
α! [(ξ −

k
m)α − 2(ξ − ξ(2))α + (ξ − ξ(3))α] for ξ > ξ(3).

(10)

The values pα,i(0) and pα,i(1) should be calculated in order to satisfy the
boundary conditions. Evaluating integrals (10) in the collocation points, the
following form could be obtained:

P (α)(i, l) = pα,i(ξl), (11)

where P (α) is a 2M × 2M matrix. It should be noted that the computation
of the matrices H(i, l) and P (α)(i, l) is carried out only once.

4. General solution in terms of the Haar wavelet integration

According to Lepik [8], Hsiao and Wang [5], the highest-order derivative
can be expanded into the Haar series instead of solving the differential equa-
tion. In the present study, it is assumed that the second derivative of the
solution (2) is sought in the following form:

W ′′(ξ) =
2M∑
i=1

aihi(ξ), (12)

where ai are the unknown wavelet coefficients. Integrating (12) two times
and taking into account (9) and (10), the following equations are obtained:

W ′(ξ) =
2M∑
i=1

aip1,i(ξ) +W ′(0), (13)

W (ξ) =
2M∑
i=1

aip2,i(ξ) +W ′(0)ξ +W (0). (14)

The quantities W (0) and W ′(0) can be evaluated from the boundary condi-
tions. If the rod is rigid at the left end ξ = 0 and free at the right end ξ = 1
of the rod, the boundary conditions are

W (0) = W ′(1) = 0. (15)
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If the ends of the rod are free, the boundary conditions are

W ′(0) = W ′(1) = 0. (16)

If the rod is fixed at both ends, the boundary conditions are

W (0) = W (1) = 0. (17)

For the elastically constrained ends, the following boundary conditions
are considered:

SLW (0)− dW (ξ)

dξ

∣∣∣∣
ξ=0

= 0, (18)

SRW (1) +
dW (ξ)

dξ

∣∣∣∣
ξ=1

= 0, (19)

where SL and SR are the boundary restraining stiffness parameters on the
left and right ends of the rod, respectively.

5. Numerical results

The described theoretical formulation of the Haar wavelet integration and
the differential equation for the vibrations of non-uniform rods with elastic
constraints was implemented in the MATLAB environment. Two numerical
examples were examined.

5.1. A rod with cross-sectional area variation of A(x) = A0(ax+ b)n.
In the first numerical example, a non-uniform rod with elastically restrained
ends and a cross-sectional area variation of A(x) = A0(ax+ b)n was consid-
ered. The parameters were fixed to a = 2, b = 1, n = 2. The stiffness param-
eters of the springs on the left and right sides of the rod SL = LkL/EA(0)
and SR = LkR/EA(1) varied in the range [10, 20, ..., 1990]. In total, 39601
cases were calculated numerically when the level of resolution of the Haar
wavelets was set to five (J = 5). For each case, the first ten natural frequency
parameters were calculated. The results were compared with the ones avail-
able in the literature: the first frequencies were in excellent agreement with
the results published by Xu et al. [14] (Table 1).

Table 1. Non-dimensional natural frequencies of elastically
restrained non-uniform rods with cross-sectional area varia-
tion of A(x) = A0(ax+ b)n, a = 2, b = 1 and n = 2.

SL SR f1 [14] f1
10 10 1.6884 1.6883
100 100 2.8476 2.8473
1000 1000 3.1104 3.1102
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To construct, train and evaluate an ANN, the dataset was divided into
two sets: the training set of 33661 records (85%) and the independent test
set of 5940 records (15%).

After multiple manipulations with the structure of the ANN (the number
of layers, hidden neurons, optimisation algorithm), it was observed that
the most promising network had three layers: the input layer, a hidden
layer with 30 neurons and a hidden layer with 15 neurons. The learning
process was carried out by Broyden–Fletcher–Goldfarb–Shanno optimisation
algorithm (trainbfg). To train the network, the feature vector contained
the normalised values of the first ten natural frequency parameters. The
performance of the model was evaluated on the independent test set: root
mean squared error (RMSE) was 41.6601, mean absolute error (MAE)
was 30.5982, coefficient of determination (R2) was 0.9947, normalised mean
squared error (NRMSE) was 0.0013 and Pearson correlation coefficient (R)
was 0.9974. The predicted values against the actual values and the error
histogram are plotted in Figure 2: a) the x-axis is labeled with the record
number of the test; b) the x-axis is labeled with the first natural frequency
parameter (the parameter varies in the range between 1.6883 and 3.1257).

The predicting accuracy of the ANN was slightly improved when the fea-
ture vector contained the stiffness parameter of the second spring and the
normalised values of the first three natural frequency parameters: RMSE =
28.8038, MAE = 19.2414, R2 = 0.9988, NRMSE = 0.0006 and R = 0.9988.
The predicted values against the actual and the error histogram are visu-
alised in Figure 3. It is important to note that if the feature vector comprised
all ten normalised natural frequency parameters along with the stiffness pa-
rameter of the second spring, the model’s ability to accurately predict the
stiffness parameter of the spring on the left side of the rod decreased.

5.2. A rod with cross-sectional variation of A(x) = A0sin
n(cx+ d).

In the second numerical example, a rod with elastically restrained ends
and a cross-sectional area variations given by A(x) = A0sin

n(cx + d) was
considered. The parameters were fixed to c = 2, d = 1 and n = 2. The
stiffness parameters of the springs on the left and right sides of the rod
varied in the range [10, 20, ..., 1990]. In total, 39601 cases were calculated
numerically when the level of resolution of the Haar wavelets was set to five
(J = 5). For each case, the first ten natural frequency parameters were
calculated. The results in the the case of SL = 0 and SR = 1 were in
excellent agreement with results presented by Yardimoglu and Aydin [15].

Applying the procedure described in Subsection 5.1, the predicting accu-
racy of the three-layered ANN trained on the normalised values of the first
ten natural frequency parameters was RMSE = 132.8334, MAE = 69.6468,
R2 = 0.9464, NRMSE = 0.0132 and R = 0.9728. The predicted values
against the actual and the error histogram are visualised in Figure 4.
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Figure 2. Stiffness parameter prediction using the nor-
malised values of the first ten natural frequency parameters:
a), b) - predicted values against actual values, c) - error his-
togram.

Table 2. Non-dimensional natural frequencies of elastically restrained non-
uniform rods with cross-sectional area variation of A(x) = A0sin

n(cx + d),
c = 2, d = 1 and n = 2.

SL SR f1 f2 f3 f4 f5 f6
0a 1 2.14856 5.535762 8.632811 11.694641 14.757858 17.830596
0 1 2.14847 5.535737 8.633668 11.698285 14.767315 17.849956
a The results in the row were obtained by Yardimoglu and Aydin [15].

The poor performance of the network can be attributed to the low variance
of the features in their domain (Figure 4 b, Table 3).
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Figure 3. Stiffness parameter prediction of the spring at
the left end of the rod using the normalised values of the first
three natural frequency parameters and the stiffness param-
eter of the spring at the right end of the rod.

Table 3. The minimum and maximum values of the first
eight natural frequency parameters.

f1 f2 f3 f4 f5 f6 f7 f8
2.1614 5.5528 8.65223 11.71438 14.7778 17.8528 20.94207 24.0460
2.4180 5.9496 9.2026 12.4005 15.5801 18.7533 21.9260 25.1012

The predicting accuracy of the ANN was improved when the feature vector
contained the stiffness parameter of the second spring and the normalised
values of the first three natural frequency parameters: RMSE = 15.2222,
MAE = 6.9012, R2 = 0.9993, NRMSE = 0.0002 and R = 0.9997. The
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Figure 4. Stiffness parameter prediction using the nor-
malised values of the first ten natural frequency parameters
(a, b - predicted values against actual values, c - error his-
togram).

predicted values against the actual and the error histogram are plotted in
Figure 5.

Discussion and conclusion

The non-uniform rods with elastic supports at the ends were considered
in the present research. Two datasets were calculated applying the Haar
wavelet integration method for the cases A(x) = A0(ax + b)n and A(x) =
A0sin

n(cx + d). Each dataset contained 39601 records. The datasets were
divided into the training and test sets in the ratio of 85% and 15%. A three-
layered ANN could easily predict the stiffness parameter of the first spring if
the range of each natural frequency parameter within its domain was greater
than one. If the range was smaller than one, adding the stiffness parameter
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Figure 5. Stiffness parameter prediction of the spring at
the left end of the rod using the normalised values of the first
three natural frequency parameters and the stiffness param-
eter of the spring at the right end of the rod.

of the second elastic support as an extra feature was necessary; though, the
number of the normalised natural frequency parameters could be reduced
to three. The insights obtained from this study contribute to the design,
optimisation and assessment of diverse engineering constructions, such as
bridges, towers, shafts, and earthing systems.
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