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The poroelastic layer with an axisymmetric
cylindrical hole under different types of loading

Natalya Vaysfeld and Zinaida Zhuravlova

Abstract. The exact solution of the poroelastic axisymmetric problem
for a layer with a cylinderical hole is constructed under assumptions of
Biot’s model. The calculations provided by derived explicit formulas for
full stress and pore pressure allow to state some important dependencies
between the poroelastic stress state of the layer and type of poroelastic
materials, loading types and height of the layer.

1. Introduction

Poroelasticity investigates the interaction between fluid flow and solid de-
formation within porous materials, making it a crucial field of study in ge-
omechanics, biomedicine, and civil engineering. The poroelastic layers with
cylindrical holes have plenty of real-world applications: the analysis of stress
and deformation in soil layers with boreholes, the study of fluid flow around
cylindrical inclusions in biological tissues, the assessment of seepage and
consolidation behavior in geotechnical engineering applications. There are
various experimental techniques employed to investigate poroelastic layers
with cylindrical holes: laboratory experiments, such as permeability mea-
surements, consolidation tests, and imaging techniques like MRI and X-ray
CT scanning. Meanwhile conducting experiments in complex porous media
systems is a big challenge, so the modeling of such structures and investiga-
tion of their properties is an extremely relevant task.

The numerical methods like finite element analysis and boundary element
methods are widely used to solve poroelasticity problems. The problem
of multi-scale characterization and optimization of absorption properties of
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poroelastic materials was studied in [6] with the help of asymptotic homoge-
nization method and optimization procedure. The modeling for a more real-
istic description of a thermo-poro-elastic source and the embedding medium
was done in [11]. For this aim a numerical method to represent inclusions
with an arbitrary geometry was proposed. A new algorithm based on the
spectral method for the computation of Stoneley wave dispersion and atten-
uation propagating in cylindrical structures composed of fluid, elastic and
poroelastic layers was proposed in [8]. The Haar wavelet discrete transform,
the artificial neural networks (ANNs), and the random forests were applied
in [7] to predict the location and severity of a crack in an Euler–Bernoulli
cantilever subjected to the transverse free vibration.

However, the numerical methods have some limitations, because they can-
not give a complete qualitative picture of porous stress distribution as in
corner points or at tips of a crack. That is why semi-analytical and ana-
lytical methods are still relevant. The acoustic response of a rigidly backed
poroelastic layer with a periodic set of elastic cylindrical inclusions embedded
was studied in [17] by a semi-analytical approach, based on Biot’s theory to
account for the deformation of the skeleton, coupling mode matching tech-
nique, Bloch wave representation, and multiple scattering theory. A simple
method to discuss the horizontal dynamic response of the cylindrical rigid
foundation partially embedded in a poroelastic soil layer was proposed in
[18] by virtue of Biot’s elastodynamic model. It was based on the Novak
plane strain model, the assumption of foundation end soil as a continuous
medium of finite thickness, and adopting Newton’s second law. Analytical
solutions of the problem on dynamic stress concentration and the surface dis-
placement of a partially debonded cylindrical inclusion in the covering layer
under the action of a steady-state horizontally polarized shear wave were
presented in [13]. It was shown in [9] that low frequency performance could
be significantly improved by embedding periodically arranged resonant in-
clusions (slotted cylinders) into the porous matrix. A parametric study was
performed there, numerical and semi-analytical calculations were provided.
An analytical approach to study the impact of discontinuities and boundary
conditions on the critical buckling load and critical stress of nanobeams was
developed in [1]. The analytical solution for the axisymmetric problem for a
poroelastic solid cylinder was derived in [15] with the help of integral trans-
form method and matrix differential calculation. Some analytical methods
from elasticity theory might be interesting by their possible adaptation for
poroelasticity problems (see [2], [5]).

Analysis of articles dedicated to the stress state of the layer weakened by
defects of different form has shown essential lack of analytical approaches
for solving the indicated problem. The authors in the present paper propose
to use a new analytical approach that allows to derive the exact solution of
the axisymmetric poroelasticity problem for a layer with a cylindrical hole.
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Figure 1. The statement of the problem. The axisymmetric
cylindrical hole of the radius a and height h with applied
stress.

2. The problem’s statement

The poroelastic layer (1 < r < ∞, 0 < z < h, here r, z is the cylindrical
coordinate system) (Figure 1) containing an axisymmetric cylindrical hole
is considered in the terms of Biot’s model. Biot’s model of a poroelastic
medium is physically and geometrically linear, that is, it corresponds to the
case of small deviations of the field that describe the state of the medium
from their equilibrium reference values. According to [3], the main proper-
ties of this model are the following: isotropy of the material, reversibility of
stress-strain relations under final equilibrium conditions, linearity of stress-
strain relations, small strains, the water contained in the pores is incom-
pressible, the water may contain air bubbles, the water flows through the
porous skeleton according to Darcy’s law.

The ideal contact conditions are fulfilled at the upper and bottom surfaces
of the layer:

w|z=0 = 0, τrz|z=0 = 0, p|z=0 = 0,
w|z=h = 0, τrz|z=h = 0, p|z=h = 0.

(1)

Here w = uz(r, z) is dimensionless displacement of the solid skeleton, τrz(r, z)
is dimensionless tangential effective stress, p(r, z) is dimensionless pore pres-
sure.
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On the cylindrical surface the mechanical load with the fluid pressure load
is applied:

σr|r=1 = L(z)− αP (z), τrz|r=1 = T (z), p|r=1 = P (z), (2)

where σr(r, z) is dimensionless normal effective stress, α is Biot’s coefficient
and L(z), T (z), P (z) are given functions.

The system of equilibrium and storage equations has the following form
(see [16]):
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Here u = ur(r, z) is dimensionless displacement of the solid skeleton, κ = 3−
4µ is Muskhelishvili’s constant, µ is Poisson ratio, K = 1/Gk, SP = SpG,Sp
is storativity of the pore space, k is permeability, G is shear modulus.

The displacements u(r, z), w(r, z), stress σr(r, z), σz(r, z), τrz(r, z) and pore
pressure p(r, z) that satisfy system (3) with boundary conditions (1)–(2)
should be found.

3. The solving method

The original boundary value problem is reduced to the one-dimensional
problem with the help of finite sin-, cos-Fourier transform with respect to
the variable z:
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The derived one-dimensional problem in transform’s domain is formulated
as the vector boundary value problem:{
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The vector boundary value problem (4) is solved with the help of ma-
trix differential calculation (see [15], [10]). According to this method, the
corresponding matrix differential equation

L2Yβ(r) = 0 (5)

is considered. Here Yβ(r) is a 3×3 matrix. The correspondence L2H(r, ξ) =
−H(r, ξ)M(ξ) (see [12]) is used, where
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The solution of the matrix differential equation (5) (see [6]) is given by the
formula

Yβ(r) =
1

2πı

∮
C

H(r, ξ)M−1(ξ)dξ, (6)

where M−1(ξ) is the inverse matrix to M(ξ), the closed contour C cov-
ers all singularity points of the matrix M−1(ξ), which are ξ = ±iβ, ξ =
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the help of residual theorem. The system of fundamental matrix solutions
Yi(r), i = 1, 4 is derived. The solution of the vector boundary value problem
(4) can be written in the form

~yβ(r) = (Y1(r) + Y3(r))

 c1
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c3

 , (7)

where ci, i = 1, 3 are constants found from the boundary conditions in (4).
Note that the solution (7) corresponds to the case β 6= 0.

The case when β = 0 is considered separately. In this case the vector
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is the differential operator of the second order, and
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The vector boundary value problem (8) is solved with the help of matrix
differential calculation similarly to (4). The corresponding matrix differential
equation

L̃2Y0(r) = 0 (9)

is considered. Here Y0(r) is a 2×2 matrix. The correspondence L̃2H0(r, ξ) =
−H0(r, ξ)M0(ξ) is used, where
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The solution of the matrix differential equation (9), according to [6], is re-
ceived by the formula
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where M−10 (ξ) is the inverse matrix to M0(ξ), the closed contour C0 cov-

ers all singularity points of the matrix M−10 (ξ), which are ξ = 0, ξ =
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the help of residual theorem. The system of fundamental matrix solutions
Y0,i(r), i = 1, 3 is derived. The solution of the vector boundary value problem
(8) can be written in the form

~y0(r) = (Y0,1(r) + Y0,2(r))

(
c0,1
c0,2

)
, (11)

where c0,i, i = 1, 2 are constants found from the boundary conditions in (8).
The application of the inverse Fourier transform formula [14] to the de-

rived solutions (7), (11) completes solving the original problem (1)–(3).

4. Graphical results

The resulting exact formulae for stress and displacements of layer points
provide indications of changes in elastic characteristics and pore pressure.
For this purpose, a numerical study was carried out and is discussed below.

The investigation of stress and pore pressure σr(r, z), p(r, z) was pro-
vided for 3 different poroelastic materials [4]: 1) Charcoal granite (G =
1.87 · 1010, µ = 0.27, α = 0.242, k = 1 · 10−16, Sp = 1.377 · 10−11); 2) Westerly
granite (G = 1.5 ·1010, µ = 0.25, α = 0.449, k = 4 ·10−16, Sp = 1.412 ·10−11);
3) Ruhr sandstone (G = 1.33 · 1010, µ = 0.12, α = 0.637, k = 2 · 10−13, Sp =
2.604 · 10−11) and 3 different types of a load applied at the surface r = a:
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Figure 2. The distribution of normal stress and pore pres-
sure values regarding the change of the hole’s radius. The
case with concentrated normal loading.

1) concentrated normal loading L(z) = δ(z−h/2), T (z) = 0, P (z) = 0; 2) dis-
tributed normal loading L(z) = sinπz/h, T (z) = 0, P (z) = 0; 3) distributed
tangential loading L(z) = 0, T (z) = sinπz/h, P (z) = 0.

The Figure 2 shows the change of normal stress σr and pore pressure
p regarding the change of the hole’s radius a for the concentrated normal
loading. Here the height of the cylinder h = 1. As it can be seen, the
maximal absolute values of normal stress and pore pressure are observed at
the point z = h/2 where the load is applied. Tensile stress is seen closer to
the top and bottom surfaces of the layer only when the size of the radius is
greater than the height a ≥ h.

Figure 3. The distribution of normal stress and pore pres-
sure values regarding the change of the poroelastic material.
The case with concentrated normal loading.
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The influence of poroelastic material’s change on the values of normal
stress σr and pore pressure is presented in Figure 3. Here the values of
normal stress for three chosen materials are very close while pore pressure
values change significantly. The least absolute values of pore pressure are
observed for the material with the smallest Biot’s coefficient.

The case for the distributed normal loading is shown at Figures 4–5. The
similar patterns are observed here, but the absolute values of normal stress
and pore pressure are less than for the case of concentrated normal loading.

Figure 4. The distribution of normal stress and pore pres-
sure values regarding the change of the hole’s radius. The
case with distributed normal loading.

Figure 5. The distribution of normal stress and pore pres-
sure values regarding the change of the poroelastic material.
The case with distributed normal loading.



THE POROELASTIC LAYER WITH AN AXISYMMETRIC CYLINDRICAL HOLE 139

5. Conclusions

The exact solution of the problem for a poroelastic layer with a cylindri-
cal hole is derived with the help of integral transform method and matrix
differential calculation.

The porous stress state of the layer was investigated regarding different
poroelastic materials and geometric sizes of the cylindrical hole.

The proposed approach can be used to solve porothermoelastic problems
and poroelastic problems for the layer with cracks.
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