A refinement of a lemma by Aron, Cascales, and Kozhushkina on Asplund operators

JAAGUP KIRME

ABSTRACT. We prove a refinement of a lemma by Aron, Cascales, and Kozhushkina on Asplund operators. Refinements of a Bishop–Phelps– Bollobás type theorem for Asplund operators with values in spaces $C_0(L)$ by the same authors, and an extension of this theorem for Asplund operators with values in uniform algebras by Cascales, Guirao, and Kadets, follow.

Throughout this note, X and Y are (real or complex) Banach spaces, S_X and B_X denote, respectively, the unit sphere and the closed unit ball of X, and $\mathcal{L}(X,Y)$ denotes the space of bounded linear operators from X to Y. The symbol w^* stands for the weak* topology on the dual space X^* of X.

The objective of this note is to prove the following refinement of [1, Lemma 2.3] and [4, Lemma 3.5] (in [1], the lemma was proven for real Banach spaces). For the concepts of an *Asplund operator* and 1-normingness we refer, respectively, to [4, Section 3] and [1, Section 2].

Lemma 1 (cf. [1, Lemma 2.3] and [4, Lemma 3.5]). Let $T: X \to Y$ be an Asplund operator with ||T|| = 1, let $0 < \varepsilon < \sqrt{2}$, and let $x_0 \in S_X$ be such that

$$\|Tx_0\| > 1 - \frac{\varepsilon^2}{2}.$$

Then, for every 1-norming set $B \subset B_{Y^*}$, there exist

- (1) a w^{*}-open set $U \subset X^*$ such that $U \cap T^*(B) \neq \emptyset$,
- (2) elements $y^* \in S_{X^*}$ and $u_0 \in S_X$ with $|y^*(u_0)| = 1$ such that

$$||x_0 - u_0|| < \varepsilon$$
 and $\sup_{z^* \in U \cap T^*(B)} ||z^* - y^*|| < \varepsilon.$

https://doi.org/10.12697/ACUTM.2024.28.10

Received January 11, 2024.

²⁰²⁰ Mathematics Subject Classification. Primary 46B20, 46B22, 46J10; Secondary 47B07, 47B10.

Key words and phrases. Bishop–Phelps–Bollobás, Asplund operator, norm-attaining operator, uniform Banach algebra.

JAAGUP KIRME

Recall that a subset C of X^* is said to be *norm-fragmented* in the w^* -topology if, for every non-empty subset A of C and every $\varepsilon > 0$, there exists a non-empty w^* -open subset U of X^* such that $A \cap U \neq \emptyset$ and the norm-diameter diam_{||·||} $(A \cap U) < \varepsilon$ (see [1, Section 2] and [7, §1]).

Proof of Lemma 1. We follow the main idea of the proof of [1, Lemma 2.3]. As in [1, proof of Lemma 2.3], first observe that the adjoint operator T^* maps B_{Y^*} to a w^* -compact subset of X^* which is norm-fragmented in the w^* -topology.

Let $B \subset B_{Y^*}$ be a 1-norming subset. Pick a positive real number $\gamma < \varepsilon$ such that $||Tx_0|| > 1 - \frac{\gamma^2}{2}$. Since B is 1-norming, there exists $b_0^* \in B$ such that

$$|(T^*b_0^*)(x_0)| = |b_0^*(Tx_0)| > 1 - \frac{\gamma^2}{2}.$$

Now the set

$$U_1 := \left\{ x^* \in X^* : |x^*(x_0)| > 1 - \frac{\gamma^2}{2} \right\}$$

is w^* -open and

$$T^*b_0^* \in U_1 \cap T^*(B) \subset T^*(B_{Y^*}) \subset B_{X^*}.$$

Since the set $T^*(B_{Y^*})$ is norm-fragmented in the w^* -topology and the set $U_1 \cap T^*(B)$ is non-empty, there exists a w^* -open set $U_2 \subset X^*$ such that $(U_1 \cap T^*(B)) \cap U_2 \neq \emptyset$ and

$$\operatorname{diam}_{\|\cdot\|}((U_1 \cap T^*(B)) \cap U_2) \le \varepsilon - \gamma.$$
(1)

Defining $U := U_1 \cap U_2$, the set U is a w^* -open subset of X^* . Fix any $x_0^* \in U \cap T^*(B)$; then $x_0^* \in T^*(B) \subset T^*(B_{Y^*}) \subset B_{X^*}$ and, since $x_0^* \in U_1$, we have

$$|x_0^*(x_0)| > 1 - \frac{\gamma^2}{2}$$

From [6, Corollary 2.4] it follows that there exist $y^* \in S_{X^*}$ and $u_0 \in S_X$ such that $|y^*(u_0)| = 1$, and

$$||x_0 - u_0|| < \gamma < \varepsilon$$
 and $||x_0^* - y^*|| < \gamma$.

Now, for any $z^* \in U \cap T^*(B)$, we have $||z^* - x_0^*|| \leq \varepsilon - \gamma$ by (1) and therefore

$$\sup_{z^* \in U \cap T^*(B)} \|z^* - y^*\| \le \sup_{z^* \in U \cap T^*(B)} \|z^* - x_0^*\| + \|x_0^* - y^*\| < \varepsilon.$$

Remark 1. The estimate " $||z^* - y^*|| < \varepsilon$ for every $z^* \in U \cap T^*(B)$ " in Lemma 1 refines the estimate " $||z^* - y^*|| < 3\varepsilon$ for every $z^* \in U \cap T^*(B)$ " in [1, Lemma 2.3]. "One ε " of this refinement is achieved by using instead of the original Bishop–Phelps–Bollobás theorem [2, Theorem 1] (or more precisely, its corollary [1, Remark 2.2]) its sharper version [6, Corollary 2.4].

142

"The other ε " of this refinement is achieved by choosing the b_0^* , U_1 , U_2 , and y^* in a more precise manner (starting by picking a positive real number γ with $\gamma < \varepsilon$ such that $||Tx_0|| > 1 - \frac{\gamma^2}{2}$).

Using Lemma 1 instead of [1, Lemma 2.3] in the proof of [1, Theorem 2.4] gives the following refinement of [1, Theorem 2.4] (with the estimate $||T - S|| < 3\varepsilon$ in [1, Theorem 2.4] refined to $||T - S|| < \varepsilon$).

Theorem 1 (cf. [1, Theorem 2.4]). Let L be a locally compact Hausdorff space, let $T: X \to C_0(L)$ be an Asplund operator with ||T|| = 1, let $0 < \varepsilon < \sqrt{2}$, and let $x_0 \in S_X$ be such that

$$\|Tx_0\| > 1 - \frac{\varepsilon^2}{2}.$$

Then there exist $u_0 \in S_X$ and an Asplund operator $S \in S_{\mathcal{L}(X,C_0(L))}$ such that

$$Su_0 \parallel = 1, \quad \parallel x_0 - u_0 \parallel < \varepsilon, \quad and \quad \parallel T - S \parallel < \varepsilon$$

Theorem 1 was partially generalised and refined by Cascalez, Guirao, and Kadets in [4, Theorem 3.6]. The refinement in Lemma 1 when compared to [4, Lemma 3.5] carries on to [4, Theorem 3.6]: the estimate $||T - \tilde{T}|| < 2\varepsilon$ in [4, Theorem 3.6] is refined to $||T - \tilde{T}|| < \varepsilon$ in the following theorem.

Theorem 2 (cf. [4, Theorem 3.6]). Let \mathfrak{A} be a uniform algebra, let $T: X \to \mathfrak{A}$ be an Asplund operator with ||T|| = 1, let $0 < \varepsilon < \sqrt{2}$, and let $x_0 \in S_X$ be such that

$$\|Tx_0\| > 1 - \frac{\varepsilon^2}{2}$$

Then there exist $u_0 \in S_X$ and an Asplund operator $\tilde{T} \in S_{\mathfrak{L}(X,\mathfrak{A})}$ such that

$$\|\tilde{T}u_0\| = 1, \quad \|x_0 - u_0\| < \varepsilon, \quad and \quad \|T - \tilde{T}\| < \varepsilon.$$

Proof. Pick a positive real number γ with $\gamma < \varepsilon$ satisfying $||Tx_0|| > 1 - \frac{\gamma^2}{2}$, and let a positive real number ε' satisfy $4\varepsilon' < \varepsilon$ and $2\varepsilon' < \varepsilon - \gamma$. The result is obtained by following the proof of [4, Theorem 3.6] using this ε' and applying Lemma 1 with γ in the place of ε instead of [4, Lemma 3.5] as in the proof of [4, Theorem 3.6].

Remark 2. The estimates achieved in Theorems 1 and 2 are in some sense optimal: see the remark in [2].

Remark 3. Theorem 1 was proven in [3, Theorem 1.2] for the real case by a different argument (using a characterisation of Asplund operators via Fréchet differentiability properties of convex functions [3, Theorem 3.4]). In fact, both Theorems 1 and 2 are contained in [5, Theorem 3.4]. Indeed, every Asplund operator $T \in \mathcal{L}(X, Y)$ is Γ -flat for every $\Gamma \subset B_{Y^*}$ by [5, Example A], every uniform algebra has simple ACK structure by [5, Corollary 4.6]

(we refer to [5, Definitions 2.8 and 3.1] for the concepts of Γ -flatness and ACK structure), and it is straightforward to verify that also the space $C_0(L)$ has simple ACK structure. To see this, defining $\Gamma := \{\delta_s : s \in L\}$ where $\delta_s \colon C_0(L) \ni f \mapsto f(s)$ is the point evaluation functional, observe that $\Gamma \subset C_0(L)$ B_{Y^*} is a 1-norming set. Let $\varepsilon > 0$ and let $U \subset \Gamma$ be a non-empty relatively w^* -open subset. Since the mapping $L \ni s \mapsto \delta_s \in \Gamma$ is continuous with respect to the relative w^* -topology on Γ , the original W of U with respect to this mapping is an open subset of L. Picking an arbitrary $s \in W$, Urysohn's lemma produces a function $e \in C_0(L)$ with values in the segment [0, 1] such that e(s) = 1 and e = 0 outside the set W. Define $V := \{v^* \in U : |v^*(e) - v^*(e)| \le 0\}$ $| < \varepsilon \}$; then V is a non-empty (with $\delta_s \in V$) relatively w^* -open subset of U; thus the original W' of V with respect to the mapping $L \ni s \mapsto \delta_s$ is an open subset of L; hence Urysohn's lemma produces a function $h \in C_0(L)$ with values in the segment [0,1] such that h(s) = 1 and h = 0 outside the set W'. Defining $x_1^* := \delta_s$, and $F: C_0(L) \ni f \mapsto h \cdot g \in C_0(L)$, we have x_1^* and $F \in \mathcal{L}(C_0(L), C_0(L))$, and the conditions (I)–(III), (IV)', (V), and (VI) in [5, Definition 3.1] hold.

Acknowledgements

Research is supported by the Estonian Research Council grant PRG1901. The author thanks the anonymous referee for the swift review.

References

- R. M. Aron, B. Cascales, and O. Kozhushkina, The Bishop-Phelps-Bollobás theorem and Asplund operators, Proc. Amer. Math. Soc. 139 (2011), no. 10, 3553–3560.
- [2] B. Bollobás, An extension to the theorem of Bishop and Phelps, Bull. London Math. Soc. 2 (1970), 181–182.
- [3] L. X. Cheng, Q. J. Cheng, K. K. Xu, W. Zhang, and Z. M. Zheng, A Bishop-Phelps-Bollobás theorem for Asplund operators, Acta Math. Sin. (Engl. Ser.) 36 (2020), no. 7, 765–782.
- [4] B. Cascales, A. J. Guirao, and V. Kadets, A Bishop-Phelps-Bollobás type theorem for uniform algebras, Adv. Math. 240 (2013), 370–382.
- [5] B. Cascales, A. J. Guirao, V. Kadets, and M. Soloviova, Γ-flatness and Bishop-Phelps-Bollobás type theorems for operators, J. Funct. Anal. 274 (2018), no. 3, 863–888.
- [6] M. Chica, V. Kadets, M. Martín, S. Moreno-Pulido, and F. Rambla-Barreno, Bishop– Phelps–Bollobás moduli of a Banach space, J. Math. Anal. Appl. 412 (2014), no. 2, 697–719.
- [7] I. Namioka, Radon-Nikodým compact spaces and fragmentability, Mathematika 34 (1987), no. 2, 258–281.

Institute of Mathematics and Statistics, University of Tartu, Narva MNT 18, 51009, Tartu, Estonia

E-mail address: jaagup.kirme@ut.ee