Rate of convergence of Fourier–Legendre series of functions of the class $(n^{\alpha})BV^{p}[-1,1]$

RAMESHBHAI KARSHNABHAI BERA AND BHIKHA LILA GHODADRA

ABSTRACT. In this paper, the rate of convergence of the Fourier–Legendre series of functions of the class $(n^{\alpha})BV^{p}[-1,1]$ and in particular, the class $BV^{p}[-1,1]$, are estimated. The result obtained is similar to a result of Bojanić and Vuilleumier for the Fourier–Legendre series of functions of bounded variation, and is applicable to a wider class.

1. Introduction

In this section, we recall certain results about pointwise convergence and rate of convergence of a Fourier–Legendre series. We need the following definitions.

Definition 1. Given a function $f : [a, b] \to \mathbb{R}$, a non-decreasing sequence $\Lambda = \{\lambda_k\}_{k \in \mathbb{N}}$ of positive numbers such that $\sum \frac{1}{\lambda_k}$ diverges, and a real number $p, 1 \leq p < \infty$, we say that $f \in \Lambda BV^p[a, b]$ (that is, f is of p- Λ -bounded variation over [a, b]) if

$$V_{p\Lambda}(f,[a,b]) = \sup\left\{\sum_{k=1}^{n} \frac{|f(a_k) - f(b_k)|^p}{\lambda_k}\right\}^{1/p} < \infty,$$

where the supremum is extended over all sequences $\{I_k\}$ of non-overlapping intervals with $I_k = [a_k, b_k] \subset [a, b], \ k = 1, ..., n$.

When $\Lambda = \{1\}$ and p = 1, the class is referred to as the class of functions of bounded variation (BV) and we denote the corresponding variation of fover an interval [a, b] by V(f, a, b). When $\Lambda = \{n^{\alpha}\}, 0 < \alpha < 1$ and p = 1, we denote the class by (n^{α}) BV and the corresponding variation of f over

Received February 5, 2024.

Corresponding author: R. K. Bera

²⁰²⁰ Mathematics Subject Classification. 41A25, 42C10.

Key words and phrases. Fourier–Legendre series, generalized bounded variation, pointwise convergence, rate of convergence.

https://doi.org/10.12697/ACUTM.2024.28.12

an interval [a, b] by $V_{n^{\alpha}}(f, a, b)$. When $\Lambda = \{n^{\alpha}\}, 0 \leq \alpha < 1$, we denote the class by (n^{α}) BV^{*p*} and the corresponding variation of f over an interval [a, b] by $V_{pn^{\alpha}}(f, a, b)$. When $\Lambda = \{1\}$, the class is referred to as the class of functions of *p*-bounded variation (BV^{*p*}) and we denote the corresponding variation of f over an interval [a, b] by $V_p(f, a, b)$.

We note that if f is of p- Λ -bounded variation, then f(x+0) and f(x-0) exist at every point x of [a,b] (see [6, Theorem 2]). We define, for $x \in [a,b]$,

$$s(f,x) = \frac{1}{2}(f(x+0) + f(x-0))$$

and

$$\phi_x(t) = \begin{cases} f(t) - f(x - 0), & a \le t < x, \\ 0, & t = x, \\ f(t) - f(x + 0), & x < t \le b. \end{cases}$$

Definition 2. Let $P_n(x)$ be the Legendre polynomial of degree n normalized so that $P_n(1) = 1$. If f is an integrable function on [-1, 1], then the *Fourier-Legendre series* (see, e.g., [5, p. 237, Section 8.3]) of f is the series

$$\sum_{k=0}^{\infty} a_k(f) P_k(x)$$

where

$$a_k(f) = \left(k + \frac{1}{2}\right) \int_{-1}^{1} f(t) P_k(t) dt, \ k = 0, 1, 2, \dots$$

The n^{th} symmetric partial sum of the Fourier–Legendre series of f, denoted by $S_n(f, x)$, is defined as

$$S_n(f,x) = \sum_{k=0}^n a_k(f) P_k(x), \quad n = 0, 1, 2, \dots,$$

which can be written as

$$S_n(f,x) = \int_{-1}^1 f(t) K_n(x,t) dt,$$

where

$$K_n(x,t) = \sum_{k=0}^{n} \left(k + \frac{1}{2}\right) P_k(x) P_k(t),$$

or equivalently (see [2]),

$$K_n(x,t) = \frac{n+1}{2} \left(\frac{P_{n+1}(x)P_n(t) - P_n(x)P_{n+1}(t)}{x-t} \right).$$

Definition 3. The (ordinary) oscillation of a function $h : [a, b] \to \mathbb{C}$ over a subinterval J of [a, b] is defined as

$$\operatorname{osc}(h, J) = \sup\{|h(t) - h(t')| : t, t' \in J\}.$$

We also define nodes $s_{j,n}$ and $t_{j,n}$ as

$$s_{j,n} = x + \frac{j(1-x)}{n}, \ t_{j,n} = x - \frac{j(1+x)}{n}, \ j = 0, 1, \dots, n,$$

for $x \in (-1, 1)$.

Hobson [3] proved the following theorem concerning the pointwise convergence of Fourier–Legendre series of functions of bounded variation.

Theorem 1. If f is of bounded variation on [-1,1], then its Fourier-Legendre series converges to s(f,x) at each point $x \in (-1,1)$, i.e.,

$$\lim_{n \to \infty} (S_n(f, x) - s(f, x)) = 0.$$

Bojanić and Vuilleumier [2, Theorem 1] has quantified Theorem 1 by estimating the rate of convergence of the Fourier–Legendre series at that point by proving the following theorem.

Theorem 2. Let f be a function of bounded variation on [-1,1]. Then, for $x \in (-1,1)$ and $n \geq 2$, we have

$$|S_n(f,x) - s(f,x)| \le \frac{28}{n(1-x^2)^{3/2}} \sum_{j=1}^n V(\phi_x, t_{1,j}, s_{1,j}) + \frac{1}{\pi n(1-x^2)} |f(x+0) - f(x-0)|.$$
(1)

The right-hand side of (1) converges to zero as $n \to \infty$, since continuity of $\phi_x(t)$ at t = x implies that

$$V(\phi_x, x - \delta, x + \delta) \to 0 \text{ as } \delta \to 0_+.$$

In [1], we have extended Theorem 2 for functions of the class (n^{α}) BV as follows.

Theorem 3. Let $f \in (n^{\alpha})BV[-1,1]$, $0 < \alpha < 1$. Then, for $x \in (-1,1)$ and $n \ge 2$, we have

$$\begin{aligned} |S_{n}(f,x) - s(f,x)| \\ \leq & \frac{c_{\alpha}}{n^{1-\alpha}} \sum_{j=1}^{n-1} \frac{1}{j^{\alpha}} [c_{1,x} V_{n^{\alpha}}(\phi_{x}, t_{1,j}, x) + c_{2,x} V_{n^{\alpha}}(\phi_{x}, x, s_{1,j})] \\ & + \sum_{j=[n/2]+1}^{n-1} \frac{(c_{1,x} V_{n^{\alpha}}(\phi_{x}, t_{j+1,n}, t_{j,n}) + c_{2,x} V_{n^{\alpha}}(\phi_{x}, s_{j,n}, s_{j+1,n}))}{(j(n-j))^{1/2}} \\ & + \frac{(1-x^{2})^{-1}}{\pi n} |f(x+0) - f(x-0)|, \end{aligned}$$
(2)

where $c_{\alpha} = 1 - \alpha + 2^{1-\alpha}$ and $c_{i,x} = \frac{2}{(1-x^2)^{3/2}} \left(\frac{8(1-x^2)^{1/2}}{\pi} + 3(1+(-1)^i x) \right)$, for i = 1, 2. The right-hand side of (2) converges to zero as $n \to \infty$, since continuity of $\phi_x(t)$ at t = x implies (in view of [8, Theorem 3]) that

$$V_{\alpha}(\phi_x, x - \delta, x + \delta) \to 0 \text{ as } \delta \to 0_+$$

and also $V_{\alpha}(\phi_x, x + \delta', x + \delta)$ and $V_{\alpha}(\phi_x, x - \delta, x - \delta')$ tends to zero as $0 < \delta' < \delta \rightarrow 0_+$.

In the present paper, our main goal is to estimate the rate of convergence of Fourier–Legendre series of functions of the class $(n^{\alpha})BV^{p}$ and in particular, of the *p*-bounded variation class.

2. Main result

Our main result is the following.

Theorem 4. Let $f \in (n^{\alpha})BV^{p}[-1,1]$ for p > 1 and $0 < \alpha < 1/p$. Then, for $x \in (-1,1)$ and $n \ge 2$, we have

$$\begin{aligned} |S_{n}(f,x) - s(f,x)| \\ &\leq \left[\frac{C_{\alpha,p}}{n^{1/p-\alpha}} \sum_{j=1}^{n-1} \frac{1}{j^{1+\alpha-1/p}} \left[C_{1}^{p} V_{pn^{\alpha}}^{p} \left(\phi_{x}, t_{1,j}, x\right) + C_{2}^{p} V_{pn^{\alpha}}^{p} \left(\phi_{x}, x, s_{1,j}\right) \right] \right]^{1/p} \\ &\quad + \frac{4\sqrt{2}}{1-x^{2}} \sum_{j=[n/2]+1}^{n-1} \frac{\left(V_{pn^{\alpha}}(\phi_{x}, t_{j+1,n}, t_{j,n}) + V_{pn^{\alpha}}(\phi_{x}, s_{j,n}, s_{j+1,n})\right)}{(j(n-j))^{1/2}} \\ &\quad + \frac{1}{\pi n(1-x^{2})} |f(x+0) - f(x-0)|, \end{aligned}$$
(3)

where

$$C_{1} = \frac{1}{1 - x^{2}} \left(4\sqrt{2} + 6\sqrt{\left(\frac{1 + x}{1 - x}\right)} \right),$$

$$C_{2} = \frac{1}{1 - x^{2}} \left(4\sqrt{2} + 6\sqrt{\left(\frac{1 - x}{1 + x}\right)} \right),$$
and
$$C_{\alpha, p} = 2^{p} (1 - \alpha + 1/p) \left(\sum_{j=1}^{n} j^{-1 - 1/p} \right)^{p-1}.$$

The right-hand side of (3) converges to zero as $n \to \infty$, since continuity of $\phi_x(t)$ at t = x implies (in view of ([4, Lemma 2.2])) that

$$V_{pn^{\alpha}}(\phi_x, x - \delta, x + \delta) \to 0 \text{ as } \delta \to 0_+$$

and also $V_{pn^{\alpha}}(\phi_x, x + \delta', x + \delta)$ and $V_{pn^{\alpha}}(\phi_x, x - \delta, x - \delta')$ tend to zero as $0 < \delta' < \delta \rightarrow 0_+$.

In particular, for $\alpha = 0$, our Theorem 4 may be viewed as a quantitative result for convergence of Fourier–Legendre series of functions of *p*-bounded variation class. It sounds as follows.

Corollary 1. Let $f \in BV^p[-1,1]$ for p > 1. Then, for $x \in (-1,1)$ and $n \ge 2$, we have

$$\begin{split} |S_n(f,x) - s(f,x)| \\ &\leq \left[\frac{C_{0,p}}{n^{1/p}} \sum_{j=1}^{n-1} \frac{1}{j^{1-1/p}} \left[C_1^p V_p^p(\phi_x, t_{1,j}, x) + C_2^p V_p^p(\phi_x, x, s_{1,j}) \right] \right]^{1/p} \\ &+ \frac{4\sqrt{2}}{1-x^2} \sum_{j=[n/2]+1}^{n-1} \frac{(V_p(\phi_x, t_{j+1,n}, t_{j,n}) + V_p(\phi_x, s_{j,n}, s_{j+1,n}))}{(j(n-j))^{1/2}} \\ &+ \frac{1}{\pi n(1-x^2)} |f(x+0) - f(x-0)|. \end{split}$$

Remark 1. Our Theorem 4 may be viewed as a generalization of Theorem 3 for functions of $(n^{\alpha})BV^{p}$ and, in particular, Corollary 1 is a quantitative analogue of Theorem 2 for functions of *p*-bounded variation, except for exact constant.

3. Proof

The proof of Theorem 4 is based on a number of properties of Legendre polynomials. The proofs of these properties can be found in [2, Section 2] and [1]. For $x \in (-1, 1)$ and $n \ge 2$, we have

$$|P_n(x)| \le \left(\frac{2}{\pi n(1-x^2)}\right)^{1/2},\tag{4}$$

$$\int_{x}^{1} K_{n}(x,t)dt = \frac{1}{2} - \frac{1}{2}P_{n}(x)P_{n+1}(x),$$
(5)

$$\int_{-1}^{x} K_n(x,t)dt = \frac{1}{2} + \frac{1}{2}P_n(x)P_{n+1}(x),$$
(6)

$$\left| \int_{-1}^{t} K_n(x,\tau) d\tau \right| \le \frac{6}{n(x-t)} (1-x^2)^{-1/2}, \ t \in [-1,x),$$
(7)

$$\int_{t_{1,n}}^{s_{1,n}} |K_n(x,t)| dt \le \frac{4}{1-x^2},\tag{8}$$

$$\int_{t_{j+1,n}}^{t_{j,n}} |K_n(x,u)| du \le \frac{4\sqrt{2n}}{\pi j(1-x^2)(n-j)^{1/2}}, \text{ for } j=1,2,\dots,n-1.$$
(9)

180 RAMESHBHAI KARSHNABHAI BERA AND BHIKHA LILA GHODADRA

Proof of Theorem 4. For any fixed $x \in (-1, 1)$, using equalities (5) and (6), we have

$$S_n(f,x) - s(f,x) = \int_{-1}^1 \phi_x(t) K_n(x,t) dt - \frac{1}{2} (f(x+0) - f(x-0)) P_n(x) P_{n+1}(x).$$
(10)

We decompose the integral on the right-hand side of (10) in two parts, as follows:

$$\int_{-1}^{1} \phi_x(u) K_n(x, u) du = \left(\int_{-1}^{x} + \int_{x}^{1}\right) \phi_x(u) K_n(x, u) du = A_1 + A_2, \text{ say.}$$
(11)

Now, we have

$$A_{1} = \int_{-1}^{x} \phi_{x}(u) K_{n}(x, u) du = \sum_{j=0}^{n-1} \int_{t_{j+1,n}}^{t_{j,n}} \phi_{x}(u) K_{n}(x, u) du$$
$$= \sum_{j=0}^{n-1} \int_{t_{j+1,n}}^{t_{j,n}} (\phi_{x}(u) - \phi_{x}(t_{j,n})) K_{n}(x, u) du$$
$$+ \sum_{j=1}^{n-1} \int_{t_{j+1,n}}^{t_{j,n}} \phi_{x}(t_{j,n}) K_{n}(x, u) du$$
$$= A_{11} + A_{12}, \text{ say.}$$
(12)

Using inequalities (8) and (9), first we estimate A_{11} , as follows:

$$\begin{aligned} |A_{11}| &\leq \sum_{j=0}^{n-1} \operatorname{osc}(\phi_x, [t_{j+1,n}, t_{j,n}]) \int_{t_{j+1,n}}^{t_{j,n}} |K_n(x, u)| du \\ &= \sum_{j=1}^{n-1} \operatorname{osc}(\phi_x, [t_{j+1,n}, t_{j,n}]) \int_{t_{j+1,n}}^{t_{j,n}} |K_n(x, u)| du \\ &\quad + \operatorname{osc}(\phi_x, [t_{1,n}, t_{0,n}]) \int_{t_{1,n}}^{t_{0,n}} |K_n(x, u)| du \\ &\leq \frac{4\sqrt{2n}}{\pi(1-x^2)} \sum_{j=1}^{n-1} \frac{1}{j\sqrt{n-j}} \operatorname{osc}(\phi_x, [t_{j+1,n}, t_{j,n}]) + \operatorname{osc}(\phi_x, [t_{1,n}, t_{0,n}]) \frac{4}{1-x^2} \\ &\leq \frac{4}{(1-x^2)} \bigg\{ \frac{\sqrt{2}}{\pi} \sum_{j=1}^{n-1} \frac{\sqrt{n}}{j\sqrt{n-j}} \operatorname{osc}(\phi_x, [t_{j+1,n}, t_{j,n}]) + \operatorname{osc}(\phi_x, [t_{1,n}, t_{0,n}]) \bigg\} \\ &\leq \frac{4}{(1-x^2)} \bigg\{ \sum_{j=1}^{n-1} \frac{\sqrt{n}}{(j+1)\sqrt{n-j}} \operatorname{osc}(\phi_x, [t_{j+1,n}, t_{j,n}]) + \operatorname{osc}(\phi_x, [t_{1,n}, t_{0,n}]) \bigg\} \end{aligned}$$

$$= \frac{4}{(1-x^2)} \sum_{j=0}^{n-1} \frac{\sqrt{n}}{(j+1)\sqrt{n-j}} \operatorname{osc}(\phi_x, [t_{j+1,n}, t_{j,n}])$$

$$\leq \frac{4\sqrt{2}}{(1-x^2)} \left\{ \sum_{j=0}^{[n/2]} \frac{1}{j+1} + \sum_{j=[n/2]+1}^{n-1} \frac{1}{\sqrt{j(n-j)}} \right\} \operatorname{osc}(\phi_x, [t_{j+1,n}, t_{j,n}]).$$
(13)

Now, we estimate A_{12} . We have

$$\begin{aligned} A_{12} &= \sum_{j=1}^{n-1} \phi_x(t_{j,n}) \left(\int_{-1}^{t_{j,n}} K_n(x,u) du - \int_{-1}^{t_{j+1,n}} K_n(x,u) du \right) \\ &= \sum_{j=1}^{n-1} \int_{-1}^{t_{j,n}} \phi_x(t_{j,n}) K_n(x,u) du - \sum_{j=2}^n \int_{-1}^{t_{j,n}} \phi_x(t_{j-1,n}) K_n(x,u) du \\ &= \sum_{j=1}^{n-1} \int_{-1}^{t_{j,n}} (\phi_x(t_{j,n}) - \phi_x(t_{j-1,n})) K_n(x,u) du \\ &+ \int_{-1}^{t_{1,n}} \phi_x(t_{0,n}) K_n(x,u) du - \int_{-1}^{t_{n,n}} \phi_x(t_{n-1,n}) K_n(x,u) du. \end{aligned}$$

Since $t_{0,n} = x$, $\phi_x(t_{0,n}) = \phi_x(x) = 0$ and $t_{n,n} = -1$, the last two terms on the right-hand side of the above equation vanish. Also, in view of (7), we have

$$|A_{12}| \leq \sum_{j=1}^{n-1} |\phi_x(t_{j,n}) - \phi_x(t_{j-1,n})| \left| \int_{-1}^{x - \frac{j(1+x)}{n}} K_n(x,u) du \right|$$
$$\leq \frac{6}{(1+x)(1-x^2)^{1/2}} \sum_{j=1}^{n-1} \frac{1}{j} \operatorname{osc}(\phi_x, [t_{j,n}, t_{j-1,n}])$$
$$= \frac{6(1-x)}{(1-x^2)^{3/2}} \sum_{j=0}^{n-2} \frac{1}{j+1} \operatorname{osc}(\phi_x, [t_{j+1,n}, t_{j,n}]).$$
(14)

Using (13) and (14) in (12), we get

$$|A_{1}| \leq |A_{11}| + |A_{12}| \leq C_{1} \sum_{j=0}^{n-1} \frac{\operatorname{osc}(\phi_{x}, [t_{j+1,n}, t_{j,n}])}{j+1} + \frac{4\sqrt{2}}{(1-x^{2})} \sum_{j=[n/2]+1}^{n-1} \frac{\operatorname{osc}(\phi_{x}, [t_{j+1,n}, t_{j,n}])}{(j(n-j))^{1/2}},$$
(15)

where $C_1 = \frac{1}{(1-x^2)} \left(4\sqrt{2} + 6\sqrt{\frac{1-x}{1+x}} \right).$

181

Similarly, one can prove

$$|A_2| \le C_2 \sum_{j=0}^{n-1} \frac{\operatorname{osc}(\phi_x, [s_{j,n}, s_{j+1,n}])}{j+1} + \frac{4\sqrt{2}}{(1-x^2)} \sum_{j=[n/2]+1}^{n-1} \frac{\operatorname{osc}(\phi_x, [s_{j,n}, s_{j+1,n}])}{(j(n-j))^{1/2}}, \quad (16)$$

where $C_2 = \frac{1}{(1-x^2)} \left(4\sqrt{2} + 6\sqrt{\frac{1+x}{1-x}} \right)$. Therefore, from (11), (15), and (16), we have

$$\begin{aligned} \left| \int_{-1}^{1} \phi_{x}(u) K_{n}(x, u) du \right| &\leq |A_{1}| + |A_{2}| \\ &\leq \sum_{j=0}^{n-1} \frac{C_{1} \operatorname{osc}(\phi_{x}, [t_{j+1,n}, t_{j,n}]) + C_{2} \operatorname{osc}(\phi_{x}, [s_{j,n}, s_{j+1,n}])}{j+1} \\ &+ \frac{4\sqrt{2}}{(1-x^{2})} \sum_{j=[n/2]+1}^{n-1} \frac{\operatorname{osc}(\phi_{x}, [t_{j+1,n}, t_{j,n}]) + \operatorname{osc}(\phi_{x}, [s_{j,n}, s_{j+1,n}])}{(j(n-j))^{1/2}} \\ &\leq \sum_{j=0}^{n-1} \frac{C_{1} \operatorname{osc}(\phi_{x}, [t_{j+1,n}, t_{j,n}]) + C_{2} \operatorname{osc}(\phi_{x}, [s_{j,n}, s_{j+1,n}])}{j+1} \\ &+ \frac{4\sqrt{2}}{(1-x^{2})} \sum_{j=[n/2]+1}^{n-1} \frac{(V_{pn^{\alpha}}(\phi_{x}, t_{j+1,n}, t_{j,n}) + V_{pn^{\alpha}}(\phi_{x}, s_{j,n}, s_{j+1,n}))}{(j(n-j))^{1/2}}, \end{aligned}$$

because by Definition 1, we have $osc(\phi_x, [t_{j+1,n}, t_{j,n}]) \leq V_{pn^{\alpha}}(\phi_x, t_{j+1,n}, t_{j,n})$ and $\operatorname{osc}(\phi_x, [s_{j,n}, s_{j+1,n}]) \leq V_{pn^{\alpha}}(\phi_x, s_{j,n}, s_{j+1,n})$. Now for $p \geq 1$, applying Holder's inequality in the first sum of the right

hand side of the inequality (17), we have

$$\begin{split} \sum_{j=0}^{n-1} & \frac{C_1 \operatorname{osc}(\phi_x, [t_{j+1,n}, t_{j,n}]) + C_2 \operatorname{osc}(\phi_x, [s_{j,n}, s_{j+1,n}])}{(j+1)^{1-1/p^2+1/p^2}} \\ & \leq \left(\sum_{j=0}^{n-1} \frac{(C_1 \operatorname{osc}(\phi_x, [t_{j+1,n}, t_{j,n}]) + C_2 \operatorname{osc}(\phi_x, [s_{j,n}, s_{j+1,n}]))^p}{(j+1)^{1/p}} \right)^{1/p} \\ & \qquad \times \left(\sum_{j=0}^{n-1} \frac{1}{(j+1)^{1+1/p}} \right)^{1-1/p} \end{split}$$

RATE OF CONVERGENCE OF FOURIER–LEGENDRE SERIES

$$\leq 2 \left(\sum_{j=0}^{n-1} \frac{(C_1 \operatorname{osc}(\phi_x, [t_{j+1,n}, t_{j,n}]))^p + (C_2 \operatorname{osc}(\phi_x, [s_{j,n}, s_{j+1,n}]))^p}{(j+1)^{1/p}} \right)^{1/p} \times \left(\sum_{j=1}^n \frac{1}{j^{1+1/p}} \right)^{1-1/p}.$$
(18)

Now, for fixed n, let

$$M_j = \sum_{i=0}^j \frac{1}{(i+1)^{\alpha}} (\operatorname{osc}(\phi_x, [t_{i+1,n}, t_{i,n}]))^p, \ j = 0, 1, \dots, n-1.$$

Then it follows from Definition 1 that

$$\mathcal{M}_j \le V_{pn^{\alpha}}^p(\phi_x, t_{j+1,n}, x). \tag{19}$$

Also, define a function on the interval $(-1, t_{1,n}]$ by

$$M(u) = M_{\left[\frac{n(x-u)}{(1+x)}\right]-1}, \ u \in (-1, t_{1,n}].$$

Now, for j = 0, 1, ..., n - 2, we have

$$u \in (t_{j+2,n}, t_{j+1,n}] \implies x - \frac{(j+2)(1+x)}{n} < u \le x - \frac{(j+1)(1+x)}{n}$$
$$\implies \frac{(j+1)(1+x)}{n} \le x - u < \frac{(j+2)(1+x)}{n}$$
$$\implies j+1 \le \frac{n(x-u)}{1+x} < j+2 \implies M(u) = M_j.$$
(20)

For $0 < \alpha < 1/p$, using the partial summation formula (see [7, Theorem 3.41]) with $a_j = \frac{1}{(j+1)^{\alpha}} (\operatorname{osc}(\phi_x, [t_{j+1,n}, t_{j,n}]))^p$ and $b_j = (j+1)^{\alpha-1/p}$, we can write the given summation as follows:

$$\sum_{j=0}^{n-1} \frac{(\operatorname{osc}(\phi_x, [t_{j+1,n}, t_{j,n}]))^p}{(j+1)^{1/p}} = \sum_{j=0}^{n-1} \frac{(j+1)^{\alpha-1/p}}{(j+1)^{\alpha}} (\operatorname{osc}(\phi_x, [t_{j+1,n}, t_{j,n}]))^p$$
$$= \sum_{j=0}^{n-2} M_j \left((j+1)^{\alpha-1/p} - (j+2)^{\alpha-1/p} \right)$$
$$+ n^{\alpha-1/p} M_{n-1}$$
$$= B_1 + B_2, \text{ say.}$$
(21)

183

184 RAMESHBHAI KARSHNABHAI BERA AND BHIKHA LILA GHODADRA

We will use the properties of the Riemann–Stieltjes integral to estimate B_1 . Since $0 < \alpha < 1/p$, the function $(-u^{\alpha-1/p})$ is continuous and nondecreasing for u > 0. Therefore, we have

$$B_{1} = \sum_{j=0}^{n-2} M_{j} \left((j+1)^{\alpha-1/p} - (j+2)^{\alpha-1/p} \right) = \sum_{j=0}^{n-2} M_{j} \int_{j+1}^{j+2} d(-u^{\alpha-1/p})$$
$$= \sum_{j=0}^{n-2} M_{j} \int_{j+1}^{j+2} (1/p - \alpha) (u^{-1+\alpha-1/p}) du.$$
(22)

Put $u = \frac{n(x-s)}{1+x}$. Then $\frac{du}{ds} = \frac{-n}{1+x}, u \to j+1 \iff s \to x - \frac{(j+1)(1+x)}{n} = t_{j+1,n}$, and $u \to j+2 \iff s \to x - \frac{(j+2)(1+x)}{n} = t_{j+2,n}$. Therefore

$$\int_{j+1}^{j+2} u^{-1+\alpha-1/p} du = \int_{t_{j+1,n}}^{t_{j+2,n}} \left(\frac{n(x-s)}{1+x}\right)^{-1+\alpha-1/p} \left(\frac{-n}{1+x}\right) ds$$
$$= \left(\frac{1+x}{n}\right)^{1/p-\alpha} \int_{t_{j+2,n}}^{t_{j+1,n}} (x-s)^{-1+\alpha-1/p} ds.$$
(23)

Using (23) in (22), and in view of (20), we have

$$B_{1} = (1/p - \alpha) \left(\frac{1+x}{n}\right)^{1/p - \alpha} \sum_{j=0}^{n-2} M_{j} \int_{t_{j+2,n}}^{t_{j+1,n}} (x-s)^{-1+\alpha-1/p} ds$$
$$= (1/p - \alpha) \left(\frac{1+x}{n}\right)^{1/p - \alpha} \int_{-1}^{x - \frac{(1+x)}{n}} M(s)(x-s)^{-1+\alpha-1/p} ds.$$
(24)

Now, put $s = x - \frac{(1+x)}{u}$. Then, we have $s \to -1 \iff u \to 1$, $s \to x - \frac{(1+x)}{n} \iff u \to n$, and $\frac{ds}{du} = (1+x)u^{-2}$. Therefore, from (24), we have $B_1 \leq (1/p - \alpha) \left(\frac{1+x}{n}\right)^{1/p - \alpha}$ $\times \int_1^n M\left(x - \frac{1+x}{u}\right) \left(x - x + \frac{1+x}{u}\right)^{-1+\alpha-1/p} (1+x)u^{-2}du$ $= \frac{(1/p - \alpha)}{n^{1/p - \alpha}} \sum_{j=1}^{n-1} \int_j^{j+1} M\left(x - \frac{1+x}{u}\right) \frac{1}{u^{1+\alpha-1/p}} du.$ (25)

From the definition of M(u), (19) and (20), for $j \le u \le j + 1$, we have

$$M\left(x - \frac{1+x}{u}\right) = M_{\left[\frac{n}{u}\right]-1} \le M_{\left[\frac{n}{j}\right]-1} \le V_{pn^{\alpha}}^{p}\left(\phi_{x}, t_{\left[\frac{n}{j}\right]}, x\right)$$
$$= V_{pn^{\alpha}}^{p}\left(\phi_{x}, x - \frac{\left[\frac{n}{j}\right](1+x)}{n}, x\right)$$

$$\leq V_{pn^{\alpha}}^{p}\left(\phi_{x}, x - \frac{(1+x)}{j}, x\right)$$
(26)

and also

$$\frac{1}{u^{1+\alpha-1/p}} \le \frac{1}{j^{1+\alpha-1/p}}.$$
(27)

Using (26) and (27) in (25), we get

$$B_{1} \leq \frac{(1/p-\alpha)}{n^{1/p-\alpha}} \sum_{j=1}^{n-1} \int_{j}^{j+1} V_{pn^{\alpha}}^{p} \left(\phi_{x}, x - \frac{(1+x)}{j}, x\right) \frac{1}{j^{1+\alpha-1/p}} du$$
$$= \frac{(1/p-\alpha)}{n^{1/p-\alpha}} \sum_{j=1}^{n-1} \frac{1}{j^{1+\alpha-1/p}} V_{pn^{\alpha}}^{p} \left(\phi_{x}, x - \frac{(1+x)}{j}, x\right).$$
(28)

Also, from (19), we get

$$B_{2} = n^{\alpha - 1/p} M_{n-1} \le n^{\alpha - 1/p} V_{pn^{\alpha}}^{p}(\phi_{x}, -1, x)$$
$$\le n^{\alpha - 1/p} \sum_{j=1}^{n-1} \frac{1}{j^{1+\alpha - 1/p}} V_{pn^{\alpha}}^{p}\left(\phi_{x}, x - \frac{(1+x)}{j}, x\right). \quad (29)$$

Using (28) and (29) in (21), we have

$$\sum_{j=0}^{n-1} \frac{\left(\operatorname{osc}(\phi_x, [t_{j+1,n}, t_{j,n}])\right)^p}{(j+1)^{1/p}} \le \frac{1-\alpha+1/p}{n^{1/p-\alpha}} \sum_{j=1}^{n-1} \frac{1}{j^{1+\alpha-1/p}} V_{pn^{\alpha}}^p\left(\phi_x, t_{1,j}, x\right).$$
(30)

Similarly, one can prove

$$\sum_{j=0}^{n-1} \frac{\left(\operatorname{osc}(\phi_x, [s_{j,n}, s_{j+1,n}])\right)^p}{(j+1)^{1/p}} \le \frac{1-\alpha+1/p}{n^{1/p-\alpha}} \sum_{j=1}^{n-1} \frac{1}{j^{1+\alpha-1/p}} V_{pn^{\alpha}}^p\left(\phi_x, x, s_{1,j}\right).$$
(31)

Using (30) and (31) in (18), and then (18) in (17) we get

$$\left| \int_{-1}^{1} \phi_{x}(u) K_{n}(x, u) du \right|$$

$$\leq \left[\frac{C_{\alpha, p}}{n^{1/p - \alpha}} \sum_{j=1}^{n-1} \frac{1}{j^{1+\alpha-1/p}} \left[C_{1}^{p} V_{pn^{\alpha}}^{p} \left(\phi_{x}, t_{1, j}, x\right) + C_{2}^{p} V_{pn^{\alpha}}^{p} \left(\phi_{x}, x, s_{1, j}\right) \right] \right]^{1/p} + \frac{4\sqrt{2}}{1 - x^{2}} \sum_{j=[n/2]+1}^{n-1} \frac{\left(V_{pn^{\alpha}}(\phi_{x}, t_{j+1, n}, t_{j, n}) + V_{pn^{\alpha}}(\phi_{x}, s_{j, n}, s_{j+1, n})\right)}{(j(n-j))^{1/2}}, \quad (32)$$

185

where C_1 and C_2 are as in (15) and (16), respectively. Also, using (4) in the second term on the right-hand side of (10), we get

$$\frac{1}{2}|f(x+0) - f(x-0)||P_n(x)||P_{n+1}(x)| \le \frac{|f(x+0) - f(x-0)|}{n\pi(1-x^2)}.$$
 (33)

This completes the proof of Theorem 4 in view of (10), (32) and (33).

Acknowledgements

The research of the first author was (partially) supported by Council of Scientific and Industrial Research (CSIR), India for financial support through SRF (File No. 09/114(0233)/2019-EMR-I).

The authors thank the anonymous referee(s) for his/her valuable suggestions to improve the quality of the paper.

References

- R. K. Bera and B. L. Ghodadra, Convergence rate of Fourier-Legendre series of functions of generalized bounded variation, Math. Notes 116 (2024), 168–181. DOI
- [2] R. Bojanić and M. Vuilleumier, On the rate of convergence of Fourier-Legendre series of functions of bounded variation, J. Approx. Theory 31 (1981), 67–79. DOI
- [3] E. W. Hobson, On a general convergence theorem, and the theory of the representation of a function by series of normal functions, Proc. Lond. Math. Soc. 6 (1909), 349–395. DOI
- [4] M. Hormozi, A. Ledari, and F. Prus-Wisniowski, On p-Λ-bounded variation, Bull. Iranian Math. Soc. 37 (2011), 35–49.
- [5] A. L. Rabenstein, Introduction to Ordinary Differential Equations, Academic Press, New York, London, 1966.
- [6] R. G. Vyas, Properties of functions of generalized bounded variation. In: T. Rassias and V. Gupta (eds), Mathematical Analysis, Approximation Theory and Their Applications (SOIA 111), 715–741, Springer, Cham, 2016. DOI
- [7] W. Rudin, *Principles of Mathematical Analysis*, Third edition, McGraw-Hill, Singapore, 1976.
- [8] D. Waterman, On Λ-bounded variation, Studia Math. 57 (1976), 33-45. DOI

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, THE M. S. UNIVERSITY OF BARODA, VADODARA – 390 002 (GUJARAT), INDIA

E-mail address: rameshkbera8080@gmail.com E-mail address: bhikhu_ghodadra@yahoo.com