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Rate of convergence of Fourier—Legendre series of
functions of the class (n®)BV?[—1,1]

RAMESHBHAI KARSHNABHAI BERA AND BHIKHA LiLA GHODADRA

ABSTRACT. In this paper, the rate of convergence of the Fourier-Legendre
series of functions of the class (n®)BV?[—1, 1] and in particular, the class

BVP[—-1,1] , are estimated. The result obtained is similar to a result of

Bojani¢ and Vuilleumier for the Fourier-Legendre series of functions of

bounded variation, and is applicable to a wider class.

1. Introduction

In this section, we recall certain results about pointwise convergence and
rate of convergence of a Fourier-Legendre series. We need the following
definitions.

Definition 1. Given a function f : [a,b] — R, a non-decreasing sequence
A = { g }ken of positive numbers such that > i diverges, and a real number
p, 1 < p < oo, we say that f € ABVP[a,b] (that is, f is of p-A-bounded
variation over [a,b]) if
1/p

— fb)lP
Ak

— |f(ax)

k

Vor(f,[a,b]) =sup > < o0,
k=1

where the supremum is extended over all sequences {Ij} of non-overlapping

intervals with Iy = [ak, bg] C [a,b], k=1,...,n.

When A = {1} and p = 1, the class is referred to as the class of functions
of bounded variation (BV) and we denote the corresponding variation of f
over an interval [a,b] by V(f,a,b). When A = {n®}, 0 < a<1land p=1,
we denote the class by (n®)BV and the corresponding variation of f over
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an interval [a,b] by Vye(f,a,b). When A = {n®}, 0 < a < 1, we denote
the class by (n®)BV? and the corresponding variation of f over an interval
[a,b] by Vpna(f,a,b). When A = {1}, the class is referred to as the class
of functions of p-bounded variation (BV?) and we denote the corresponding
variation of f over an interval [a, b] by V,(f,a,b).

We note that if f is of p-A-bounded variation, then f(x +0) and f(z —0)
exist at every point x of [a,b] (see [6l Theorem 2]). We define, for = € [a, 1],

1
(f2) = 5(f(z +0) + Sz~ 0))
and
ft) = flx=0), a<t<uz,
(1) =40, t=u,
ft)— flx+0), z<t<b.
Definition 2. Let P,(x) be the Legendre polynomial of degree n normal-
ized so that P,(1) = 1. If f is an integrable function on [—1,1], then the
Fourier—Legendre series (see, e.g., [3, p. 237, Section 8.3]) of f is the series

o

ag(f) Pr(x)

k=0
where

an(f) = (m;) /_llf(t)Pk(t)dt, k=0,1,2,....

The nt" symmetric partial sum of the Fourier-Legendre series of f, denoted
by Sn(f, ), is defined as

Sulfoa) = S ar(F)Pul@), n=0,1,2,...,
k=0
which can be written as
1
Sn(f,z) = / f()Kp(z,t)dt,
-1

where

1
Fotot) = 3 <k " 2) Pela) Py(t),
or equivalently (see [2]),
n+1 (P () Ba(t) = Po(x) Py (t)
2 x—t '
Definition 3. The (ordinary) oscillation of a function h : [a,b] — C over
a subinterval J of [a, b] is defined as

osc(h, J) = sup{|h(t) — h(t)| : t,t' € J}.

K, (x,t) =
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We also define nodes s;, and t;,, as

sjm::c—l—u, tjvn::r—M, 7=0,1,...,n,
n n
for x € (—1,1).
Hobson [3] proved the following theorem concerning the pointwise conver-
gence of Fourier—Legendre series of functions of bounded variation.

Theorem 1. If f is of bounded variation on [—1,1], then its Fourier—
Legendre series converges to s(f,x) at each point x € (—1,1), i.e.,

Bojani¢ and Vuilleumier [2, Theorem 1] has quantified Theorem (1| by
estimating the rate of convergence of the Fourier—Legendre series at that
point by proving the following theorem.

Theorem 2. Let f be a function of bounded variation on [—1,1]. Then,
forz € (—=1,1) and n > 2, we have

5001, = s(4,2)| S s D Vo tagsn)
j=1
e lCRUE(CEI S

The right-hand side of converges to zero as n — 00, since continuity
of ¢,(t) at t = x implies that
V(¢g,x —0,x+0) -0 as 0 — 0.
In [I], we have extended Theorem [2f for functions of the class (n®)BV as

follows.

Theorem 3. Let f € (n®)BV[-1,1], 0 < a < 1. Then, for z € (—1,1)
and n > 2, we have

‘Sn(f; x) - S(f7 x)‘

n—1

C
= 7[Cl,ana (¢x,t1,ja$) +62,ana (qual‘vsl,j)}

< .
nl—a ' ja

(Cl,mVna (QS:M tj+1,na tj,n) + CQ}ana (be, Sjimy Sj+1,n))
(j(n —4))1/?

+———If(x+0) = f(z - 0)], (2)

where co, =1 —a+27% and ¢;, = (1_3022)3/2 (8(1_fr2)1/2 +3(1+ (—1)%)),
fori=1,2.
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The right-hand side of converges to zero as n — 00, since continuity
of ¢5(t) at t = x implies (in view of [§, Theorem 3]) that

Va(¢pg,x — 6,24+ 6) -0 as 6 — 04

and also Vo (¢, x + 0,2+ §) and V, (¢, z — §, 2 — 0") tends to zero as 0 <
§ <6 —04.

In the present paper, our main goal is to estimate the rate of convergence of
Fourier—Legendre series of functions of the class (n®)BV? and in particular,
of the p-bounded variation class.

2. Main result
Our main result is the following.

Theorem 4. Let f € (n®)BVP[—1,1] forp>1 and 0 < a < 1/p. Then,
forz € (—1,1) and n > 2, we have

‘Sn(fvl‘) - S(f,.CL‘)|

Cop 1
nl/?fa jl+a—1/p [CT Ve (D2t @) + C3Va (62,7, 51,5)]
j=1

1/p

W2 (Ve (Bt tin) + Vone (90 8m: 85110))
>

-2 22 (Gn— )7

[f(z+0) = f(z = 0), 3)

_l’_

1
(1l — z2)

1 14+
= 4+/2
C 1_m2<f+6 (1—3:))’

1 1—=2
Cr=17> <4fz+6 <1+x>>,

p—1

_l’_

where

and Cop=2"(L—a+1/p)| Y j 7'/
j=1

The right-hand side of converges to zero as n — 00, since continuity
of ¢5(t) at t = x implies (in view of ([4, Lemma 2.2])) that

Vona (¢, x — 0,2+ 6) = 0 as 6 — 04

and also Vppa (¢, + 8,2 + 9) and Vppo(¢pg,z — 0,2 — §') tend to zero as
0<d <d—04.
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In particular, for a = 0, our Theorem [4] may be viewed as a quantitative
result for convergence of Fourier—Legendre series of functions of p-bounded
variation class. It sounds as follows.

Corollary 1. Let f € BVP[—1,1] for p > 1. Then, for x € (—1,1) and
n > 2, we have

’Sn(f,(l?) - S(f,(l?)‘

1/p
C 1
< 10/’22 1—-1/p [CPV ((Z)l'atLJ? )+CPV ((Z)va 31,])]
442 S (Vo (0, titim, tin) + Vo(@as Sjns Sj+1,n))
L= Gln =2
1
e (UGB (G|

Remark 1. Our Theorem [4 may be viewed as a generalization of Theorem
for functions of (n®)BVP and, in particular, Corollary (1| is a quantitative
analogue of Theorem [2] for functions of p-bounded variation, except for exact
constant.

3. Proof

The proof of Theorem [4] is based on a number of properties of Legendre
polynomials. The proofs of these properties can be found in [2], Section 2]
and [I]. For z € (—1,1) and n > 2, we have

‘/ K, $7‘d7’_

S1,n
[ el < ¥

tl,n
tim 4/2
/ | Ky (2, u)|du < n

titi,n ﬂ—j(]‘ —1'2)(”—].)1/27

forj=1,2,...,n—=1. (9)
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Proof of Theorem[] For any fixed x € (—1,1), using equalities and @,
we have

Su(f, ) / bult) K, £)dt

2(f(ﬂb‘ +0) = f(z = 0)) Pu(z) Py (). (10)

We decompose the integral on the right-hand side of in two parts, as
follows:

/qﬁx xudu—</ /)% (z,u)du = Ay + Ay, say.

(11)

Now, we have

n—1

x tin
A = /1 ¢o(u) Ky (z,u)du = Z / O (u) Ky (x,u)du

j=0"t

o Z/Jn ¢x ¢x( ]n)) (IL’ u)du

n—1 .
7,
1 DY R RUBT e
j:l tj+1 n
= A1 + Aja, say. (12)
Using inequalities and (9)), first we estimate Ayy, as follows:

n—1

tin
Aul £ Y osel6n tysmtia) [ 1Kol wldu

§=0 tj+1,n

n—1 tin
=3 oscln [ty tial) [ Kl w)ldu

j=1 titin

tO,n
+ osc(¢z, [t1,n, to,n])/ | K (2, u)|du

tl,n

aon L 4

e ) osc (@2 [tj+1,mstjn]) + 0sc(da, [tl’n’to’n])m

B 4 {\[n—l \F
S0\ S

J]=

<.
—_

\V)

———=08C ¢x7 [ j4+1,ms j n]) + OSC(gbxa [tl n» 10 n])}

n—1
1 _ $2 { Z (j + 1\)(/717]080(@0, [t j+1m, b, n]) + osc(¢u, [tl n» to n])}

Jj=1
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n—1

4 n
- (1 _ 332) Z (] + 1\)/:/@08(3(@%07 [tj+1,n7 tjvn})

7=0
[n/2] n—1
42 { 1 1 }
< Yo+ D ———05c(du, [tis1ntin).
_ 2 B B ) 1Y] sy v 7,
(13)
Now, we estimate A12. We have
n-l tjn tj+1,n
Ajg = Z Gz(tjn) ( K, (z,u)du — / Kn(:c,u)du)
i=1 - -
n—1 tin n tin
= Z/ G2(tjn) Kn(z,u)du — Z Gz (tj—1.n) K (2, u)du
j=17"1 j=27~1
n—1 tim
=3 [ 0alti) = G2t 1) Kl 0}
j=17-1
tl,n tn,n
+ Gz (ton) Kn(x,u)du — Gz (tn—1n)Kn(z, u)du.
-1 -1
Since ton = , ¢x(ton) = ¢z(x) = 0 and ¢, , = —1, the last two terms on

the right-hand side of the above equation vanish. Also, in view of , we
have

p_i0+a)
n

n—1
’A12’ S Z |¢x(tj,n) - ¢:c(tj—1,n)’ ‘/ Kn(a:, u)du
j=1

n—1

6 1
< —OSC\ Pz, t',nat'— ,n
_(1+m)(1—x2)1/2;J (@ {fn: -10)

6(1 —x) 2y
- (1—22)3/2 it 1050(%7 [titimstinl)- (14)
§=0
Using and in (12), we get
|A1| < |A11| + |A12|

-1

n—1 n
< Cl Z OSC(¢$) [tj-‘rl,na tj,n]) + 4\/5 Z OSC((ﬁx, [tj-l—l,na tj,n])
7=0

j+1 ) (=7
(15)

j=[n/2)+1

where C = ﬁ (4\/§+6 ﬁ—i)
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Similarly, one can prove

‘A2‘ < Oy Z 0sC ¢z> Sjmny Sj+1, n])

Jj+1
42 i, 05¢(¢z, [Sjns Sj+1,n])
_Ave 7 ) 16
P, 2e . G "

where Cy = 42 +6 H"’“"
Therefore, from 1. , , and ., we have

’/ ¢p () Ky (2, u)du

— ClOSC ¢x, J+1mstin ]) + CQOSC(¢x7 [3] ny Sj+1, n])
Jj+1

< ’A1| + ‘AQ’

M

7=0

42 - 0sc(g, [t j+1,n5 L5, n]) + 0sc(¢z, [S] ny Sj+1, nl)
NI (i(n— )2

-1
= C105¢(pa, [t 1m, tin]) + C205¢(da, [Sjms 8j11,n)
j+1

IA
[N

4\/§ — (Vpn‘)‘ (d)mtj-i-l,natj,n) + V}mo‘ (d)xa Sjimn, 3j+1,n))
RS (i(n— )72 |
(17)

j=[n/2]+1

because by Definition |1 we have osc(¢g, [tj+1.n:tin]) < Vona (02, tjtin, tin)
and 0sc(¢z, [$jn, Sj+1,n]) < Vpne (D, Sjm, Sj+1,n)-

Now for p > 1, applying Holder’s inequality in the first sum of the right
hand side of the inequality , we have

Z ClosC d)x» j+1,n; t] n]) + CQOSC(¢xa [Sj,na SjJrl,n])
(j + 1)1-1/p*+1/p?

_ 1/p
< Zl ClosC ﬁbxa j+1,n5 j n]) + CQOSC(¢17 [5],717 Sj+1, n]))p
p= G+ 1)1
n—1 1 1=1/p
X

(7 + 1)1y

.
Il
=)
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_ 1/p
3 (C108¢(@s, [tj+1,ns jn)))P + (C208¢(@s, [Sjns Sit+1,n)))P
(G + 1)1
1-1/p
"1
X Z i1+1/p ’ (18)
Jj=1 J
Now, for fixed n, let
J
M; :Z (08¢, [tiv1ms tim)))Ps §=0,1,...,n— 1.
1:0
Then it follows from Definition [I] that
M; < ‘/][,na(¢x7tj+1,n,x). (19)

Also, define a function on the interval (-1, ,] by

M(U) = M[n(z—u)}ilv u € (_17t1,n]'

(1+zx)
Now, for 7 =0,1,...,n — 2, we have
€ (tjv2m tjt1n] = x—(J)n() <u<x_(])7§)
= ng_u<w

n

n
— j+1gW<g‘+2 — M(u) = M;. (20)

For 0 < a < 1/p, using the partial summation formula (see [7, Theorem
3.41]) with a; = ﬁ(osc(d)z, [tjs1mtjn]))P and b; = (j +1)*"1/P we can
write the given summation as follows:

n—l —
OSC ¢xa ]+1n7t]n]))p (J+1)a 1/p
= T/ 1\ T t; nat'n P
2 e ZO G (00 tim tial)
n—2
_ . . a—1/p _ /;: a—1/p
=3 M, (G +1°7 = (42 )
7=0

+ Tlail/pMn_l
= By + B, say. (21)
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We will use the properties of the Riemann—Stieltjes integral to estimate

By. Since 0 < o < 1/p, the function (—ua_l/p) is continuous and nonde-
creasing for u > 0. Therefore, we have

a 1/p a=1/p\ _ — it _a=1/p
B = ZM(;H (+2) )_Z [, e

/ (1/p — a)(u= o= YP) . (22)
j= Jt+
Putu= n(l-l—x) Then d“ = 1+$,u—>j—|—1 = s> x— W =tit1n,
andu = j+2 < s—x— W = tjy2.n. Therefore
j+2 tivon _ ~1+a-1/p ,
[ e [0 (e ) ()
g+l tj+1,n l+z L+
142 1/p—a titin
= ( > / (z —s)" 1o rgs.  (23)
n

tit2,n

Using in , and in view of , we have

I A =S e
Br= (=) (FE5) 70w, [ g e

=0 ljit2,n
_ (O+=x)

=<1/pa>(1zf”)l/p_a [T M@ s e

-1

Now, puts:m—@. Then, we have s - -1 «<— u — 1, s —
_ (+=)

— <= u—n,and j—z = (1 + 2)u—2. Therefore, from , we have
1+z)\Y/P ™
B fp-a) (F1F)

n
n 1 1 —14+a—1/p
x/ M<x— —i—w) <x—:):—|— —i—a:) (1 + z)u"du
1 u u

n—1 i1

eyt Lra) 1

= e z; j M(z-— ” u1+a—1/pdu' (25)
]:

From the definition of M(u), and , for j <wu < j+1, we have

1+=x
M(’”‘ % )‘Mm—lﬁM[?}—l Viaw (02 1131,)

7 1+
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(1+x)
B Vppn& <¢I7x_j,1} (26)
and also
1 1
ylte—1/p < jlta=1/p’ (27)
Using and in (25), we get
(/p—a) g~ (7 (1+a) 1
S la a xS - ) -
Br < nl/p—a ; i pn by T J T ]1+a—1/pdu
n—1
_(/p=a) 1 (1+2)
o nl/p*a Z ]1+a 1/p pn"‘ ¢wa - ] , L. (28)

Also, from , we get
By = n® PNy < VYD (¢, —1, )

n—1
- 1 (1+2z)
a—1
=n “’Zm% (%x— ; x) . (29)
j=1

Using and in , we have

—1
- (0sc(¢z, [tj+1,nstjn]))? < 1—a+ 1/p
(5 +1)i/p - pl/p-o

LM

Jl—i—a 1/p pn" (015, )
7=1
(30)

Similarly, one can prove

— —1
OSC ¢z7 S]n73j+1n]))p 1*a+1/pn 1 »
Z = nl/p—a Z jlta—1/p Vine (¢z,2,51,5) -
Jj=1

(j+1)l/p
(31)
Using (30) and (| @ in , and then in we get
‘/ o () Ky (2, u)du
n—1 1/p
Covp 1 P P
nl/p—a jita=1/p [CT Ve (P2, 1, @) + C3Vna (62,7, 51,5)]
j=1
4\/5 = ( n"‘(éxy —l—lna )+Vn"‘(¢x73 ny S —l—ln))
4 T $2 Z p J p > J , (32)

e =)
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where C7 and Cy are as in and , respectively. Also, using in the
second term on the right-hand side of , we get

G+ 0) = o = OIP )| o ()] < LEEDSE O,

This completes the proof of Theorem 4 in view of , and . O

(33)

Acknowledgements

The research of the first author was (partially) supported by Council
of Scientific and Industrial Research (CSIR), India for financial support
through SRF (File No. 09/114(0233)/2019-EMR-T).

The authors thank the anonymous referee(s) for his/her valuable sugges-
tions to improve the quality of the paper.

References

[1] R. K. Bera and B. L. Ghodadra, Convergence rate of Fourier—Legendre series of func-
tions of generalized bounded variation, Math. Notes 116 (2024), 168-181. DOIL

[2] R. Bojani¢ and M. Vuilleumier, On the rate of convergence of Fourier—Legendre series
of functions of bounded variation, J. Approx. Theory 31 (1981), 67-79. DOI

[3] E. W. Hobson, On a general convergence theorem, and the theory of the representation
of a function by series of normal functions, Proc. Lond. Math. Soc. 6 (1909), 349-395.
DOIT

[4] M. Hormozi, A. Ledari, and F. Prus-Wisniowski, On p-A-bounded variation, Bull.
Iranian Math. Soc. 37 (2011), 35-49.

[5] A. L. Rabenstein, Introduction to Ordinary Differential Equations, Academic Press,
New York, London, 1966.

[6] R. G. Vyas, Properties of functions of generalized bounded variation. In: T. Rassias and
V. Gupta (eds), Mathematical Analysis, Approximation Theory and Their Applications
(SOIA 111), 715-741, Springer, Cham, 2016. DOI

[7] W. Rudin, Principles of Mathematical Analysis, Third edition, McGraw-Hill, Singa-
pore, 1976.

[8] D. Waterman, On A-bounded variation, Studia Math. 57 (1976), 33-45. DOIL

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, THE M. S. UNIVERSITY OF
BARODA, VADODARA — 390 002 (GUJARAT), INDIA

E-mail address: rameshkbera8080Qgmail.com

FE-mail address: bhikhu_ghodadra@yahoo.com


https://doi.org/10.1134/S0001434624070137
 https://doi.org/10.1016/0021-9045(81)90031-9
https://doi.org/10.1112/plms/s2-6.1.349
https://doi.org/10.1007/978-3-319-31281-1_30
https://doi.org/10.4064/sm-57-1-33-45

	1. Introduction
	2. Main result
	3. Proof
	Acknowledgements
	References

