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Rate of convergence of Fourier–Legendre series of
functions of the class (nα)BV p[−1, 1]

Rameshbhai Karshnabhai Bera and Bhikha Lila Ghodadra

Abstract. In this paper, the rate of convergence of the Fourier–Legendre
series of functions of the class (nα)BV p[−1, 1] and in particular, the class
BV p[−1, 1] , are estimated. The result obtained is similar to a result of
Bojanić and Vuilleumier for the Fourier–Legendre series of functions of
bounded variation, and is applicable to a wider class.

1. Introduction

In this section, we recall certain results about pointwise convergence and
rate of convergence of a Fourier–Legendre series. We need the following
definitions.

Definition 1. Given a function f : [a, b]→ R, a non-decreasing sequence
Λ = {λk}k∈N of positive numbers such that

∑ 1
λk

diverges, and a real number

p, 1 ≤ p < ∞, we say that f ∈ ΛBVp[a, b] (that is, f is of p-Λ-bounded
variation over [a, b]) if

VpΛ(f, [a, b]) = sup

{
n∑
k=1

|f(ak)− f(bk)|p

λk

}1/p

<∞,

where the supremum is extended over all sequences {Ik} of non-overlapping
intervals with Ik = [ak, bk] ⊂ [a, b], k = 1, . . . , n.

When Λ = {1} and p = 1, the class is referred to as the class of functions
of bounded variation (BV) and we denote the corresponding variation of f
over an interval [a, b] by V (f, a, b). When Λ = {nα}, 0 < α < 1 and p = 1,
we denote the class by (nα)BV and the corresponding variation of f over
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an interval [a, b] by Vnα(f, a, b). When Λ = {nα}, 0 ≤ α < 1, we denote
the class by (nα)BVp and the corresponding variation of f over an interval
[a, b] by Vpnα(f, a, b). When Λ = {1}, the class is referred to as the class
of functions of p-bounded variation (BVp) and we denote the corresponding
variation of f over an interval [a, b] by Vp(f, a, b).

We note that if f is of p-Λ-bounded variation, then f(x+ 0) and f(x− 0)
exist at every point x of [a, b] (see [6, Theorem 2]). We define, for x ∈ [a, b],

s(f, x) =
1

2
(f(x+ 0) + f(x− 0))

and

φx(t) =


f(t)− f(x− 0), a ≤ t < x,

0, t = x,

f(t)− f(x+ 0), x < t ≤ b.

Definition 2. Let Pn(x) be the Legendre polynomial of degree n normal-
ized so that Pn(1) = 1. If f is an integrable function on [−1, 1], then the
Fourier–Legendre series (see, e.g., [5, p. 237, Section 8.3]) of f is the series

∞∑
k=0

ak(f)Pk(x)

where

ak(f) =

(
k +

1

2

)∫ 1

−1
f(t)Pk(t)dt, k = 0, 1, 2, . . . .

The nth symmetric partial sum of the Fourier–Legendre series of f , denoted
by Sn(f, x), is defined as

Sn(f, x) =
n∑
k=0

ak(f)Pk(x), n = 0, 1, 2, . . . ,

which can be written as

Sn(f, x) =

∫ 1

−1
f(t)Kn(x, t)dt,

where

Kn(x, t) =
n∑
k=0

(
k +

1

2

)
Pk(x)Pk(t),

or equivalently (see [2]),

Kn(x, t) =
n+ 1

2

(
Pn+1(x)Pn(t)− Pn(x)Pn+1(t)

x− t

)
.

Definition 3. The (ordinary) oscillation of a function h : [a, b]→ C over
a subinterval J of [a, b] is defined as

osc(h, J) = sup{|h(t)− h(t′)| : t, t′ ∈ J}.
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We also define nodes sj,n and tj,n as

sj,n = x+
j(1− x)

n
, tj,n = x− j(1 + x)

n
, j = 0, 1, . . . , n,

for x ∈ (−1, 1).
Hobson [3] proved the following theorem concerning the pointwise conver-

gence of Fourier–Legendre series of functions of bounded variation.

Theorem 1. If f is of bounded variation on [−1, 1], then its Fourier–
Legendre series converges to s(f, x) at each point x ∈ (−1, 1), i.e.,

lim
n→∞

(Sn(f, x)− s(f, x)) = 0.

Bojanić and Vuilleumier [2, Theorem 1] has quantified Theorem 1 by
estimating the rate of convergence of the Fourier–Legendre series at that
point by proving the following theorem.

Theorem 2. Let f be a function of bounded variation on [−1, 1]. Then,
for x ∈ (−1, 1) and n ≥ 2, we have

|Sn(f, x)− s(f, x)| ≤ 28

n(1− x2)3/2

n∑
j=1

V (φx, t1,j , s1,j)

+
1

πn(1− x2)
|f(x+ 0)− f(x− 0)|. (1)

The right-hand side of (1) converges to zero as n → ∞, since continuity
of φx(t) at t = x implies that

V (φx, x− δ, x+ δ)→ 0 as δ → 0+.

In [1], we have extended Theorem 2 for functions of the class (nα)BV as
follows.

Theorem 3. Let f ∈ (nα)BV [−1, 1], 0 < α < 1. Then, for x ∈ (−1, 1)
and n ≥ 2, we have

|Sn(f, x)− s(f, x)|

≤ cα
n1−α

n−1∑
j=1

1

jα
[c1,xVnα(φx, t1,j , x) + c2,xVnα(φx, x, s1,j)]

+
n−1∑

j=[n/2]+1

(c1,xVnα(φx, tj+1,n, tj,n) + c2,xVnα(φx, sj,n, sj+1,n))

(j(n− j))1/2

+
(1− x2)−1

πn
|f(x+ 0)− f(x− 0)|, (2)

where cα = 1 − α + 21−α and ci,x = 2
(1−x2)3/2

(
8(1−x2)1/2

π + 3(1 + (−1)ix)
)
,

for i = 1, 2.
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The right-hand side of (2) converges to zero as n → ∞, since continuity
of φx(t) at t = x implies (in view of [8, Theorem 3]) that

Vα(φx, x− δ, x+ δ)→ 0 as δ → 0+

and also Vα(φx, x + δ′, x + δ) and Vα(φx, x − δ, x − δ′) tends to zero as 0 <
δ′ < δ → 0+.

In the present paper, our main goal is to estimate the rate of convergence of
Fourier–Legendre series of functions of the class (nα)BV p and in particular,
of the p-bounded variation class.

2. Main result

Our main result is the following.

Theorem 4. Let f ∈ (nα)BV p[−1, 1] for p > 1 and 0 < α < 1/p. Then,
for x ∈ (−1, 1) and n ≥ 2, we have

|Sn(f, x)− s(f, x)|

≤

 Cα,p

n1/p−α

n−1∑
j=1

1

j1+α−1/p

[
Cp1V

p
pnα (φx, t1,j , x) + Cp2V

p
pnα (φx, x, s1,j)

]1/p

+
4
√

2

1− x2

n−1∑
j=[n/2]+1

(Vpnα(φx, tj+1,n, tj,n) + Vpnα(φx, sj,n, sj+1,n))

(j(n− j))1/2

+
1

πn(1− x2)
|f(x+ 0)− f(x− 0)|, (3)

where

C1 =
1

1− x2

(
4
√

2 + 6

√(
1 + x

1− x

))
,

C2 =
1

1− x2

(
4
√

2 + 6

√(
1− x
1 + x

))
,

and Cα,p = 2p(1− α+ 1/p)

 n∑
j=1

j−1−1/p

p−1

.

The right-hand side of (3) converges to zero as n → ∞, since continuity
of φx(t) at t = x implies (in view of ([4, Lemma 2.2])) that

Vpnα(φx, x− δ, x+ δ)→ 0 as δ → 0+

and also Vpnα(φx, x + δ′, x + δ) and Vpnα(φx, x − δ, x − δ′) tend to zero as
0 < δ′ < δ → 0+.
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In particular, for α = 0, our Theorem 4 may be viewed as a quantitative
result for convergence of Fourier–Legendre series of functions of p-bounded
variation class. It sounds as follows.

Corollary 1. Let f ∈ BV p[−1, 1] for p > 1. Then, for x ∈ (−1, 1) and
n ≥ 2, we have

|Sn(f, x)− s(f, x)|

≤

C0,p

n1/p

n−1∑
j=1

1

j1−1/p

[
Cp1V

p
p (φx, t1,j , x) + Cp2V

p
p (φx, x, s1,j)

]1/p

+
4
√

2

1− x2

n−1∑
j=[n/2]+1

(Vp(φx, tj+1,n, tj,n) + Vp(φx, sj,n, sj+1,n))

(j(n− j))1/2

+
1

πn(1− x2)
|f(x+ 0)− f(x− 0)|.

Remark 1. Our Theorem 4 may be viewed as a generalization of Theorem
3 for functions of (nα)BV p and, in particular, Corollary 1 is a quantitative
analogue of Theorem 2 for functions of p-bounded variation, except for exact
constant.

3. Proof

The proof of Theorem 4 is based on a number of properties of Legendre
polynomials. The proofs of these properties can be found in [2, Section 2]
and [1]. For x ∈ (−1, 1) and n ≥ 2, we have

|Pn(x)| ≤
(

2

πn(1− x2)

)1/2

, (4)

∫ 1

x
Kn(x, t)dt =

1

2
− 1

2
Pn(x)Pn+1(x), (5)∫ x

−1
Kn(x, t)dt =

1

2
+

1

2
Pn(x)Pn+1(x), (6)∣∣∣∣∫ t

−1
Kn(x, τ)dτ

∣∣∣∣ ≤ 6

n(x− t)
(1− x2)−1/2, t ∈ [−1, x), (7)∫ s1,n

t1,n

|Kn(x, t)|dt ≤ 4

1− x2
, (8)

∫ tj,n

tj+1,n

|Kn(x, u)|du ≤ 4
√

2n

πj(1− x2)(n− j)1/2
, for j = 1, 2, . . . , n− 1. (9)
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Proof of Theorem 4. For any fixed x ∈ (−1, 1), using equalities (5) and (6),
we have

Sn(f, x)− s(f, x) =

∫ 1

−1
φx(t)Kn(x, t)dt

− 1

2
(f(x+ 0)− f(x− 0))Pn(x)Pn+1(x). (10)

We decompose the integral on the right-hand side of (10) in two parts, as
follows:∫ 1

−1
φx(u)Kn(x, u)du =

(∫ x

−1
+

∫ 1

x

)
φx(u)Kn(x, u)du = A1 +A2, say.

(11)

Now, we have

A1 =

∫ x

−1
φx(u)Kn(x, u)du =

n−1∑
j=0

∫ tj,n

tj+1,n

φx(u)Kn(x, u)du

=
n−1∑
j=0

∫ tj,n

tj+1,n

(φx(u)− φx(tj,n))Kn(x, u)du

+
n−1∑
j=1

∫ tj,n

tj+1,n

φx(tj,n)Kn(x, u)du

= A11 +A12, say. (12)

Using inequalities (8) and (9), first we estimate A11, as follows:

|A11| ≤
n−1∑
j=0

osc(φx, [tj+1,n, tj,n])

∫ tj,n

tj+1,n

|Kn(x, u)|du

=
n−1∑
j=1

osc(φx, [tj+1,n, tj,n])

∫ tj,n

tj+1,n

|Kn(x, u)|du

+ osc(φx, [t1,n, t0,n])

∫ t0,n

t1,n

|Kn(x, u)|du

≤ 4
√

2n

π(1− x2)

n−1∑
j=1

1

j
√
n− j

osc(φx, [tj+1,n, tj,n]) + osc(φx, [t1,n, t0,n])
4

1− x2

≤ 4

(1− x2)

{√
2

π

n−1∑
j=1

√
n

j
√
n− j

osc(φx, [tj+1,n, tj,n]) + osc(φx, [t1,n, t0,n])

}

≤ 4

(1− x2)

{ n−1∑
j=1

√
n

(j + 1)
√
n− j

osc(φx, [tj+1,n, tj,n]) + osc(φx, [t1,n, t0,n])

}
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=
4

(1− x2)

n−1∑
j=0

√
n

(j + 1)
√
n− j

osc(φx, [tj+1,n, tj,n])

≤ 4
√

2

(1− x2)

{
[n/2]∑
j=0

1

j + 1
+

n−1∑
j=[n/2]+1

1√
j(n− j)

}
osc(φx, [tj+1,n, tj,n]).

(13)

Now, we estimate A12. We have

A12 =
n−1∑
j=1

φx(tj,n)

(∫ tj,n

−1
Kn(x, u)du−

∫ tj+1,n

−1
Kn(x, u)du

)

=

n−1∑
j=1

∫ tj,n

−1
φx(tj,n)Kn(x, u)du−

n∑
j=2

∫ tj,n

−1
φx(tj−1,n)Kn(x, u)du

=
n−1∑
j=1

∫ tj,n

−1
(φx(tj,n)− φx(tj−1,n))Kn(x, u)du

+

∫ t1,n

−1
φx(t0,n)Kn(x, u)du−

∫ tn,n

−1
φx(tn−1,n)Kn(x, u)du.

Since t0,n = x, φx(t0,n) = φx(x) = 0 and tn,n = −1, the last two terms on
the right-hand side of the above equation vanish. Also, in view of (7), we
have

|A12| ≤
n−1∑
j=1

|φx(tj,n)− φx(tj−1,n)|

∣∣∣∣∣
∫ x− j(1+x)

n

−1
Kn(x, u)du

∣∣∣∣∣
≤ 6

(1 + x)(1− x2)1/2

n−1∑
j=1

1

j
osc(φx, [tj,n, tj−1,n])

=
6(1− x)

(1− x2)3/2

n−2∑
j=0

1

j + 1
osc(φx, [tj+1,n, tj,n]). (14)

Using (13) and (14) in (12), we get

|A1| ≤ |A11|+ |A12|

≤ C1

n−1∑
j=0

osc(φx, [tj+1,n, tj,n])

j + 1
+

4
√

2

(1− x2)

n−1∑
j=[n/2]+1

osc(φx, [tj+1,n, tj,n])

(j(n− j))1/2
,

(15)

where C1 = 1
(1−x2)

(
4
√

2 + 6
√

1−x
1+x

)
.
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Similarly, one can prove

|A2| ≤ C2

n−1∑
j=0

osc(φx, [sj,n, sj+1,n])

j + 1

+
4
√

2

(1− x2)

n−1∑
j=[n/2]+1

osc(φx, [sj,n, sj+1,n])

(j(n− j))1/2
, (16)

where C2 = 1
(1−x2)

(
4
√

2 + 6
√

1+x
1−x

)
.

Therefore, from (11), (15), and (16), we have∣∣∣∣ ∫ 1

−1
φx(u)Kn(x, u)du

∣∣∣∣ ≤ |A1|+ |A2|

≤
n−1∑
j=0

C1osc(φx, [tj+1,n, tj,n]) + C2osc(φx, [sj,n, sj+1,n])

j + 1

+
4
√

2

(1− x2)

n−1∑
j=[n/2]+1

osc(φx, [tj+1,n, tj,n]) + osc(φx, [sj,n, sj+1,n])

(j(n− j))1/2

≤
n−1∑
j=0

C1osc(φx, [tj+1,n, tj,n]) + C2osc(φx, [sj,n, sj+1,n])

j + 1

+
4
√

2

(1− x2)

n−1∑
j=[n/2]+1

(Vpnα(φx, tj+1,n, tj,n) + Vpnα(φx, sj,n, sj+1,n))

(j(n− j))1/2
,

(17)

because by Definition 1, we have osc(φx, [tj+1,n, tj,n]) ≤ Vpnα(φx, tj+1,n, tj,n)
and osc(φx, [sj,n, sj+1,n]) ≤ Vpnα(φx, sj,n, sj+1,n).

Now for p ≥ 1, applying Holder’s inequality in the first sum of the right
hand side of the inequality (17), we have

n−1∑
j=0

C1osc(φx, [tj+1,n, tj,n]) + C2osc(φx, [sj,n, sj+1,n])

(j + 1)1−1/p2+1/p2

≤

n−1∑
j=0

(C1osc(φx, [tj+1,n, tj,n]) + C2osc(φx, [sj,n, sj+1,n]))p

(j + 1)1/p

1/p

×

n−1∑
j=0

1

(j + 1)1+1/p

1−1/p
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≤ 2

n−1∑
j=0

(C1osc(φx, [tj+1,n, tj,n]))p + (C2osc(φx, [sj,n, sj+1,n]))p

(j + 1)1/p

1/p

×

 n∑
j=1

1

j1+1/p

1−1/p

. (18)

Now, for fixed n, let

Mj =

j∑
i=0

1

(i+ 1)α
(osc(φx, [ti+1,n, ti,n]))p, j = 0, 1, . . . , n− 1.

Then it follows from Definition 1 that

Mj ≤ V p
pnα(φx, tj+1,n, x). (19)

Also, define a function on the interval (−1, t1,n] by

M(u) = M[
n(x−u)
(1+x)

]
−1
, u ∈ (−1, t1,n].

Now, for j = 0, 1, . . . , n− 2, we have

u ∈ (tj+2,n, tj+1,n] =⇒ x− (j + 2)(1 + x)

n
< u ≤ x− (j + 1)(1 + x)

n

=⇒ (j + 1)(1 + x)

n
≤ x− u < (j + 2)(1 + x)

n

=⇒ j + 1 ≤ n(x− u)

1 + x
< j + 2 =⇒ M(u) = Mj . (20)

For 0 < α < 1/p, using the partial summation formula (see [7, Theorem

3.41]) with aj = 1
(j+1)α (osc(φx, [tj+1,n, tj,n]))p and bj = (j + 1)α−1/p, we can

write the given summation as follows:

n−1∑
j=0

(osc(φx, [tj+1,n, tj,n]))p

(j + 1)1/p
=

n−1∑
j=0

(j + 1)α−1/p

(j + 1)α
(osc(φx, [tj+1,n, tj,n]))p

=
n−2∑
j=0

Mj

(
(j + 1)α−1/p − (j + 2)α−1/p

)
+ nα−1/pMn−1

= B1 +B2, say. (21)
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We will use the properties of the Riemann–Stieltjes integral to estimate
B1. Since 0 < α < 1/p, the function

(
−uα−1/p

)
is continuous and nonde-

creasing for u > 0. Therefore, we have

B1 =

n−2∑
j=0

Mj

(
(j + 1)α−1/p − (j + 2)α−1/p

)
=

n−2∑
j=0

Mj

∫ j+2

j+1
d(−uα−1/p)

=
n−2∑
j=0

Mj

∫ j+2

j+1
(1/p− α)(u−1+α−1/p)du. (22)

Put u = n(x−s)
1+x . Then du

ds = −n
1+x , u→ j+1 ⇐⇒ s→ x− (j+1)(1+x)

n = tj+1,n,

and u→ j + 2 ⇐⇒ s→ x− (j+2)(1+x)
n = tj+2,n. Therefore∫ j+2

j+1
u−1+α−1/pdu =

∫ tj+2,n

tj+1,n

(
n(x− s)

1 + x

)−1+α−1/p( −n
1 + x

)
ds

=

(
1 + x

n

)1/p−α ∫ tj+1,n

tj+2,n

(x− s)−1+α−1/pds. (23)

Using (23) in (22), and in view of (20), we have

B1 = (1/p− α)

(
1 + x

n

)1/p−α n−2∑
j=0

Mj

∫ tj+1,n

tj+2,n

(x− s)−1+α−1/pds

= (1/p− α)

(
1 + x

n

)1/p−α ∫ x− (1+x)
n

−1
M(s)(x− s)−1+α−1/pds. (24)

Now, put s = x − (1+x)
u . Then, we have s → −1 ⇐⇒ u → 1, s →

x− (1+x)
n ⇐⇒ u→ n, and ds

du = (1 + x)u−2. Therefore, from (24), we have

B1 ≤ (1/p− α)

(
1 + x

n

)1/p−α

×
∫ n

1
M

(
x− 1 + x

u

)(
x− x+

1 + x

u

)−1+α−1/p

(1 + x)u−2du

=
(1/p− α)

n1/p−α

n−1∑
j=1

∫ j+1

j
M

(
x− 1 + x

u

)
1

u1+α−1/p
du. (25)

From the definition of M(u), (19) and (20), for j ≤ u ≤ j + 1, we have

M

(
x− 1 + x

u

)
= M[n

u
]−1 ≤ M[n

j
]−1 ≤ V

p
pnα

(
φx, t[n

j
], x
)

= V p
pnα

(
φx, x−

[nj ](1 + x)

n
, x

)
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≤ V p
pnα

(
φx, x−

(1 + x)

j
, x

)
(26)

and also

1

u1+α−1/p
≤ 1

j1+α−1/p
. (27)

Using (26) and (27) in (25), we get

B1 ≤
(1/p− α)

n1/p−α

n−1∑
j=1

∫ j+1

j
V p
pnα

(
φx, x−

(1 + x)

j
, x

)
1

j1+α−1/p
du

=
(1/p− α)

n1/p−α

n−1∑
j=1

1

j1+α−1/p
V p
pnα

(
φx, x−

(1 + x)

j
, x

)
. (28)

Also, from (19), we get

B2 = nα−1/pMn−1 ≤ nα−1/pV p
pnα(φx,−1, x)

≤ nα−1/p
n−1∑
j=1

1

j1+α−1/p
V p
pnα

(
φx, x−

(1 + x)

j
, x

)
. (29)

Using (28) and (29) in (21), we have

n−1∑
j=0

(osc(φx, [tj+1,n, tj,n]))p

(j + 1)1/p
≤ 1− α+ 1/p

n1/p−α

n−1∑
j=1

1

j1+α−1/p
V p
pnα (φx, t1,j , x) .

(30)

Similarly, one can prove

n−1∑
j=0

(osc(φx, [sj,n, sj+1,n]))p

(j + 1)1/p
≤ 1− α+ 1/p

n1/p−α

n−1∑
j=1

1

j1+α−1/p
V p
pnα (φx, x, s1,j) .

(31)

Using (30) and (31) in (18), and then (18) in (17) we get∣∣∣∣ ∫ 1

−1
φx(u)Kn(x, u)du

∣∣∣∣
≤

 Cα,p

n1/p−α

n−1∑
j=1

1

j1+α−1/p

[
Cp1V

p
pnα (φx, t1,j , x) + Cp2V

p
pnα (φx, x, s1,j)

]1/p

+
4
√

2

1− x2

n−1∑
j=[n/2]+1

(Vpnα(φx, tj+1,n, tj,n) + Vpnα(φx, sj,n, sj+1,n))

(j(n− j))1/2
, (32)
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where C1 and C2 are as in (15) and (16), respectively. Also, using (4) in the
second term on the right-hand side of (10), we get

1

2
|f(x+ 0)− f(x− 0)||Pn(x)||Pn+1(x)| ≤ |f(x+ 0)− f(x− 0)|

nπ(1− x2)
. (33)

This completes the proof of Theorem 4 in view of (10), (32) and (33). �
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