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A note on modified third-order Jacobsthal
quaternions and their properties

Gamaliel Morales

Dedicated to my daughter Julieta

Abstract. Modified third-order Jacobsthal quaternion sequence is de-
fined in this study. Some properties involving this sequence, including
the Binet-style formula and the generating function are presented.

1. Introduction

The Jacobsthal numbers have many interesting properties and applica-
tions in many fields of science (see, e.g., [1, 3, 4]). The Jacobsthal numbers
Jn are defined by the recurrence relation

J0 = 0, J1 = 1, Jn+2 = Jn+1 + 2Jn, n ≥ 0. (1)

Another important sequence is the Jacobsthal–Lucas sequence. This se-
quence is defined by the recurrence relation jn+2 = jn+1 + 2jn, where j0 = 2
and j1 = 1 (see [4]).

In [2] the Jacobsthal recurrence relation is extended to higher order re-
currence relations and the basic list of identities provided by Horadam [4]
is expanded and extended to several identities for some of the higher order

cases. For example, the third-order Jacobsthal numbers, {J (3)
n }n≥0, and the

third-order Jacobsthal–Lucas numbers, {j(3)n }n≥0, are defined by

J
(3)
n+3 = J

(3)
n+2 + J

(3)
n+1 + 2J (3)

n , J
(3)
0 = 0, J

(3)
1 = J

(3)
2 = 1, (2)

and
j
(3)
n+3 = j

(3)
n+2 + j

(3)
n+1 + 2j(3)n , j

(3)
0 = 2, j

(3)
1 = 1, j

(3)
2 = 5, (3)

respectively.
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Using standard techniques for solving recurrence relations, the auxiliary
equation, and its roots are given by

x3 − x2 − x− 2 = 0; x = 2, and x =
−1± i

√
3

2
.

Note that the latter two are the complex conjugate cube roots of unity. Call
them ω1 and ω2, respectively. Thus the Binet formulas can be written as

J (3)
n =

1

7

[
2n+1 −

(
3 + 2i

√
3

3

)
ωn
1 +

(
3− 2i

√
3

3

)
ωn
2

]
(4)

and

j(3)n =
1

7

[
2n+3 +

(
3 + 2i

√
3
)
ωn
1 +

(
3− 2i

√
3
)
ωn
2

]
, (5)

respectively. For more details on these sequences see [5, 6, 7, 8, 2].
On the other hand, the real quaternions are a number system which

extends the complex numbers. In [5], Cerda-Morales defined a new type
of quaternions with the third-order Jacobsthal and third-order Jacobsthal–
Lucas number components as

JQ(3)
n = J (3)

n + J
(3)
n+1i + J

(3)
n+2j + J

(3)
n+3k

and

jQ(3)
n = j(3)n + j

(3)
n+1i + j

(3)
n+2j + j

(3)
n+3k,

respectively, where i2 = j2 = k2 = ijk = −1, and studied the properties
of these quaternions. In particular, these sequences satisfy the recurrence
relations

JQ
(3)
n+3 = JQ

(3)
n+2 + JQ

(3)
n+1 + 2JQ(3)

n , n ≥ 0,

and

jQ
(3)
n+3 = jQ

(3)
n+2 + jQ

(3)
n+1 + 2jQ(3)

n , n ≥ 0,

respectively. Furthermore, the generating functions and many other iden-
tities for the third-order Jacobsthal and the third-order Jacobsthal–Lucas
quaternions were derived.

Motivated essentially by the recent works [5], [7] and [2], in this paper we
introduce the modified third-order Jacobsthal quaternion sequences and we
give some properties, including the Binet-style formula and the generating
functions for these sequences. Some identities involving these sequences of
quaternions are also provided.

2. The modified third-order Jacobsthal quaternion sequence,
Binet’s formula and the generating function

The principal goal of this section will be to define the modified third-
order Jacobsthal quaternion sequence and to present some elementary results
involving it.
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First of all, in [7], the author defined the modified third-order Jacobsthal
numbers

K
(3)
n+3 = K

(3)
n+2 + K

(3)
n+1 + 2K(3)

n ,

with initial conditions K
(3)
0 = 3, K

(3)
1 = 1 and K

(3)
2 = 3. Furthermore, this

sequence appears when we study the third-order Jacobsthal numbers with
indices from an arithmetic progression, for example,

J
(3)
a(n+3)+r = (2a + ωa

1 + ωa
2) J

(3)
a(n+2)+r−(2a(ωa

1 + ωa
2) + 1) J

(3)
a(n+1)+r+2aJ

(3)
an+r,

for fixed integers a, r with 0 ≤ r < a. Note that

2n + ωn
1 + ωn

2 = J (3)
n + 2J

(3)
n−1 + 6J

(3)
n−2, (n ≥ 2),

where J
(3)
n is the n-th third-order Jacobsthal number.

Here, we define the modified third-order Jacobsthal sequence, denoted by

{KQ
(3)
n }n≥0, whose first terms are {3 + i+ 3j+ 10k, 1 + 3i+ 10j+ 15k, 3 +

10i+15j+31k, 10+15i+31j+66k, ...}. This sequence is defined recursively
by

KQ
(3)
n+3 = KQ

(3)
n+2 + KQ

(3)
n+1 + 2KQ(3)

n , (6)

with initial conditions KQ
(3)
0 = 3 + i+ 3j+ 10k, KQ

(3)
1 = 1 + 3i+ 10j+ 15k

and KQ
(3)
2 = 3 + 10i + 15j + 31k.

In order to find the generating function for the modified third-order Ja-
cobsthal quaternion sequence, we shall write the sequence as a power series,
where each term of the sequence corresponds to coefficients of the series.
As a consequence of the definition, the generating function associated to

{KQ
(3)
n }n≥0, denoted by {gKQ(t)}, is defined by

gKQ(t) =
∑
n≥0

KQ(3)
n tn.

Consequently, we obtain the following result.

Theorem 1. The generating function for the modified third-order Jacob-

sthal quaternions {KQ
(3)
n }n≥0 is

gKQ(t) =
3 + i + 3j + 10k + (−2 + 2i + 7j + 5k)t + (−1 + 6i + 2j + 6k)t2

1− t− t2 − 2t3
.

Proof. Using definition of generating function associated to {KQ
(3)
n }n≥0,

we have gKQ(t) = KQ
(3)
0 + KQ

(3)
1 t + KQ

(3)
2 t2 + · · ·+ KQ

(3)
n tn + · · · . Mul-

tiplying both sides of this identity by −t, −t2 and by −2t3, and then from

equation (6) we have (1− t− t2−2t3)gKQ(t) = KQ
(3)
0 +(KQ

(3)
1 −KQ

(3)
0 )t+

(KQ
(3)
2 −KQ

(3)
1 −KQ

(3)
0 )t2, and the result follows. �

The following result gives the Binet-style formula for KQ
(3)
n .
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Theorem 2. For n ≥ 0, we have

KQ(3)
n = 2nΦ + ωn

1 Φ1 + ωn
2 Φ2 = 2nΦ + M (2)

n ,

where

M (2)
n =

 2− i− j + 2k if n ≡ 0 (mod 3),
−1− i + 2j− k if n ≡ 1 (mod 3),
−1 + 2i− j− k if n ≡ 2 (mod 3),

(7)

and ω1, ω2 are the roots of the characteristic equation x2 + x + 1 = 0,
Φ = 1 + 2i + 4j + 8k, Φ1 = 1 + ω1i + ω2j + k, and Φ2 = 1 + ω2i + ω1j + k.

Proof. Since the characteristic equation has three distinct roots, the se-

quence KQ
(3)
n = 2nP + ωn

1Q + ωn
2R is the solution of (6). Considering

n = 0, 1, 2 in this identity and solving this system of linear equations, we
obtain a unique value for P , Q and R, which are, in this case,

P = 1 + 2i + 4j + 8k,

Q = 1 + ω1i + ω2
1j + ω3

1k,

R = 1 + ω2i + ω2
2j + ω3

2k.

So, using these values in the expression of KQ
(3)
n stated before, we get the

required result. �

Using the fact that ω1 + ω2 = −ω1ω2 = −1, we have

ωn
1 + ωn

2 = −1

7

(
4Z

(2)
n+1 − Z(2)

n

)
(8)

and

Z(2)
n =

(
3 + 2i

√
3

3

)
ωn
1 −

(
3− 2i

√
3

3

)
ωn
2 .

Furthermore, we have M
(2)
n+2 = −M (2)

n+1 −M
(2)
n , M

(2)
0 = 2 − i − j + 2k and

M
(2)
1 = −1− i + 2j− k. Then, we easily obtain the identities stated in the

following proposition.

Proposition 1. For a natural number n and m, if JQ
(3)
n , jQ

(3)
n , and

KQ
(3)
n are, respectively, the n-th third-order Jacobsthal, third-order Jacobsthal–

Lucas, and modified third-order Jacobsthal quaternions, then the following
identities are true:

JQ
(3)
n+2 =

1

147

(
13KQ

(3)
n+2 + 48KQ

(3)
n+1 + 20KQ(3)

n

)
, (9)

KQ
(3)
n+2 =

1

6

(
5jQ

(3)
n+2 + 3jQ

(3)
n+1 − 5jQ(3)

n

)
, (10)

jQ
(3)
n+2 =

1

49

(
43KQ

(3)
n+2 + 8KQ

(3)
n+1 + 36KQ(3)

n

)
, (11)
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KQ(3)
n KQ(3)

m + KQ
(3)
n+1KQ

(3)
m+1 + KQ

(3)
n+2KQ

(3)
m+2

=

{
2nΦ

(
M

(2)
m+1 + 3M

(2)
m+2

)
+ 2m

(
M

(2)
n+1 + 3M

(2)
n+2

)
Φ

+21 · 2n+mΦ2 + M
(2)
n M

(2)
m + M

(2)
n+1M

(2)
m+1 + M

(2)
n+2M

(2)
m+2

}
,

(12)

(
KQ(3)

n

)2
+
(
KQ

(3)
n+1

)2
+
(
KQ

(3)
n+2

)2
=

 2nΦ
(
M

(2)
n+1 + 3M

(2)
n+2

)
+ 2n

(
M

(2)
n+1 + 3M

(2)
n+2

)
Φ

+21 · 22nΦ2 +
(
M

(2)
n

)2
+
(
M

(2)
n+1

)2
+
(
M

(2)
n+2

)2
 ,

(13)

and M
(2)
n as in (7).

Proof. First, we will just prove equalities (9) and (12) since (10) and (11)
can be dealt with in the same manner, and equality (13) is obtained from
(12) if m = n.

(9): To prove (9), we use induction on n. Let n = 0, we get

JQ
(3)
2 = 1 + 2i + 5j + 9k

=
1

147

 13(3 + 10i + 15j + 31k)
+48(1 + 3i + 10j + 15k)
+20(3 + i + 3j + 10k)


=

1

147

[
13KQ

(3)
2 + 48KQ

(3)
1 + 20KQ

(3)
0

]
.

In the same way for the case n = 1, 2. Let us assume that

147JQ
(3)
m+2 = 13KQ

(3)
m+2 + 48KQ

(3)
m+1 + 20KQ(3)

m

is true for all values m ≥ 0 less than or equal n ≥ 2. Then

147JQ
(3)
(n+1)+2 = 147JQ

(3)
n+3

= 147
(
JQ

(3)
n+2 + JQ

(3)
n+1 + 2JQ(3)

n

)
= 13KQ

(3)
n+2 + 48KQ

(3)
n+1 + 20KQ(3)

n

+ 13KQ
(3)
n+1 + 48KQ(3)

n + 20KQ
(3)
n−1

+ 26KQ(3)
n + 96KQ

(3)
n−1 + 40KQ

(3)
n−2

= 13KQ
(3)
n+3 + 48KQ

(3)
n+2 + 20KQ

(3)
n+1.

(12): Using the Binet formula of KQ
(3)
n in Theorem 2 and M

(2)
n+2+M

(2)
n+1+

M
(2)
n = 0, we have

KQ(3)
n KQ(3)

m +KQ
(3)
n+1KQ

(3)
m+1 + KQ

(3)
n+2KQ

(3)
m+2
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=


(

2nΦ + M
(2)
n

)(
2mΦ + M

(2)
m

)
+
(

2n+1Φ + M
(2)
n+1

)(
2m+1Φ + M

(2)
m+1

)
+
(

2n+2Φ + M
(2)
n+2

)(
2m+2Φ + M

(2)
m+2

)
 ,

where Φ = 1 + 2i + 4j + 8k. Then we obtain

KQ(3)
n KQ(3)

m + KQ
(3)
n+1KQ

(3)
m+1 + KQ

(3)
n+2KQ

(3)
m+2

=


21 · 2n+mΦ2

+2nΦ
(
M

(2)
m + 2M

(2)
m+1 + 4M

(2)
m+2

)
+2m

(
M

(2)
n + 2M

(2)
n+1 + 4M

(2)
n+2

)
Φ

+M
(2)
n M

(2)
m + M

(2)
n+1M

(2)
m+1 + M

(2)
n+2M

(2)
m+2


=

{
2nΦ

(
M

(2)
m+1 + 3M

(2)
m+2

)
+ 2m

(
M

(2)
n+1 + 3M

(2)
n+2

)
Φ

+21 · 2n+mΦ2 + M
(2)
n M

(2)
m + M

(2)
n+1M

(2)
m+1 + M

(2)
n+2M

(2)
m+2

}
.

Finally, we obtain (13) if m = n in (12). �

3. Some identities involving the modified third-order
Jacobsthal quaternion sequence

In this section, we state some identities related to the considered third-
order sequence. As a consequence of the Binet formula of Theorem 2, we
get for this sequence the following interesting identities.

Proposition 2 (Catalan-like identity). For natural numbers n, s with

n ≥ s, if KQ
(3)
n is the n-th modified third-order Jacobsthal quaternion, then

the following identity is true:

KQ
(3)
n+sKQ

(3)
n−s−

(
KQ(3)

n

)2
=


2n+sΦ

((
U

(2)
s+1 − 2−s

)
M

(2)
n − U

(2)
s M

(2)
n+1

)
+2n−s

(
U

(2)
s M

(2)
n+1 −

(
U

(2)
s−1 + 2s

)
M

(2)
n

)
Φ

+M
(2)
n+sM

(2)
n−s −

(
M

(2)
n

)2
 ,

where M
(2)
n is in (7), U

(2)
n =

ωn
1−ωn

2
ω1−ω2

and ω1, ω2 are the roots of the charac-

teristic equation associated with the recurrence relation x2 + x + 1 = 0.

Proof. Using the expression (7) and the Binet formula of KQ
(3)
n in Theo-

rem 2, we have

KQ
(3)
n+sKQ

(3)
n−s −

(
KQ(3)

n

)2
=
(

2n+sΦ + M
(2)
n+s

)(
2n−sΦ + M

(2)
n−s

)
−
(

2nΦ + M (2)
n

)2
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=


2n+sΦM

(2)
n−s + 2n−sM

(2)
n+sΦ

−2n
(

ΦM
(2)
n + M

(2)
n Φ

)
+M

(2)
n+sM

(2)
n−s −

(
M

(2)
n

)2
 .

Using the following identity for the sequence M
(2)
n ,

M
(2)
n+s =

1

ω1 − ω2

(
ωn+s+1
1 Φ1 − ωn+s−1

1 Φ1 + ωn+s−1
2 Φ2 − ωn+s+1

2 Φ2

)
=

(
ωs
1 − ωs

2

ω1 − ω2

)
(ωn+1

1 Φ1 + ωn+1
2 Φ2)−

(
ωs−1
1 − ωs−1

2

ω1 − ω2

)
(ωn

1 Φ1 + ωn
2 Φ2)

= U (2)
s M

(2)
n+1 − U

(2)
s−1M

(2)
n ,

where U
(2)
s =

ωs
1−ωs

2
ω1−ω2

and U
(2)
−s = −U (2)

s , we obtain the statement of the
theorem. �

Note that for s = 1 in the obtained Catalan-like identity, we get the
Cassini-like identity for the modified third-order Jacobsthal quaternion se-
quence. Furthermore, for s = 1, the identity stated in Proposition 2 yields

KQ
(3)
n+1KQ

(3)
n−1−

(
KQ(3)

n

)2
=


2n+1Φ

((
U

(2)
2 − 2−1

)
M

(2)
n − U

(2)
1 M

(2)
n+1

)
+2n−1

(
U

(2)
1 M

(2)
n+1 −

(
U

(2)
0 + 2

)
M

(2)
n

)
Φ

+M
(2)
n+1M

(2)
n−1 −

(
M

(2)
n

)2
 ,

and using U
(2)
0 = 0, U

(2)
1 = 1 and U

(2)
2 = −1 in Proposition 2, we obtain the

next result.

Proposition 3 (Cassini-like identity). For a natural number n, if KQ
(3)
n

is the n-th modified third-order Jacobsthal quaternion, then the following
identity is true:

KQ
(3)
n+1KQ

(3)
n−1 −

(
KQ(3)

n

)2
=


2nΦ

(
−3M

(2)
n − 2M

(2)
n+1

)
+2n−1

(
M

(2)
n+1 − 2M

(2)
n

)
Φ

+M
(2)
n+1M

(2)
n−1 −

(
M

(2)
n

)2
 .

The d’Ocagne-like identity can also be obtained using the Binet formula.

Proposition 4 (d’Ocagne-like identity). For natural numbers m, n with

m ≥ n, if KQ
(3)
n is the n-th modified third-order Jacobsthal quaternion, then

the following identity is true:

KQ
(3)
m+1KQ(3)

n −KQ(3)
m KQ

(3)
n+1
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=

{
2mΦ

(
2M

(2)
n −M

(2)
n+1

)
+ 2n

(
M

(2)
m+1 − 2M

(2)
m

)
Φ

+M
(2)
m+1M

(2)
n −M

(2)
m M

(2)
n+1

}
.

Proof. The result follows by using (7) of Theorem 2. �

In addition, some formulae involving sums of terms of the modified third-
order Jacobsthal quaternion sequence will be provided in the following propo-
sition.

Proposition 5. For natural numbers m, n with n ≥ m, if KQ
(3)
n is the

n-th modified third-order Jacobsthal quaternion, then the following identities
are true:

n∑
s=m

KQ(3)
s =

1

3

(
KQ

(3)
n+2 + 2KQ(3)

n + KQ(3)
m −KQ

(3)
m+2

)
, (14)

n∑
s=0

KQ(3)
s =


KQ

(3)
n+1 + 2− 2i− 7j− 5k if n ≡ 0 (mod 3),

KQ
(3)
n+1 + 1− 6i− 2j− 6k if n ≡ 1 (mod 3),

KQ
(3)
n+1 − 3− i− 3j− 10k if n ≡ 2 (mod 3).

(15)

Proof. (14): Using (6), we obtain

n∑
s=m

KQ(3)
s = KQ(3)

m + KQ
(3)
m+1 + KQ

(3)
m+2 +

n∑
s=m+3

KQ(3)
s

= KQ(3)
m + KQ

(3)
m+1 + KQ

(3)
m+2

+
n−1∑

s=m+2

KQ(3)
s +

n−2∑
s=m+1

KQ(3)
s + 2

n−3∑
s=m

KQ
(3)
s−3

= 4
n∑

s=m

KQ(3)
s + KQ

(3)
m+2−KQ(3)

m −4KQ(3)
n −3KQ

(3)
n−1−2KQ

(3)
n−2

= 4

n∑
s=m

KQ(3)
s + KQ

(3)
m+2 −KQ(3)

m − 2KQ(3)
n −KQn+2.

Thus the equality (14) is proved.
(15): As a consequence of (7) of Theorem 2 and

n∑
s=0

(ωs
1Φ1+ωs

2Φ2) =
ωn+1
1 −1

ω1−1
Φ1+

ωn+1
2 −1

ω2−1
Φ2 =

1

3

(
M (2)

n −M
(2)
n+1

)
+(1−i+k),

we have
n∑

s=0

KQ(3)
s =

n∑
s=0

2sΦ +
n∑

s=0

M (2)
s
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= 2n+1Φ− Φ +
1

3

(
M (2)

n −M
(2)
n+1

)
+ 1− i + k

= KQ
(3)
n+1 +

1

3

(
M (2)

n − 4M
(2)
n+1

)
− 3i− 4j− 7k

=


KQ

(3)
n+1 + 2− 2i− 7j− 5k if n ≡ 0 (mod 3),

KQ
(3)
n+1 + 1− 6i− 2j− 6k if n ≡ 1 (mod 3),

KQ
(3)
n+1 − 3− i− 3j− 10k if n ≡ 2 (mod 3).

Hence we obtained the result. �

Next, for negative subscripts terms of the sequence of modified third-order
Jacobsthal quaternions we can establish the following result.

Proposition 6. For a natural number n, the following identity is true:

KQ
(3)
−n = KQ(3)

n + (2−n − 2n)Φ + U (2)
n (3i− 3j) , (16)

where U
(2)
n =

ωn
1−ωn

2
ω1−ω2

.

Proof. (16): Since M
(2)
−n = M

(2)
0−n = U

(2)
−nM

(2)
1 −U

(2)
−n−1M

(2)
0 , U

(2)
n +U

(2)
n+1 +

U
(2)
n+2 = 0 and U

(2)
−n = −U (2)

n , using the Binet formula stated in Theorem 2
and the fact that ω1ω2 = 1, the claim of the proposition follows. In fact,

KQ
(3)
−n = 2−nΦ + M

(2)
−n

= 2−nΦ− U (2)
n M

(2)
1 + U

(2)
n+1M

(2)
0

= 2−nΦ + M (2)
n −M (2)

n − U (2)
n M

(2)
1 + U

(2)
n+1M

(2)
0

= 2−nΦ + M (2)
n − U (2)

n M
(2)
1 + U

(2)
n−1M

(2)
0 − U (2)

n M
(2)
1 + U

(2)
n+1M

(2)
0

= 2−nΦ + M (2)
n − U (2)

n

(
2M

(2)
1 + M

(2)
0

)
= 2−nΦ + M (2)

n + U (2)
n (3i− 3j)

= 2nΦ + M (2)
n − 2nΦ + 2−nΦ + U (2)

n (3i− 3j)

= KQ(3)
n + (2−n − 2n)Φ + U (2)

n (3i− 3j) .

So, the proof is completed. �

4. Conclusion

Sequences of quaternions have been studied over several years, includ-
ing the well known third-order Jacobsthal quaternion sequence and, con-
sequently, the third-order Jacobsthal–Lucas quaternion sequence. In this
paper we have contributed for the study of modified third-order Jacobsthal
quaternion sequence, deducing some formulae for the sums of such numbers,
presenting the generating functions and their Binet-style formula. It is our
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intention to continue the study of this type of sequences, exploring some of
their applications in the science domain. For example, a new type of se-
quences in the generalized quaternion algebra with the use of these numbers
and their combinatorial properties.
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