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Cohomology of modified λ-differential Jacobi–Jordan
algebras and its applications

Imed Basdouri, Sami Benabdelhafidh, andWen Teng

Abstract. The purpose of the present paper is to investigate cohomology of
modified λ-differential Jacobi–Jordan algebras. First, we introduce the concept
and representations of modified λ-differential Jacobi–Jordan algebras. Moreover,
we define a lower order cohomology theory for modified λ-differential Jacobi–
Jordan algebras. As applications of the proposed cohomology theory, formal de-
formations of modified λ-differential Jacobi–Jordan algebras are obtained and the
rigidity of a modified λ-differential Jacobi–Jordan algebra is characterized by the
vanishing of the second cohomology group. Also, abelian extensions of modified
λ-differential Jacobi–Jordan algebras are classified by second-order cohomology.
Furthermore, we study T∗-extensions of modified λ-differential Jacobi–Jordan al-
gebras.

1. Introduction
A Jacobi–Jordan algebra is a commutative algebra satisfying the Jacobi identity,

introduced first in [37], where an important example of infinite-dimensional solv-
able but non-nilpotent Jacobi–Jordan algebra was given. They are rather special
objects in the jungle of non-associative algebras. Different names are used to study
these algebras, indeed they are called mock-Lie algebras, Jordan algebras of nil
index 3, Lie-Jordan, pathological algebras or Jacobi–Jordan algebras in the liter-
ature [2, 3, 5, 12, 21, 30, 36]. In contrast to associative and non-associative alge-
bras, results on cohomology theories of Jacobi–Jordan algebras have been relatively
scarce for a long time. Recently, analogously to the existing theories for associative
and Lie algebras, cohomology and deformation theories for Jacobi–Jordan algebras
have been developed [4] where it is observed that they have several properties not
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enjoyed by the Hochschild theory. Actually, this cohomology is called a zigzag
cohomology since its complex is defined by two sequences of operators.

Derivations play an important role in studying algebraic structure. For exam-
ple, derivations can be used to construct homotopy of Lie algebras, deformation
formulas, and differential Galois theories [6, 18, 29]. Loday studied algebras with
derivations from the operadic point of view [17]. Recently many scholars began
to study algebras with derivations assiociated to cohomology theories. The paper
[11] considered deformations and extensions of associative algebras with deriva-
tions. The theory of Lie algebras with derivations about cohomology, deforma-
tions and extensions was studied in [25]. Das studied Leibniz algebras with deriva-
tions in [10]. Other algebras like 3-Lie algebras, n-Lie algebras, pre Lie algebras,
Lie triple systems, Leibniz triple systems, all with derivations, can be found in
[13, 16, 23, 24, 32, 33, 34].

In recent years, more and more scholars started to pay attention to the structure
with arbitrary weights. Rota–Baxter Lie algebras of any weight were studied in
[8, 9, 31]. After that, for λ ∈ K, the cohomology, extension and deformation theory
of Lie algebras with differential operators of weight λ were introduced by Li and
Wang [15]. In addition, the cohomology and deformation theory of modified Rota–
Baxter associative algebras and modified Rota–Baxter Leibniz algebras of weight
λ are given in [7, 14, 20].

The concept of modified λ-differential Lie algebras is introduced in [22], modi-
fied λ-differential 3-Lie algebras in [26], modified λ-differential Lie triple systems
in [27] and deformations and extension of modified λ-differential Lie–Yamaguti
algebras in [28]. In [4, 35], the authors developed the lower order cohomology of
Jacobi–Jordan algebras, and the matrix form of derivation on Jacobi–Jordan alge-
bras in low dimension was given in [19]. This inspired us to discover the cohomol-
ogy of modified λ-differential Jacobi–Jordan algebras.

The paper is organized as follows. In Section 2, we introduce the concept of a
modified λ-differential and give its representation. In Section 3, we define a coho-
mology theory for modified λ-differential Jacobi–Jordan algebras. In Section 4, we
study 1-parameter formal deformations of a modified λ-differential Jacobi–Jordan
algebra and show that a modified λ-differential Jacobi–Jordan algebra is rigid if its
second cohomology group is trivial. In Section 5, we study abelian extensions of
a modified λ-differential Jacobi–Jordan algebra and show that equivalent classes
of abelian extensions are classified by the second cohomology group of a modi-
fied λ-differential Jacobi–Jordan algebra. In Section 6, we study T∗-extensions of
modified λ-differential Jacobi–Jordan algebras.

Throughout this paper, K denotes a field of characteristic zero. All the algebras,
vector spaces, linear maps and tensor products are taken over K.
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2. Representations of modified λ-differential Jacobi–Jordan algebras
In this section, first, we recall some basic concepts of Jacobi–Jordan algebras

from [5, 4, 35]. Then, we introduce the concept of a modified λ-differential Jacobi–
Jordan algebra and its representations.

Definition 2.1. An algebra J over a field K is called a Jacobi–Jordan algebra if
there is a bilinear map · : J × J→ J satisfying the following identities:

x · y = y · x, (1)
x · (y · z) + y · (z · x) + z · (x · y) = 0, (2)

for all x, y, z ∈ J.

Definition 2.2. A homomorphism between two Jacobi–Jordan algebras (J1, ·1)
and (J2, ·2) is a linear map ζ : J1 → J2 satisfying ζ(x ·1 y) = ζ(x) ·2 ζ(y) for all
x, y ∈ J1.

Definition 2.3. A representation of a Jacobi–Jordan algebra (J, ·) on a vector
space V is a linear map ρ : J→ End(V), such that

ρ(x · y)u = −ρ(x)ρ(y)u − ρ(y)ρ(x)u, (3)

for all x, y ∈ J and u ∈ V. Then (V; ρ) is called a representation of J. In this case,
we also call V a J-module.

Example 2.4. Any Jacobi–Jordan algebra (J, ·) is a representation over itself
with

ad : J→ End(J), y 7→ (x 7→ x · y).
It is called the adjoint representation over the Jacobi–Jordan algebra.

Definition 2.5. Let λ ∈ K and (J, ·) be a Jacobi–Jordan algebra. A modified λ-
differential operator (also called a modified differential operator of weight λ) on J
is a linear operator d : J→ J, such that

d(x · y) =d(x) · y + x · d(y) + λx · y, (4)

for all x, y ∈ J.

Definition 2.6. A modified λ-differential Jacobi–Jordan algebra (also called a
modified differential Jacobi–Jordan algebra of weight λ) is a triple (J, ·, d) consist-
ing of a Jacobi–Jordan algebra (J, ·) and a modified λ-differential operator d.

Definition 2.7. A homomorphism between two modified λ-differential Jacobi–
Jordan algebras (J1, ·1, d1) and (J2, ·2, d2) is a Jacobi–Jordan algebra homomor-
phism ζ : (J1, ·1)→ (J2, ·2) such that ζ ◦ d1 = d2 ◦ ζ. Furthermore, if ζ is nonde-
generate, then ζ is called an isomorphism from J1 to J2.

Remark 2.8. Let d be a modified λ-differential operator on (J, ·). If λ = 0, then
d is a derivation on J. We denote the set of all derivations on J by Der(J). One can
refer to [19] for more information about Jacobi–Jordan algebras with derivations.
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Moreover, there is a close relationship between derivations and modified λ-
differential operators.

Proposition 2.9. Let (J, ·) be a Jacobi–Jordan algebra. Then, a linear operator
d : J→ J is a modified λ-differential operator if and only if d + λidJ is a derivation
on J.

Proof. Eq. (4) is equivalent to

(d + λidJ)(x · y) = (d + λidJ)(x) · y + x · (d + λidJ)(y).

The proposition follows. �

Example 2.10. Let (J, ·, d) be a modified λ-differential Jacobi–Jordan algebra.
Then, for k ∈ K, (J, ·, kd) is a modified (kλ)-differential Jacobi–Jordan algebra.

Example 2.11. Let (J, ·) be a 4-dimensional Jacobi–Jordan algebra with a basis
{e1, e2, e3, e4} defined by e1 · e1 = e2, e1 · e3 = e4. Then the operator

d =


a11 0 0 0
a21 2a11 + λ a23 0
a31 0 a33 0
a41 2a31 a43 a11 + a33 + λ


is a modified λ-differential operator on J, for λ ∈ K.

Definition 2.12. A representation of the modified λ-differential Jacobi–Jordan
algebra (J, ·, d) is a triple (V; ρ, dV), where (V; ρ) is a representation of the Jacobi–
Jordan algebra (J, ·) and dV is a linear operator on V, satisfying the equation

dV(ρ(x)u) = ρ(d(x))u + ρ(x)dV(u) + λρ(x)u, (5)

for any x ∈ J and u ∈ V.

Obviously, (J; ad, d) is a representation of the modified λ-differential Jacobi–
Jordan algebra (J, ·, d).

Remark 2.13. Let (V; ρ, dV) be a representation of the modified λ-differential
Jacobi–Jordan algebra (J, ·, d). If λ = 0, then (V; ρ, dV) is a representation of the
Jacobi–Jordan algebra with a derivation (J, ·, d).

Moreover, the following result finds the relation between representations over
modified λ-differential Jacobi–Jordan algebras and over Jacobi–Jordan algebras
with derivations.

Proposition 2.14. Let (V; ρ) be a representation of the Jacobi–Jordan algebra
(J, ·). Then (V; ρ, dV) is a representation of the modified λ-differential Jacobi–
Jordan algebra (J, ·, d) if and only if (V; ρ, dV + λidV) is a representation of the
Jacobi–Jordan algebra with a derivation (J, ·, d + λidJ).



COHOMOLOGY OF MODIFIED λ-DIFFERENTIAL JACOBI–JORDAN ALGEBRAS 219

Proof. Equality (5) is equivalent to

(dV + λidV)(ρ(x)u) = ρ((d + λidJ)(x))u + ρ(x)(dV + λidV)(u).

The proposition follows. �

Example 2.15. Let (V; ρ) be a representation of the Jacobi–Jordan algebra (J, ·).
Then, for k ∈ K, (V; ρ, idV) is a representation of the modified (−λ)-differential
Jacobi–Jordan algebra (J, ·, λidJ).

Example 2.16. Let (V; ρ, dV) be a representation of the modified λ-differential
Jacobi–Jordan algebra (J, ·, d). Then, for k ∈ K, (V; ρ, kdV) is a representation of
the modified (kλ)-differential Jacobi–Jordan algebra (J, ·, kd).

Next we construct the semi-direct product in the context of modified λ-differential
Jacobi–Jordan algebras.

Proposition 2.17. Let (J, ·, d) be a modified λ-differential Jacobi–Jordan alge-
bra and (V; ρ, dV) be a representation of it. Then J ⊕ V is a modified λ-differential
Jacobi–Jordan algebra under the following maps:

(x + u) • (y + v) : = x · y + ρ(x)v + ρ(y)u,
d ⊕ dV(x + u) : = d(x) + dV(u),

for all x, y ∈ J and u, v ∈ V.

Proof. First, as we all know, (J ⊕ V, •) is a Jacobi–Jordan algebra. Next, for any
x, y ∈ J, u, v ∈ V, by equalities (4) and (5), we have

d ⊕ dV((x + u) • (y + v))
= d(x · y) + dV(ρ(x)v) + dV(ρ(y)u)
= d(x) · y + x · d(y) + λx · y + ρ(d(x))v + ρ(x)dV(v) + λρ(x)v

+ ρ(d(y))u + ρ(y)dV(u) + λρ(y)u
= d ⊕ dV(x + u) • (y + v) + (x + u) • d ⊕ dV(y + v) + λ(x + u) • (y + v).

Therefore, (J ⊕ V, •, d ⊕ dV) is a modified λ-differential Jacobi–Jordan algebra.
�

Let (V; ρ, dV) be a representation of a modified λ-differential Jacobi–Jordan alge-
bra (J, ·, d), and V∗ be a dual space of V. We define a linear map ρ∗ : J→ End(V∗)
and a linear map d∗V : V∗ → V∗, respectively, by

〈ρ∗(x)u∗, v〉 = 〈u∗, ρ(x)v〉 and 〈d∗Vu∗, v〉 = 〈u∗, dV(v)〉, (6)

for any x ∈ J, v ∈ V and u∗ ∈ V∗.

Proposition 2.18. With the above notations, (V∗; ρ∗,−d∗V) is a representation of
modified λ-differential Jacobi–Jordan algebra (J, ·, d). We call it the dual repre-
sentation of (V; ρ, dV)
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Proof. Following [1], we can easily see that (V∗; ρ∗) is a representation of the
Jacobi–Jordan algebra (J, ·). Moreover, for any x ∈ J, v ∈ V and u∗ ∈ V∗, by equal-
ities (5) and (6), we have

〈ρ∗(d(x))u∗, v〉 + 〈ρ∗(x)(−d∗V )u∗, v〉 + 〈λρ∗(x)u∗, v〉 − 〈(−d∗V )ρ∗(x)u∗, v〉

= 〈u∗, ρ(d(x))v〉 + 〈(−d∗V )u∗, ρ(x)v〉 + 〈u∗, λρ(x)v〉 + 〈ρ∗(x)u∗, dV (v)〉

= 〈u∗, ρ(d(x))v〉 − 〈u∗, dV (ρ(x)v)〉 + 〈u∗, λρ(x)v〉 + 〈u∗, ρ(x)dV (v)〉

= 〈u∗, ρ(d(x))v − dV (ρ(x)v) + λρ(x)v + ρ(x)dV (v)〉
= 0,

which implies that ρ∗(d(x))u∗ + ρ∗(x)(−d∗V)u∗ + λρ∗(x)u∗ − (−d∗V)ρ∗(x)u∗ = 0. So,
we have the result. �

Example 2.19. Let (J; ad, d) be an adjoint representation of the modified λ-
differential Jacobi–Jordan algebra (J, ·, d). Then (J∗; ad∗,−d∗) is a dual adjoint
representation of (J, ·, d).

3. Cohomology of modified λ-differential Jacobi–Jordan algebras
Let J and V be two vector spaces. A k-linear map f : J × · · · × J→ V is called

symmetric if it satisfies
f(xσ(1), · · · , xσ(k)) = f(x1, · · · , xk), for all σ ∈ Gk,

where Gk is the group of permutations of {1, · · · , k}. The set of symmetric k-linear
maps is denoted by Ck(J,V) for k ∈ N∗. Until now, it is known that the cohomology
theories of Jordan algebras are incomplete. As for a special Jordan algebra, in
[4, 35] low order cohomologies of Jacobi–Jordan algebras are constructed. Let V
be a vector space and (J, ·) a Jacobi–Jordan algebra, (ρ; V) be a representation of
J, and let Cn(J,V) represent the space of symmetric n-linear maps. Consider the
complex

C1(J,V)
∂1
−→ C2(J,V)

∂2
−→ C3(J,V).

The 1-coboundary operator of J is the map
∂1 : C1(J,V)→ C2(J,V), f 7→ ∂1f,

given by
∂1f(x, y) = f(x · y) − ρ(x)f(y) − ρ(y)f(x),

for all x, y ∈ J and f ∈ C1(J,V). The 2-coboundary operator of J is the map
∂2 : C2(J,V)→ C3(J,V), g 7→ ∂2g,

given by

∂2g(x, y, z)
= g(x, y · z) + g(y, z · x) + g(z, x · y) + ρ(x)g(y, z) + ρ(y)g(z, x) + ρ(z)g(x, y),

for all x, y, z ∈ J and g ∈ C2(J,V). The first cohomology group
H1(J,V) = Z1(J,V),



COHOMOLOGY OF MODIFIED λ-DIFFERENTIAL JACOBI–JORDAN ALGEBRAS 221

where Z1(J,V) = {f ∈ C1(J,V) | ∂1f = 0}. The second cohomology group

H2(J,V) =
Z2(J,V)
B2(J,V) ,

where Z2(J,V) = {g ∈ C2(J,V) | ∂2g = 0} is the space of 2-cocycles, and B2(J,V)
= {∂1f |f ∈ C1(J,V)} is the space of 2-coboundaries.

Based on the lower order cohomology of Jacobi–Jordan algebras, we want to
consider lower order cohomology of modified λ-differential Jacobi–Jordan alge-
bras. Let (ρ; V, dv) be a representation of a modified λ-differential Jacobi–Jordan
algebra (J, ·, d). We define the set of modified λ-differential Jacobi–Jordan algebra
1-cochains C1

mDJJλ(J,V) = C1(J,V). For 1 < n ≤ 3, the n-cochains are defined to
be

Cn
mDJJλ(J,V) = Cn(J,V) × Cn−1(J,V).

We define an operator δ : Cn(J,V)→ Cn(J,V) (n = 1, 2) by

δf(x) = f ◦ d(x) − dV ◦ f(x), ∀f ∈ C1(J,V),

δg(x, y) = g(d(x), y) + g(x, d(y)) + λg(x, y) − dV ◦ g(x, y), ∀g ∈ C2(J,V).

Here we consider the complex

C1
mDJJλ(J,V)

φ1
−→ C2

mDJJλ(J,V)
φ2
−→ C3

mDJJλ(J,V).

Define φ1 : C1
mDJJλ(J,V) −→ C2

mDJJλ(J,V) by

φ1f = (−∂1f,−δf), f ∈ C1(J,V),
and define φ2 : C2

mDJJλ(J,V)→ C3
mDJJλ(J,V) by

φ2(g, h) = (−∂2g, ∂1h − δg), g ∈ C2(J,V), h ∈ C1(J,V),
where ∂1, ∂2 correspond to the coboundary operators of J above.

Proposition 3.1. The operators ∂i and δ are commutative, i.e., ∂i ◦ δ = δ ◦ ∂i,
i = 1, 2.

Proof. For i = 1, we have

∂1 ◦ δf(x, y)
= δf(x · y) − ρ(x)δf(y) − ρ(y)δf(x)
= fd(x · y) − dVf(x · y) − ρ(x)fd(y)

+ρ(x)dVf(y) − ρ(y)fd(x) + ρ(y)dVf(x),

and

δ ◦ ∂1f(x, y)
= ∂1f(d(x), y) + ∂1f(x, d(y)) − dV∂1f(x, y)
= f(d(x) · y) − ρ(d(x))f(y) − ρ(y)f(d(x))

+ f(x · d(y)) − ρ(x)f(d(y)) − ρ(d(y))f(x)
+ dVρ(x)f(y) + dVρ(y)f(x) − dVf(x · y).
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Since d is a modified λ-differential operator of J, and by equality (5), we have
∂1 ◦ δ = δ ◦ ∂1.

Similarly, for i = 2, we have

∂2 ◦ δg(x, y, z)
= δg(x, y · z) + δg(y, z · x) + δg(z, x · y)

+ ρ(x)δg(y, z) + ρ(y)δg(z, x) + ρ(z)δg(x, y)
= g(d(x), y · z) + g(x, d(y · z)) + λg(x, y · z) − dVg(x, y · z) + g(d(y), z · x)

+ g(y, d(z · x)) + λg(y, z · x) − dVg(y, z · x) + g(d(z), x · y) + λg(z, x · y)
− dVg(z, x · y) − dVg(z, x · y) + g(z, d(x · y)) + ρ(x)(g(d(y), z) + g(y, d(z))
+ λg(y, z) − dVg(y, z)) + ρ(y)(g(d(z), x) + g(z, d(x)) + λg(z, x) − dVg(z, x))
+ ρ(z)(g(d(x), y) + g(x, d(y)) + λg(x, y) − dVg(x, y)),

and

δ ◦ ∂2g(x, y, z)
= ∂2g(d(x), y, z) + ∂2g(x, d(y), z) + ∂2g(x, y, d(z)) + λ∂2g(x, y, z) − dV∂2g(x, y, z)
= g(d(x), y · z) + g(y, z · d(x)) + g(z, d(x) · y) + ρ(d(x))g(y, z)

+ ρ(y)g(z, d(x)) + ρ(z)g(d(x), y) + g(x, d(y) · z) + g(d(y), z · x)
+ g(z, x · d(y)) + ρ(x)g(d(y), z) + ρ(d(y))g(z, x) + ρ(z)g(x · d(y))
+ g(x, y · d(z)) + g(y, d(z) · x) + g(d(z), x · y) + ρ(x)g(y, d(z))
+ ρ(y)g(d(z), x) + ρ(d(z))g(x, y) + λg(x, y · z) + λg(y, z · x)
+ λg(z, x · y) + λρ(x)g(y, z) + λρ(y)g(z, x) + λρ(z)g(x, y) − dVg(x, y · z)
− dVg(y, z · x) − dVg(z, x · y) − dVρ(x)g(y, z) − dVρ(y)g(z, x) − dVρ(z)g(x, y).

Comparing the above two formulas, we have ∂2 ◦ δ = δ ◦ ∂2. �

Proposition 3.2. With the above notation, we have φ2 ◦ φ1 = 0.

Proof. Since ∂1 ◦ δ = δ ◦ ∂1, for any f ∈ C1(J,V), we have

φ2 ◦ φ1(f)
= φ2(−∂1f,−δf)
= (−∂2(−∂1f), ∂1(−δf) − δ(−∂1f))
= (0, ∂1(−δf) + δ(∂1f))
= 0

and the proof is complete. �

We denote the space of n-cocycles by Zn
mDJJλ(J,V) and the set of n-coboundaries

by Bn
mDJJλ(J,V), n = 1, 2. The first cohomology group is defined by

H1
mDJJλ(J,V) = Z1

mDJJλ(J,V),
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where Z1
mDJJλ(J,V) = {f ∈ C1

mDJJλ(J,V) | φ1f = 0}. The second cohomology group
of a modified λ-differential algebra (J, ·, d) is the quotient

H2
mDJJλ(J,V) =

Z2
mDJJλ

(J,V)

B2
mDJJλ

(J,V)
,

where

Z2
mDJJλ(J,V) = {g ∈ C2

mDJJλ(J,V) | φ2g = 0} and

B2
mDJJλ(J,V) = {φ1f | f ∈ C1

mDJJλ(J,V)}.

Theorem 3.3. Let (ρ; V, dV) be a representation of (J, ·, d). Then we have

H1
mDJJλ(J,V) = {f ∈ Z1(J,V) | f ◦ g = dV ◦ f}.

Proof. For any f ∈ C1
mDJJλ(J,V), we have

φ1f = (−∂1f,−δf),

so f is closed if and only if f ∈ Z1(J,V), and satisfies f ◦ g = dV ◦ f. Thus the
conclusion holds. �

4. Deformations of modified λ-differential Jacobi–Jordan algebras
In this section, we introduce formal deformations of the modified λ-differential

Jacobi–Jordan algebra. Furthermore, we show that if the second cohomology group
H2

mDJJλ(J,J) = 0, then the modified λ-differential Jacobi–Jordan algebra (J, ·, d) is
rigid.

Let (J, ·, d) be a modified λ-differential Jacobi–Jordan algebra. Denote by ν the
multiplication of J, i.e., ν = ·. Consider the 1-parameterized family

νt =

∞∑
i=0

νiti, νi ∈ C
2(J,J), dt =

∞∑
i=0

diti, di ∈ C
1(J,J).

Definition 4.1. A 1-parameter formal deformation of the modified λ-differential
Jacobi–Jordan algebra (J, ν, d) is a pair (νt, dt) which endows the K[[t]]-module
(J[[t]], νt, dt) with the modified λ-differential Jacobi–Jordan algebra over K[[t]] such
that (ν0, d0) = (ν, d).

Obviously, (J[[t]], νt = ν, dt = d) is a 1-parameter formal deformation of (J, ν, d).
The pair (νt, dt) generates a 1-parameter formal deformation of the modified λ-
differential Jacobi–Jordan algebra (J, ·, d) if and only if for all x, y, z ∈ J, the fol-
lowing equations hold:

νt(x, νt(y, z)) + νt(y, νt(z, x)) + νt(z, νt(x, y)) = 0, (7)
dt(νt(x, y)) = νt(dt(x), y) + νt(x, dt(y)) + λνt(x, y). (8)
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Comparing the coefficients of tn on both sides, equations (7)–(8) are equivalent to
the following equations:∑

i+j=n

νi(x, νj(y, z)) + νi(y, (νj(z, x)) + νi(z, νj(x, y)) = 0, (9)∑
i+j=n

di(νj(x, y)) =
∑

i+j=n

(νi(dj(x), y) + νi(x, dj(y)) + λνn(x, y). (10)

Proposition 4.2. Let (J[[t]], νt, dt) be a 1-parameter formal deformation of the
modified λ-differential Jacobi–Jordan algebra (J, ν, d). Then (ν1, d1) is a 2-cocycle
of (J, ν, d) with the coefficient in the adjoint representation.

Proof. For n = 1, equation (9) can be written as

ν1(x, y · z) + ν1(y, z · x) + ν1(z, x · y) + x · ν1(y, z) + y · ν1(z, x) + z · ν1(x, y) = 0,

i.e., ∂2ν1 = 0. In addition, for n = 1, equation (10) is equivalent to

d1(x · y) + d(ν1(x, y))
= d1(x) · y + x · d1(y) + ν1(d(x), y) + ν1(x, d(y)) + λν1(x, y),

that is, ∂1d1 − δν1 = 0. In other words, equations (9) and (10) are equivalent to
φ2(ν1, d1) = (−∂2ν1, ∂1d1 − δν1) = 0. Therefore, (ν1, d1) is a 2-cocycle. �

Definition 4.3. The 2-cocycle (ν1, d1) is called the infinitesimal of the 1-para-
meter formal deformation (J[[t]], νt, dt) of (J, ν, d).

Definition 4.4. Let (J[[t]], νt, dt) and (J[[t]], ν′t , d
′
t) be two 1-parameter formal de-

formations of (J, ν, d). A formal isomorphism from (J[[t]], ν′t , d
′
t) to (J[[t]], νt, dt) is a

power series ϕt = idJ +
∑∞

i=1 ϕiti : (J[[t]], ν′t , d
′
t)→ (J[[t]], νt, dt), where ϕi ∈ End(J),

such that

ϕt ◦ ν
′
t =νt ◦ (ϕt × ϕt), (11)

ϕt ◦ d′t =dt ◦ ϕt. (12)

Two 1-parameter formal deformations (J[[t]], νt, dt) and (J[[t]], ν′t , d
′
t) are said to be

equivalent if there exists a formal isomorphism ϕt : (J[[t]], ν′t , d
′
t)→ (J[[t]], νt, dt).

Theorem 4.5. The infinitesimals of two equivalent 1-parameter formal defor-
mations of (J, ν, d) are in the same cohomology class ofH2

mDJJλ(J,J).

Proof. Let ϕt : (J[[t]], ν′t , d
′
t)→ (J[[t]], νt, dt) be a formal isomorphism. For all

x, y ∈ J, we have

ϕt ◦ ν
′
t(x, y) = νt(ϕt(x), ϕt(y)),

ϕt ◦ d′t(x) = dt ◦ ϕt(x).

Comparing the coefficients of t on both sides of the above equations, we get

ν′1(x, y) − ν1(x, y) = ϕ1(x) · y + x · ϕ1(y) − ϕ1(x · y),
d′1(x) − d1(x) = d(ϕ1(x)) − ϕ1(d(x)).
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Therefore, we have

(ν′1, d
′
1) = (ν1 − ∂1ϕ1, ϕ1 − δϕ1) = (ν1, ϕ1) + (∂1ϕ1 − δϕ1) = (ν1, ϕ1) + α1(ϕ1),

which implies that [(ν′1, d
′
1)] = [(ν1, d1)] ∈ H2

mDJJλ(J,J). �

Definition 4.6. A 1-parameter formal deformation (J[[t]], νt, dt) of (J, ν, d) is
said to be trivial if it is equivalent to the deformation (J[[t]], ν, d).

Definition 4.7. A modified λ-differential Jacobi–Jordan algebra (J, ν, d) is called
rigid if every 1-parameter formal deformation is trivial.

Theorem 4.8. IfH2
mDJJλ(J,J) = 0, then the modified λ-differential Jacobi–Jordan

algebra (J, ν, d) is rigid.

Proof. Let (J[[t]], νt, dt) be a 1-parameter formal deformation of (J, ν, d). By Propo-
sition 4.2, (ν1, d1) is a 2-cocycle. SinceH2

mDJJλ
(J,J) = 0, there exists a 1-cochain

ϕ1 ∈ C
1
mDJJλ(J,J) such that

(ν1, d1) = −φ1(ϕ1). (13)

Then setting ϕt = idJ + ϕ1t, we have a deformation (J[[t]], ν′t , d
′
t), where

ν′t = ϕ−1
t ◦ νt ◦ (ϕt ⊗ ϕt),

d′t = ϕ−1
t ◦ dt ◦ ϕt.

Thus, (J[[t]], ν′t , d
′
t) is equivalent to (J[[t]], νt, dt). Moreover, we have

ν′t =(idJ − ϕ1t + ϕ2
1t2 + · · · + (−1)iϕi

1ti + · · · ) ◦ νt ◦
(
(idJ + ϕ1t) ⊗ (idJ + ϕ1t)

)
,

d′t =(idJ − ϕ1t + ϕ2
1t2 + · · · + (−1)iϕi

1ti + · · · ) ◦ dt ◦ (idJ + ϕ1t).

By equality (13), we have

ν′t = ν + ν′2t2 + · · ·,

d′t = d + d′2t2 + · · ·.

Then, by repeating the argument, we can show that (J[[t]], νt, dt) is equivalent to
(J[[t]], ν, d). Therefore (J, ν, d) is rigid. �

5. Abelian extensions of modified λ-differential Jacobi–Jordan
algebras

Extensions of Jacobi–Jordan algebra were studied in [2, 3]. In this section,
we study abelian extensions of modified λ-differential Jacobi–Jordan algebras and
show that they are classified by the second cohomology.
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Definition 5.1. Let (J, ·, d) and (V, ·V, dV) be two modified λ-differential Jacobi–
Jordan algebras. An abelian extension of (J, ·, d) by (V, ·V, dV) is a short exact
sequence of homomorphisms of modified λ-differential Jacobi–Jordan algebras

0 −−−−−→ V
i

−−−−−→ Ĵ
p

−−−−−→ J −−−−−→ 0

dV

y d̂

y d
y

0 −−−−−→ V
i

−−−−−→ Ĵ
p

−−−−−→ J −−−−−→ 0

such that V ·
Ĵ

V = 0, i.e., V is an abelian ideal of Ĵ.

Definition 5.2. Let (Ĵ1, ·Ĵ1
, d̂1) and (Ĵ2, ·Ĵ2

, d̂2) be two abelian extensions of
(J, ·, d) by (V, ·V, dV). They are said to be equivalent if there is an isomorphism of
modified λ-differential Jacobi–Jordan algebras ζ : (Ĵ1, ·Ĵ1

, d̂1)→ (Ĵ2, ·Ĵ2
, d̂2) such

that the following diagram is commutative:

0 −−−−−→ (V, dV )
i1

−−−−−→ (Ĵ1, d̂1)
p1

−−−−−→ (J, d) −−−−−→ 0∥∥∥∥ ζ

y ∥∥∥∥
0 −−−−−→ (V, dV )

i2
−−−−−→ (Ĵ2, d̂2)

p2
−−−−−→ (J, d) −−−−−→ 0.

A section of an abelian extension (Ĵ, ·
Ĵ
, d̂) of (J, ·, d) by (V, ·V, dV) is a linear

map σ : J→ Ĵ such that p ◦ σ = idJ.
Now, for an abelian extension (Ĵ, ·

Ĵ
, d̂) of (J, ·, d) by (V, ·V, dV) with a section

σ : J→ Ĵ, we define a linear map ϑ : J→ End(V) by

ϑ(x)u := σ(x) ·
Ĵ

u, ∀x ∈ J, u ∈ V.

Proposition 5.3. With the above notations, (V, ϑ, dV) is a representation over
the modified λ-differential Jacobi–Jordan algebra (J, ·, d) and it does not depend
on the choice of the section σ.

Proof. First, for any other section σ′ : J→ Ĵ, we have

p(σ(x) − σ′(x)) = p(σ(x)) − p(σ′(x)) = x − x = 0.

Thus, there is u ∈ V, such that σ′(x) = σ(x) + u. Note that V is an abelian ideal of
Ĵ. This yields that

σ′(x) ·
Ĵ

v = (σ(x) + u) ·
Ĵ

v = σ(x) ·
Ĵ

v.

This means that ϑ does not depend on the choice of the section σ.
Secondly, for any x, y ∈ J and u ∈ V, from (σ(x) ·

Ĵ
σ(y)) − σ(x · y) ∈ V � ker(p),
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furthermore, by equations (1) and (2), we obtain

− ϑ(x)ϑ(y)u − ϑ(y)ϑ(x)u
= − σ(x) ·

Ĵ
(σ(y) ·

Ĵ
u) − σ(y) ·

Ĵ
(σ(x) ·

Ĵ
u)

= (σ(x) ·
Ĵ
σ(y)) ·

Ĵ
u

= (σ(x) ·
Ĵ
σ(y) + σ(x · y) − σ(x) ·

Ĵ
σ(y)) ·

Ĵ
u

= σ(x · y) ·
Ĵ

u
= ϑ(x · y)u.

In addition, d̂(σ(x)) − σ(d(x)) ∈ V, we have

dV(ϑ(x)u)
= dV(σ(x) ·

Ĵ
u)

= dV(σ(x)) ·
Ĵ

u + σ(x) ·
Ĵ

dV(σ(u)) + λσ(x) ·
Ĵ

u
= ϑ(d(x))u + ϑ(x)dV(u) + λϑ(x)u,

Hence, (V, ϑ, dV) is a representation over (J, ·, d). �

We further define linear maps ς : J × J→ V and $ : J→ V by

ς(x, y) = σ(x) ·
Ĵ
σ(y) − σ(x · y),

$(x) = d̂(σ(x)) − σ(d(x)), ∀x, y ∈ J.

We transfer the modified λ-differential Jacobi–Jordan algebra structure on Ĵ to
J ⊕ V by endowing J ⊕ V with a multiplication ·ς and the modified λ-differential
operator d$ defined by

(x + u) ·ς (y + v) = x · y + ϑ(x)v + ϑ(y)u + ς(x, y), (14)
d$(x + u) = d(x) +$(x) + dV(u), ∀x, y ∈ J, u, v ∈ V. (15)

Proposition 5.4. The triple (J ⊕ V, ·ς, d$) is a modified λ-differential Jacobi–
Jordan algebra if and only if (ς,$) is a 2-cocycle of the modified λ-differential
Jacobi–Jordan algebra (J, ·, d) with the coefficient in (V; θ, dV).

Proof. The triple (J ⊕ V, ·ς, d$) is a modified λ-differential Jacobi–Jordan algebra
if and only if

ς(x, y) − ς(y, x) = 0,
ϑ(x)ς(y, z) + ϑ(y)ς(z, x) + ϑ(z)ς(x, y) + ς(x, y · z) + ς(y, z · x) + ς(z, x · y) = 0

(16)
$(x · y) + dV(x · y) = −ς(x)($(y)) − ς(y)$(x) + ς(d(x), y) + ς(x, d(y)) + λς(x, y),

(17)

for any x, y ∈ J. Using equations (16) and (17), we get ∂2ς = 0 and ∂1$ − δς = 0,
respectively. Therefore, φ2(ς,$) = (−∂2ς, ∂1$ − δς) = 0, that is, (ς,$) is a 2-
cocycle.
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Conversely, if (ς,$) satisfies equations (16) and (17), one can easily check that
(J ⊕ V, ·ς, d$) is a modified λ-differential Jacobi–Jordan algebra. �

Next we are ready to classify abelian extensions of a modified λ-differential
Jacobi–Jordan algebra.

Theorem 5.5. Abelian extensions of a modified λ-differential Jacobi–Jordan al-
gebra (J, ·, d) by (V, ·V, dV) are classified by the second cohomology group
H2

mDJJλ(J,V) of (J, ·, d) with coefficients in the representation (V;ϑ, dV) constructed
using the section σ. Moreover, its cohomology class does not depend on the choice
of the section σ.

Proof. Let (Ĵ, ·
Ĵ
, d
Ĵ
) be an abelian extension of (J, ·, d) by (V, ·V, dV). We choose

a section σ : J→ Ĵ to obtain a 2-cocycle (ς,$) by Proposition 5.4. First, we
show that the cohomology class of (ς,$) is independent of the choice of σ. Let
σ1, σ2 : J→ Ĵ be two distinct sections providing 2-cocycles (ς1, $1) and (ς2, $2)
respectively. Define a linear map ξ : J→ V by ξ(x) = σ1(a) − σ2(x). Then

ς1(x, y)= σ1(x) ·
Ĵ1
σ1(y) − σ1(x · y)

= (σ2(x) + ξ(x)) ·
Ĵ1

(σ2(y) + ξ(y)) − (σ2(x · y) + ξ(x · y))
= σ2(x) ·

Ĵ2
σ2(y) − ϑ(x)ξ(y) − ϑ(y)ξ(x) − σ2(x · y) − ξ(x · y)

= (σ2(x) ·
Ĵ2
σ2(y) − σ2(x · y)) − ϑ(x)ξ(y) − ϑ(y)ξ(x) − ξ(x · y)

= ς2(x, y) + d1ξ(x, y)

and

$1(a)= d̂(σ1(x)) − σ1(d(x))

= d̂(σ2(x) + ξ(x)) −
(
σ2(d(x)) + ξ(d(x))

)
=

(
d̂(σ2(x)) − σ2(d(x))

)
+ d̂(ξ(x)) − ξ(d(x))

= $2(x) + dV(ξ(x)) − ξ(d(x))
= ξ2(a) − δξ(x),

i.e., (ς1, $1) − (ς2, $2) = φ1(ξ) ∈ C2
mDJJλ(J,V). So (ς1, $1) and (ς2, $2) are in the

same cohomology class inH2
mDJJλ(J,V).

Next, assume that (Ĵ1, ·Ĵ1
, d̂1) and (Ĵ2, ·Ĵ2

, d̂2) are two equivalent abelian ex-
tensions of (J, ·, d) by (V, ·V, dV) with the associated isomorphism ζ : (Ĵ1, ·Ĵ1

, d̂1)
→ (Ĵ2, ·

Ĵ2
, d̂2). Let σ1 be a section of (Ĵ1, ·Ĵ1

, d̂1). As p2 ◦ ζ = p1, we get

p2 ◦ (ζ ◦ σ1) = p1 ◦ σ1 = idJ.

That is, ζ ◦ σ1 is a section of (Ĵ2, ·Ĵ2
, d̂2). Denote σ2 := ζ ◦ σ1. Since ζ is an

isomorphism of modified λ-differential Jacobi–Jordan algebras such that ζ |V = idV,
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we have

ς2(x, y)= σ2(x) ·
Ĵ2
σ2(y) − σ2(x · y)

= (ζ ◦ σ1)(x) ·
Ĵ2

(ζ ◦ σ1)(y) − (ζ ◦ σ1)(x · y)

= ζ
(
σ1(x) ·

Ĵ1
σ1(y) − σ1(x · y)

)
= σ1(x) ·

Ĵ1
σ1(y) − σ1(x, y)

= ς1(x, y)

and

$2(x)= d̂2(σ2(x)) − σ2(d(x)) = d̂2
(
ζ(σ1(x))

)
− ζ

(
σ1(d(x))

)
= ζ

(
d̂1(σ1(x)) − σ1(d(a))

)
= d̂1(σ1(x)) − σ1d(a)
= $1(x).

So, all equivalent abelian extensions give rise to the same element inH2
mDJJλ(J,V).

Conversely, given two cohomologous 2-cocycles (ς1, $1) and (ς2, $2) inH2
mDJJλ

(J,V), we can construct two abelian extensions (J ⊕ V, ·ζ1 , d$1) and (J ⊕ V, ·ζ2 , d$2)
via equations (14) and (15). Then, there is a linear map ξ : J→ V such that

(ς1, $1) = (ς2, $2) + φ1(ξ).

Define a linear map ζξ : J ⊕ V→ J ⊕ V by ζξ(x + u) := x + ξ(x) + u, x ∈ J, u ∈ V.
Then, ζξ is an isomorphism of these two abelian extensions. �

6. T∗-extensions of modified λ-differential Jacobi–Jordan algebras
In this section, we consider T∗-extensions of modified λ-differential Jacobi–

Jordan algebras by the second cohomology groups with the coefficient in a dual
adjoint representation.

Let (J, ·, d) be a modified λ-differential Jacobi–Jordan algebra and J∗ be the dual
space of J. By Example 2.19, (J∗; ad∗,−d∗) is a representation of (J, ·, d). Suppose
that (f, g) ∈ C2

mDJJλ(J,J
∗). Define a trilinear map ·f : ⊗2(J ⊕ J∗)→ J ⊕ J∗ and a

linear map dg : J ⊕ J∗ → J ⊕ J∗ respectively by

(x + α) ·f (y + β) = x · y + ad∗(x)β + ad∗(y)α + f(x, y), (18)
dg(x + α) = d(x) − d∗(α) + g(x), ∀x, y ∈ J, α, β ∈ J∗. (19)

Similarly to Proposition 2.18, we have the following result.

Proposition 6.1. With the above notations, (J ⊕ J∗, ·f , dg) is a modified λ-differen-
tial Jacobi–Jordan algebra if and only if (f, g) is a 2-cocycle in the cohomology of
the modified λ-differential Jacobi–Jordan algebra (J, ·, d) with the coefficient in the
representation (J∗; ad∗,−d∗).
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Definition 6.2. The modified λ-differential Jacobi–Jordan algebra (J ⊕ J∗, ·f , dg)
is called the T∗-extension of the modified λ-differential Jacobi–Jordan algebra
(J, ·, d). Denote the T∗-extension by T∗(f,g)(J) = (T∗(J) = J ⊕ J∗, ·f , dg).

Definition 6.3. A modified λ-differential Jacobi–Jordan algebra (J, ·, d) is called
metrised if it has a non-degenerate symmetric bilinear form $J satisfying

$J(x, y · z) −$J(x · y, z) = 0, (20)
$J(d(x), y) +$J(x, d(y)) = 0, ∀x, y, z ∈ J. (21)

We may also say that (J, ·, d, $J) is a metrised modified λ-differential Jacobi–
Jordan algebra.

Define a bilinear map $ : ⊗2T∗(J)→ J by

$(x + α, y + β) = α(y) + β(x), ∀x, y ∈ J, α, β ∈ J∗. (22)

Proposition 6.4. With the above notations, (T∗(f,g)(J), $) is a metrised modified
λ-differential Jacobi–Jordan algebra if and only if

f(y, z)(x) − f(x, y)(z) = 0, g(x)(y) + g(y)(x) = 0, ∀x, y, z ∈ J.

Proof. For any x, y, z ∈ J, α, β, γ ∈ J∗, using equations (6), (18)-(22) we have

$(x + α, (y + β) ·f (z + γ)) −$((x + α) ·f (y + β), z + γ)

= $(x + α, y · z + ad∗(y)γ + ad∗(z)β + f(y, z))

−$(x · y + ad∗(x)β + ad∗(y)α + f(x, y), z + γ)

= α(y · z) + ad∗(y)γ(x) + ad∗(z)β(x) + f(y, z)(x)

−γ(x · y) − ad∗(x)β(z) − ad∗(y)α(z) − f(x, y)(z)
= α(y · z) + γ(y · x) + β(z · x) + f(y, z)(x)
−γ(x · y) − β(x · z) − α(y · z) − f(x, y)(z)

= f(y, z)(x) − f(x, y)(z)
= 0,
$(dg(x + α), y + β) +$(x + α, dg(y + β))

= $(d(x) − d∗(α) + g(x), y + β) +$(x + α, d(y) − d∗(β) + g(y))

= − d∗(α)(y) + g(x)(y) + β(d(x)) + α(d(y)) − d∗(β)(x) + g(y)(x)
= −α(d(y)) + g(x)(y) + β(d(x)) + α(d(y)) − β(d(x)) + g(y)(x)
= g(x)(y) + g(y)(x)
= 0.

Thus, we obtain the result. �
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