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From Yamabe to almost contact metric structure

Gherici Beldjilali and Adel Delloum

Abstract. The investigation of Yamabe solitons within almost con-
tact metric manifolds has garnered significant interest recently, produc-
ing notable findings. This paper aims to explore the inverse problem:
constructing almost contact metric structures on a three-dimensional
Riemannian manifold endowed with an almost Yamabe soliton. Subse-
quently, we provide the techniques required to characterize the nature
of these structures, accompanied by concrete examples.

1. Introduction

A connected Riemannian manifold (Mn, g), where n > 2, is deemed to be
a Yamabe soliton if it possesses a vector field U satisfying the condition

(LUg) + 2(r − λ)g = 0, (1)

where (LUg) denotes the Lie derivative of the metric g with respect to the
vector field U and λ is a real number [4]. The classification of such solitons
depends on the behavior of λ. A Yamabe soliton is categorized as shrink-
ing, steady or expanding, depending on whether λ < 0, λ = 0, or λ > 0,
respectively.

If λ is a smooth function on M , the metric g satisfying equation (1) is
termed an almost Yamabe soliton. Moreover, if the vector field U is a Killing
vector field, meaning LUg = 0, the soliton is referred to as trivial.

The study of Yamabe solitons has been conducted on 3-dimensional Sasa-
kian, Kenmotsu, and cosymplectic manifolds, as detailed in [7, 8, 9]. These
manifolds are normal; however, there is ongoing research on Yamabe solitons
on non-normal almost contact metric manifolds [2].
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Considering these studies, an intriguing question arises: can we explore
the reverse scenario, namely, the construction of almost contact metric struc-
tures starting from an almost Yamabe soliton?

This paper aims to investigate alternative methods for constructing al-
most contact metric structures on three-dimensional Riemannian manifolds
equipped with an almost Yamabe soliton. Our results are divided into two
parts. Firstly, we construct almost contact metric structures solely from
a unit vector field, and secondly, we analyze the characteristics of these
structures in the presence of an almost Yamabe soliton on a Riemannian
manifold.

2. Preliminaries

An almost contact structure on an odd-dimensional Riemannian manifold
(M2n+1, g) is denoted by the triple (ϕ, ξ, η), where ϕ is a tensor field of type
(1, 1), ξ is a vector field, and η is a differential 1-form. These components
are subject to the following conditions:

η(ξ) = 1,

ϕ2X = −X + η(X)ξ,

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ),

(2)

for any vector field X,Y on M . In particular, in an almost contact metric
manifold we also have

ϕξ = 0 and η ◦ ϕ = 0. (3)

We call the data (M2n+1, ϕ, ξ, η, g) an almost contact metric manifold. We
associate to this later a fundamental 2-form Φ, expressed by

Φ(X,Y ) = g(X,ϕY ).

We say that (ϕ, ξ, η, g) is normal if

N (1) = Nϕ + 2dη ⊗ ξ = 0,

and is integrable if
Nϕ = 0,

where Nϕ is the Nijenhuis tensor, expressed by

Nϕ(X,Y ) = ϕ2[X,Y ] + [ϕX,ϕY ]− ϕ[X,ϕY ]− ϕ[ϕX, Y ].

In [5], the author proves that (ϕ, ξ, η, g) is a trans-Sasakian structure of type
(α, β) if and only if it is normal and

dη = αΦ and dΦ = 2βη ∧ Φ, (4)

where d denotes the exterior derivative and α, β are smooth functions defined
by

α =
1

2n
δΦ(ξ) and β =

1

2n
divξ,
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where δ is the co-differential of g. It is well known that the trans-Sasakian
condition may be expressed as an almost contact metric structure satisfying(

∇Xϕ
)
Y = α

(
g(X,Y )ξ − η(Y )X

)
+ β

(
g(ϕX, Y )ξ − η(Y )ϕX

)
.

In this paper, we investigate 3-dimensional almost contact metric mani-
folds. Olszak [6] demonstrated that an almost contact metric structure is
trans-Sasakian of type (α, β) if and only if

∇Xξ = −αϕX − βϕ2X, (5)

in conformity with
∇ϕXξ = ϕ∇Xξ. (6)

Clearly, 
(1) : α− Sasakian⇔ trans-Sasakian of type (α, 0),

(2) : β −Kenmotsu⇔ trans-Sasakian of type (0, β),

(3) : cosymplectic⇔ trans-Sasakian of type (0, 0).

A trans-Sasakian manifold of type (α, β) is designated as a proper trans-
Sasakian manifold when both functions α and β are non-zero.

Another significant class of almost contact metric structures has been in-
vestigated recently in [1]. This class, referred to as non-normal integrable al-
most contact metric structures, is termed the generalized C12-structure. The
authors demonstrate that (ϕ, ξ, η, g) qualifies as a generalized C12-structure
if and only if it is integrable, i.e., Nϕ = 0 and

dη = η ∧ ω and dΦ = 2βη ∧ Φ,

where ω = ∇ξη and ω] = ψ = ∇ξξ, that is, ω(X) = g(ψ,X) for all vector
field X on M . It is well known that the generalized-C12 condition can be
expressed as an almost contact metric structure satisfying

(∇Xϕ)Y = β
(
g(ϕX, Y )ξ − η(Y )ϕX

)
− η(X)

(
ω(ϕY )ξ + η(Y )ϕψ

)
.

In the three-dimensional case, [1] provides two elegant characterizations of
generalized C12-manifolds.

Theorem 1. Let (M3, ϕ, ξ, η, g) be a 3-dimensional almost contact metric
manifold. M is a generalized C12-manifold if and only if

∇Xξ = −βϕ2X + η(X)ψ,

where ψ = ∇ξξ. Or, equivalently,

∇ϕXξ = βϕX.

Typically, the vector field ψ is not normalized. Hence, for 3-dimensional
generalized-C12 manifolds, we introduce V = e−ρψ, where eρ = ‖ψ‖. This
formulation readily establishes {ξ, V, ϕV } as an orthonormal frame. This set
is commonly referred to as the “fundamental basis”.
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As per [1], the components of the Levi-Civita connection, associated with
the fundamental basis, are presented as follows.

Theorem 2. For any three-dimensional generalized-C12 manifold, the co-
variant derivatives of the fundamental basis {ξ, V, ϕV } are given by:

(1) ∇ξξ = eρV,
(2) ∇V ξ = βV,
(3) ∇ϕV ξ = βϕV,
(4) ∇ξV = −eρξ + κe−2ρϕV,
(5) ∇V V = −βξ + ϕV (ρ)ϕV,
(6) ∇ϕV V = aϕV,
(7) ∇ξϕV = −κe−2ρV,
(8) ∇V ϕV = −ϕV (ρ)V,
(9) ∇ϕV ϕV = −βξ − aV.

Here, κ = g(∇ξψ,ϕψ) and a = e−ρ divψ + eρ − V (ρ), where ψ = ∇ξξ and
ρ = log ‖ψ‖.

Employing this theorem, routine calculations lead to
R(ξ, V )ξ = (β2 + ξ(β) + e2ρ − V (eρ))V − ϕV (eρ)ϕV,

R(ξ, ϕV )ξ = −ϕV (eρ)V + (β2 + ξ(β)− aeρ)ϕV,
R(V, ϕV )ξ = −ϕV (β)V + V (β)ϕV,R(V, ϕV )V = ϕV (β)ξ + bϕV,

where b = a2 + β2 + V (a)− ϕV (ϕV (ρ)) + (ϕV (ρ))2.
The Ricci tensor S, which is defined for all vector fields X,Y on M by

S(X,Y ) = g(R(X, ξ)ξ, Y ) + g(R(X,V )V, Y ) + g(R(X,ϕV )ϕV, Y ),

is fully characterized by

S(ξ, ξ) = divψ − 2(β2 + ξ(β)),

S(ξ, V ) = −V (β),

S(ξ, ϕV ) = −ϕV (β),

S(V, V ) = −b− β2 − ξ(β)− e2ρ + V (eρ),

S(V, ϕV ) = ϕV (eρ),

S(ϕV, ϕV ) = −b− β2 − ξ(β) + aeρ.

(7)

According to (7), the scalar curvature r can be expressed as

r = 2divψ − 2b− 4(β2 + ξ(β)).
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3. Construction of 3-dimensional almost contact metric
structures

In this section, we will elucidate a clear method for constructing an al-
most contact metric structure. This approach is straightforward and prac-
tical, grounded in linear algebra and fundamental definitions of structural
elements.

Let (M, g) be a 3-dimensional oriented Riemannian manifold. For every
local orthonormal frame ei{1≤i≤3}, we define a unit vector field by

ξ =
3∑
i=1

ξiei, (8)

where ξi ∈ C∞(M) and
∑3

i=1(ξ
i)2 = 1. Accordingly, the g-dual of ξ is

represented by the differential 1-form defined as

η =

3∑
i=1

ξiθi, (9)

where θi{1≤i≤3} is the dual co-frame.
Note: We will adopt Einstein’s summation convention (i.e., whenever an

index is repeated, it is considered a dummy index). Specifically, equations
(8) and (9) become

ξ = ξiei and η = ξiθi.

Now, let us begin by defining ϕ. We denote it as

ϕei =
3∑
j=1

ϕjiej ,

where ϕji are functions on M that need to be determined. With the help of
(2), we have

g(ϕei, ej) = −g(ei, ϕej) and g(ϕei, ϕej) = g(ei, ej)− η(ei)η(ej).

We obtain the system {
ϕji = −ϕij ,
ϕaiϕ

a
j = δij − ξiξj .

By observing that i and j are fixed, one readily derives from this arrangement

ϕii = 0, ϕaiϕ
a
i = 1− (ξi)2 and ϕaiϕ

a
j = −ξiξj , for i 6= j.



248 GHERICI BELDJILALI AND ADEL DELLOUM

For each i, j, k ∈ {1, 2, 3} such that i 6= j, i 6= k, and j 6= k, the first two
equations above produce the following result:

(ϕji )
2 + (ϕki )

2 = 1− (ξi)2,

(ϕij)
2 + (ϕkj )

2 = 1− (ξj)2,

(ϕik)
2 + (ϕjk)

2 = 1− (ξk)2.

Subtracting the second equation from the first and considering ϕji = −ϕij ,
we find

(ϕki )
2 − (ϕkj )

2 = 2
(
(ξj)2 − (ξi)2

)
.

From the third equation in the aforementioned system, we obtain

2(ϕki )
2 = 1 + (ξj)2 −

(
(ξk)2 + (ξi)2

)
= 1 + (ξj)2 −

(
1− (ξj)2

)
= 2(ξj)2,

which gives
ϕki = εξj , where ε = ±1.

It is worth noting that ϕ is entirely determined by ξ. Based on these obser-
vations, we state the following theorem.

Theorem 3. Let (M3, g) be a 3-dimensional oriented Riemannian mani-
fold. If ξ is a global unit vector field written on the local orthonormal frame
ei{1≤i≤3} in the form ξ = ξiei, then there exists an almost contact metric
structure (ϕ, ξ, η, g), where

ϕ = ε

 0 −ξ3 ξ2

ξ3 0 −ξ1
−ξ2 ξ1 0

 .

Proof. It is easy to check that the conditions in (2) are fulfilled. �

4. From Yamabe to almost contact metric structure

Suppose (g, U, λ) forms a Yamabe soliton on M . This implies

LUg + 2(r − λ) = 0. (10)

We are aware that the potential vector field U is defined globally on M , yet
it may not necessarily be unitary. We therefore define ξ as

ξ =
1

f
U, where f = ‖U‖. (11)

Subsequent to Theorem (3), an almost contact metric structure (ϕ, ξ, η, g)
emerges.

Now, putting X = ξ in (10), we have

(Lfξg)(ξ, Y ) + 2(r − λ)g(ξ, Y ) = 0. (12)
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Using the definition of Lie derivative, we get

(Lfξg)(ξ, Y ) = g(∇ξfξ, Y ) + g(∇Y fξ, ξ)
= ξ(f)η(Y ) + fg(∇ξξ, Y ) + Y (f) + 2(r − λ)η(Y ),

where g(∇Y ξ, ξ) = 0. Substituting in (12) gives rise to

∇ξξ = − 1

f

((
2(r − λ) + ξ(f)

)
ξ + gradf

)
. (13)

Assume (M,ϕ, ξ, η, g) constitutes a normal almost contact metric manifold.
It is noteworthy that in three dimensions, any normal almost contact metric
manifold is trans-Sasakian of type (α, β). Consequently, we observe∇ξξ = 0,
and equation (13) leads to

gradf =
(
2(λ− r)− ξ(f)

)
ξ. (14)

Hence, f is a function that depends solely on the direction of ξ.
To determine α and β, employing a ϕ-basis {ξ, e, eϕ}, we have

2α = −g(∇eξ, ϕe)− g(∇ϕeξ, ϕ2e)

= g(ϕ∇eξ, e) + g(∇ϕeξ, e)
= 2g(∇ϕeξ, e),

which results in

α = g(∇ϕeξ, e). (15)

With the use of (5), we have

2β = divξ = g(∇eξ, e)− g(∇ϕeξ, ϕe)
= g(ϕ∇eξ, e) + β,

which gives

β = g(∇eξ, e). (16)

Conversely, by setting (X,Y ) = (e, ϕe) in (10) and using (5), (6) we obtain

0 = (LUg)(e, e) + 2(r − λ)

= 2fg(∇eξ, e) + 2(r − λ).

With the help of (16), we obtain

β =
λ− r
f

. (17)

From (15) and (17), it can be deduced that a 3-dimensional Riemannian
manifold (M3, g), admitting (g, U, λ) as an almost Yamabe soliton, can be
endowed with a proper trans-Sasakian structure of type (α, β). Nevertheless,
in this scenario, since f depends exclusively on the direction of ξ, we will
demonstrate, using two distinct methods, that f must be constant.



250 GHERICI BELDJILALI AND ADEL DELLOUM

Our first method is analytical, rewriting formula (14) as

df(X) =
(
2(λ− r)− ξ(f)

)
η(X) = ση(X), (18)

where we have set σ = 2(λ−r)−ξ(f). Taking the exterior derivative of (14)
and using formula (4) yields

0 = (d2f)(X,Y ) =
(
dσ ∧ η

)
(X,Y ) + σdη(X,Y )

=
(
dσ ∧ η

)
(X,Y ) + ασΦ(X,Y ). (19)

Substituting (X,Y ) = (e, ϕe) in (19), we get

ασΦ(e, ϕe) = 0,

i.e.,

ασ = α
(
2(λ− r)− ξ(f)

)
= 0. (20)

On the other hand, taking X = ξ in (18) provides

ξ(f) = λ− r. (21)

Combining formulas (20) and (21) gives
α = 0 and ξ(f) = λ− r,
or

α 6= 0 and ξ(f) = 0.

From a geometric standpoint, supposing that (ϕ, ξ, η, g) conforms to the
condition of normality in a 3-dimensional setting, it aligns with a trans-
Sasakian structure, inherently non-integrable by definition. The tangent
bundle TM can thus be delineated into the split

TM = {ξ} ⊕ D,
where D = ker η, as per Frobenius’s Theorem [3], the non-integrability of D
implies the existence of at least two distinct vector fields X and Y belonging
to D such that [X,Y ] ∈ {ξ}. Given that f represents a smooth function
contingent solely upon the direction of ξ, we can express:

ξ(f) = [X,Y ](f) = X
(
Y (f)

)
− Y

(
X(f)

)
= 0.

Thus, f remains constant.
Hence, we discern two distinctive scenarios meriting investigation. The

initial scenario involves (ϕ, ξ, η, g) being normal but non-integrable. This
arises from the presence of an α-Sasakian structure with α 6= 0. But it
is well know that for an α-Sasakian structure ξ is Killing, and since f is
constant, we have

Lfξg = LUg = 0.

This contradicts the existence of a proper almost Yamabe soliton, i.e., LUg 6=
0. Based on these facts, we give the following result.
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Proposition 1. Any 3-dimensional oriented Riemannian manifold (M3, g)
endowed with a trivial almost Yamabe soliton (g, U, λ) admits an α-Sasakian
structure such that

ξ =
U

‖U‖
, η = ξ[, ϕ = ε

 0 −ξ3 ξ2

ξ3 0 −ξ1
−ξ2 ξ1 0

 and r = λ.

Example 1. Let M = {(x, y, z) ∈ R3 / z > 0} and {e1, e2, e3} be the
frame of vector fields on M given by

e1 =
∂

∂x
, e2 = −2σ

z

∂

∂y
, e3 = y

∂

∂x
+ z

∂

∂z
,

where σ = σ(y) is a non zero function on M . We define a Riemannian metric
g by

g =

 1 0 −y
z

0 1
4σ2 0

−y
z 0 1+y2

z2

 .

Let ∇ be the Riemannian connection of g, then we have

[e2, e3] = −2σe1.

By using the Koszul formula for the Riemannian metric g, the nonzero com-
ponents of the Levi-Civita connection corresponding to g are given by

∇e1e2 = ∇e2e1 = σe3, ∇e1e3 = ∇e3e1 = −σe2, ∇e3e2 = −∇e2e3 = σe1.

The non-vanishing curvature tensor R components are computed as

R(e1, e2)e1 = −σ2e2, R(e1, e2)e2 = σ2e1 + 2σσ′e3,

R(e1, e2)e3 = −2σσ′e2, R(e1, e3)e1 = −σ2e3,
R(e1, e3)e3 = σ2e1, R(e2, e3)e1 = 2σσ′e2,

R(e2, e3)e2 = −2σσ′e1 + σ2e3, R(e2, e3)e3 = −3σ2e2.

The Ricci curvature S components and the scalar curvature r are com-
puted as

S(e1, e1) = −S(e2, e2) = −S(e3, e3) = 2σ2, S(1, 3) = 2σσ′ and r = −2σ2.

For U = e1, one can easily show that LUg = 0. That is, U is a Killing
vector field which implies that (g, U, λ) is a trivial almost Yamabe soliton
with λ = −2σ2. So, taking ξ = e1, we note that ∇ξξ = 0. From (3) we get

ϕe1 = 0, ϕe2 = εe3 and ϕe3 = −εe2,
which gives

ϕ = ε

 0 − y
2σ 0

0 0 2σ
z

0 − z
2σ 0

 ,
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then (ϕ, ξ, η, g) is an almost contact metric structure onM with η = dx−y
zdz.

One can easily get

f = 1, α = −
3∑
i=1

g(∇eiξ, ϕei) = −2σ and β = 0,

which implies that (ϕ, ξ, η, g) is an α-Sasakian structure where α = −εσ.

The second scenario pertains to the instance where (ϕ, ξ, η, g) exhibits
normality and integrability, corresponding to (M3, g) being β-Kenmotsu.
Subsequently

ξ(f) = λ− r,
and employing computations from equation (17), we obtain

β =
λ− r
f

= ξ(lnf).

In the subsequent portion of this investigation, we focus on the second sce-
nario, namely when (M3, ϕ, ξ, η, g) represents an integrable yet non-normal
almost contact metric manifold, indicating ∇ξξ 6= 0. Specifically, we aim
to develop a generalized C12-structure, originating from an almost Yamabe
soliton on a 3-dimensional oriented Riemannian manifold (M3, g).

Suppose (g, U, λ) constitutes a Yamabe soliton, yielding an almost contact
metric structure (ϕ, ξ, η, g) through equation (11) and Theorem (3), which
we shall presume to be a generalized C12-structure. From equation (10) and
through extensive direct computations, we derive

0 = X(f)η(Y ) + Y (f)η(X) + feρ
(
η(X)ω(Y ) + η(Y )ω(X)

)
− 2fβg(ϕ2X,Y ) + 2(r − λ)g(X,Y ),

or equivalently,

X(f)ξ+η(X)gradf+feρ
(
η(X)V +ω(X)ξ

)
−2fβϕ2X+2(r−λ)X = 0. (22)

Taking X = ξ in (22) yields

gradf =
(
2(λ− r)− ξ(f)

)
ξ − feρV, (23)

taking the inner product of equation (23) with respect to ξ yields

ξ(f) = λ− r.
For β, with the help of a ϕ-basis {ξ, e, ϕe}, it is adequate to substitute
X = Y = e into equation (22), yielding

β =
λ− r
f

= ξ(lnf).

By amalgamating the antecedent propositions, we can formulate the ensuing
result.
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Theorem 4. Let (g, U, λ) be an almost Yamabe soliton on a 3-dimensional
oriented Riemannian manifold (M3, g) and denote f = ‖U‖. Then (ϕ, ξ, η, g)
is an almost contact metric structure on M such that

ξ =
1

f
U, η = ξ[, ϕ = ε

 0 −ξ3 ξ2

ξ3 0 −ξ1
−ξ2 ξ1 0

 ,

and

(1) if gradf = ξ(f)ξ, where ξ(f) = λ − r, then (ϕ, ξ, η, g) is a β-
Kenmotsu structure;

(2) if gradf 6= ξ(f)ξ and ξ(f) = λ − r, then (ϕ, ξ, η, g) is a generalized
C12-structure.

Moreover, in both cases β = ξ(lnf) and the scalar curvature r = λ− ξ(f).

For the sake of illustration we give the following example.

Example 2. Let M = {(x, y, z) ∈ R3 / z > 0} and {e1, e2, e3} be the
frame of vector fields on M given by

e1 =
1

z

∂

∂x
, e2 =

1

z

∂

∂y
, e3 =

∂

∂z
.

We define a Riemannian metric g by

g = z2(dx2 + dy2) + dz2.

Let ∇ be the Riemannian connection of g, then we have

[e1, e3] =
1

z
e1, [e2, e3] =

1

z
e2.

By using the Koszul formula for the Riemannian metric g, the nonzero com-
ponents of the Levi-Civita connection corresponding to g are given by:

∇e1e1 = −1

z
e3, ∇e1e3 =

1

z
e1, ∇e2e2 = −1

z
e3, ∇e2e3 =

1

z
e2.

The non-vanishing curvature tensor R components are computed as

R(e1, e2)e1 = − 1

z2
e2, R(e1, e2)e2 = − 1

z2
e1.

The Ricci curvature S components and the scalar curvature r are computed
as

S(e1, e1) = S(e2, e2) = − 2

z2
, S(e3, e3) = 0 and r = − 2

z2
.

For U = ze3, the nonzero component of LUg is

(LUg)(e1, e1) = (LUg)(e2, e2) = (LUg)(e3, e3) = 2.
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Now, we can easily see that (g, U, λ) is an almost Yamabe soliton with λ =
−1− 2

z2
. So, taking ξ = e3 we note that ∇ξξ = 0. From (3) we get

ϕ = ε

 0 −1 0
1 0 0
0 0 0

 ,

then (ϕ, ξ, η, g) is an almost contact metric structure on M with η = dz.
One can easily get

f = z, α = −
3∑
i=1

g(∇eiξ, ϕei) = 0 and β =
1

2

3∑
i=1

g(∇eiξ, ei) =
1

z
,

which allows us to conclude that (ϕ, ξ, η, g) is a trans-Sasakian structure of
type (0, 1z ), i.e., β-Kenmotsu structure.

For the second case, let us take U = z(e2 + e3), the nonzero component
of LUg is

(LUg)(e1, e1) = (LUg)(e2, e2) = (LUg)(e3, e3) = 2.

Now, we can easily see that (g, U, λ) is an almost Yamabe soliton with λ =
−1− 2

z2
. Note that the value of λ is the same in the first case even though

the vector field U is different.
So, taking ξ = 1√

2
(e2 + e3) we note that

∇ξξ =
1

2

(
∇e2e2 +∇e2e3 +∇e3e2 +∇e3e3

)
=

1

2z
(e2 − e3).

From (3) we get

ϕ =
ε√
2

 0 −1 1
1 0 0
−1 0 0


|{e1,e2,e3}

,

that is

ϕ =
ε√
2

 0 −1 1
z

1 0 0
−z 0 0


|{ ∂

∂x
, ∂
∂y
, ∂
∂z
}

,

then (ϕ, ξ, η, g) is an almost contact metric structure on M with
η = 1√

2
(zdy + dz). One easily can get

f =
√

2z, α = −
3∑
i=1

g(∇eiξ, ϕei) = 0 and β =
1

2

3∑
i=1

g(∇eiξ, ei) =
1√
2z
,

which allows us to conclude that (ϕ, ξ, η, g) is a generalized C12-structure
with β = 1√

2z
.
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5. Open question

Given that the presence of a Yamabe soliton (g, U, λ) on an odd-dimensional
oriented Riemannian manifold guarantees the existence of a global vector
field known as the “potential vector field”, and recognizing that this vec-
tor field is generally non-unitary, we have derived a unit vector ξ using the
formula ξ = 1

‖U‖U .

It is feasible to designate U as a characteristic vector field with an appro-
priate deformation of the metric, such that U becomes a unit vector field.
For instance, we can define g̃ = 1

‖U‖2 g.
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