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A new generalization of Lucas quaternions with
finite operators

Hayrullah Özİmamoğlu

Abstract. In this paper, we introduce a new family of Lucas quater-
nions by using finite operators. We call these quaternions as Lucas finite
operator quaternions. We give some properties and identities of Lu-
cas finite operator quaternions such as Binet-like formula, generating
function, exponential generating function, Catalan’s identity, Cassini’s
identity, d’Ocagne’s identity and many binomial-sum identities. As an
application, we generate Cassini’s identity in another form by matrix
representations.

1. Introduction

Over the last century, numerous scientists have concentrated on two-
dimensional number systems. Hamilton [8] introduced the four dimensional
real quaternion algebra as follows:

Q =
{
s0 + s1i + s2j + s3k : i2 = j2 = k2 = −1, ijk = −1, s0, s1, s2, s3 ∈ R

}
.

The multiplication table for quaternions is given in Table 1. Quaternions are
a generalization of complex numbers. They have been studied by scientists
from a range of domains such as computer sciences, quantum physics, and
control systems.

For p, q ∈ Z, the Horadam numbers Wn = Wn(W0,W1; p, q) are defined
by

Wn = pWn−1 + qWn−2, n ≥ 2,

with the initial values W0 and W1 (see [10, 11]).
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Table 1. The multiplication table for the basis of Q.

· 1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

Let γ =
p+

√
p2 + 4q

2
and δ =

p−
√
p2 + 4q

2
be the roots of the equation

x2 − px− q = 0. Then the Binet’s formula of Wn is

Wn = Aγn +Bδn,

where A =
W1 − δW0

γ − δ
and B =

γW0 −W1

γ − δ
.

Horadam [9] defined the n-th Lucas quaternion as

QLn = Ln + Ln+1i + Ln+2j + Ln+3k, (1)

where Ln = Ln(2, 1; 1, 1) is the n-th Lucas number defined by

Ln = Ln−1 + Ln−2, n ≥ 2.

The Binet’s formula for the Lucas number Ln is given as

Ln = γn + δn,

where γ = 1+
√

5
2 and δ = 1−

√
5

2 . Recently, some works have been done
by researchers on Fibonacci and Lucas numbers, which connect with many
different areas of science as well as mathematics (see [3, 4, 5]).

Throughout this article, we take γ̂ = 1 + γi+ γ2j + γ3k and δ̂ = 1 + δi+

δ2j + δ3k, where γ = 1+
√

5
2 and δ = 1−

√
5

2 . In [6], the Binet-like formula for
the Lucas quaternion QLn is given as

QLn = γ̂γn + δ̂δn.

We refer to [1, 2, 6, 7, 12, 14, 15, 16, 17] for further information on the
Fibonacci and Lucas quaternions.

Let α, β be complex parameters, a, b be real parameters, and Ea [h] (w) =
h (w + a). Simsek [20] defined an operator such that

Yα,β [h; a, b] (w) = αEa [h] (w) + βEb [h] (w). (2)

For any polynomial sequence hn(w) and r ≥ 1, r-th finite operator

Y(r)
α,β [hn; a, b] (w)

(
or h

(r)
n (w)

)
is defined by

Y(r)
α,β [hn; a, b] (w) = h(r)

n (w) = Yα,β [hn; a, b] (w)
(
Y(r−1)
α,β [hn; a, b] (w)

)
,
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where Y(1)
α,β [hn; a, b] (w) = h

(1)
n (w) = αhn(w + a) + βhn(w + b). Simsek

developed the essential operators utilized in the theory of finite difference
techniques for the numerical solution of differential equations for particular
cases of (α, β; a, b) in (2) as shown in Table 2. These operators have a
widespread application in mathematics, physics, and engineering. Simsek
constructed novel families of special polynomials and numbers implementing
finite operators and scrutinized many of their features. For more details on
the finite operators, please see [19, 20].

Table 2. Special situations for the finite operator Yα,β [h; a, b] (w).

(α, β; a, b) Finite Operators

(1, 0; 0, 0) I (h (w)) = h (w), (Identity Operator)
(1,−1; 1, 0) ∆ (h(w)) = h(w + 1)− h(w), (Forward Difference Operator)
(1,−1; 0,−1) ∇ (h(w)) = h(w)− h(w − 1), (Backward Difference Operator)
(1/2,−1/2; 1, 0) M (h(w)) = 1

2
(h(w + 1)− h(w)), (Means Operator)

(1,−1; a+ b, a) Gab (h(w)) = h(w + a+ b)− h(w + a), (a 6= b, Gould Operator)

Kızılateş [13] used the finite operator to establish Horadam finite operator
numbers through implementing it to Horadam sequences. Furthermore, in
[21] Terzioğlu et al. founded numerous features associated with Fibonacci
finite operator quaternions with the help of matrix representations. In [18],
Polatlı implemented the finite operators to the (p, q)-Fibonacci polynomials.
Furthermore, Yağmur [22] defined the sequence of Horadam finite operator
hybrid numbers and investigated several properties of these hybrid numbers.

Let α, β ∈ R and a, b ∈ Z. The r-th Horadam finite operator numbers

W
(r)
n are defined by

∆
(r)
α,β;a,b(Wn) = W (r)

n = α∆
(r−1)
α,β;a,b(Wn+a) + β∆

(r−1)
α,β;a,b(Wn+b)

=

r∑
i=0

(
r

i

)
αr−iβiWn+ib+(r−i)a, (3)

where W
(r)
0 and W

(r)
1 are the initial conditions of W

(r)
n .

For n ≥ 1, we can obtain by the induction method on r that

L
(r)
n+1 = L(r)

n + L
(r)
n−1, (4)

where L
(r)
0 and L

(r)
1 are the initial conditions of L

(r)
n .

In [13], Kızılateş gave the Binet-like formula of L
(r)
n such that

L(r)
n = A(r)γn +B(r)δn, (5)

where A(r) =
L

(r)
1 − δL

(r)
0√

5
and B(r) =

γL
(r)
0 − L

(r)
1√

5
.
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In view of the earlier recent works, we utilize finite operators to generalize
the Lucas quaternions QLn. These quaternions are referred to as the Lu-

cas finite operator quaternions QL(r)
n . We present some characteristics and

identities of QL(r)
n . We find Binet-like formula, generating function, expo-

nential generating function, Catalan’s identity, Cassini’s identity, d’Ocagne’s

identity and some binomial-sum identities of QL(r)
n . Then, with the help of

matrix representations we show another type of Cassini’s identity.

2. Lucas finite operator quaternions

In this section, we introduce the Lucas finite operator quaternions and
give Binet-like formula and some other properties for these quaternions.

Definition 1. The Lucas finite operator quaternions QL(r)
n are defined by

QL(r)
n = L(r)

n + L
(r)
n+1i + L

(r)
n+2j + L

(r)
n+3k,

where L
(r)
n is the r-th Lucas finite operator number.

For r = 1 and Wn = Ln in Definition 1 and (3), we obtain

QL(1)
n = (αLn+a + βLn+b) + (αLn+a+1 + βLn+b+1) i

+ (αLn+a+2 + βLn+b+2) j + (αLn+a+3 + βLn+b+3)k. (6)

Now we present some special values of QL(1)
n for (α, β; a, b) in the equation

(6) as follows.

(1) For (1, 0; 0, 0), we have the identity operator for Lucas quaternion

sequence I
(
QL(1)

n

)
= QLn. Hence the Lucas finite operator quater-

nions are a generalization of the Lucas quaternions in the equation
(1).

(2) For (1,−1; 1, 0), we have the forward difference operator for Lucas

quaternion sequence ∆
(
QL(1)

n

)
= QLn+1 −QLn.

(3) For (1,−1; 0,−1), we have the backward difference operator for Lucas

quaternion sequence ∇
(
QL(1)

n

)
= QLn −QLn−1.

(4) For (1/2,−1/2; 1, 0), we have the means operator for Lucas quater-

nion sequence M
(
QL(1)

n

)
= 1

2 (QLn+1 −QLn).

(5) For (1,−1; a+ b, a) and ab 6= 0, we have the Gould operator for

Lucas quaternion sequence Gab

(
QL(1)

n

)
= QLn+a+b −QLn+a.

The conjugate of the Lucas finite operator quaternion QL(r)
n is(

QL(r)
n

)∗
= L(r)

n − L
(r)
n+1i− L

(r)
n+2j − L

(r)
n+3k. (7)
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Proposition 1. For the Lucas finite operator quaternions QL(r)
n , we have

QL(r)
n +

(
QL(r)

n

)∗
= 2L(r)

n .

Proof. By using Definition 1 and (7), we can easily derive

QL(r)
n +

(
QL(r)

n

)∗
=

(
L(r)
n + L

(r)
n+1i + L

(r)
n+2j + L

(r)
n+3k

)
+
(
L(r)
n − L

(r)
n+1i− L

(r)
n+2j − L

(r)
n+3k

)
= 2L(r)

n .

�

Proposition 2. The recurrence relation of the Lucas finite operator quater-

nions QL(r)
n is

QL(r)
n = QL(r)

n−1 + QL(r)
n−2, n ≥ 2.

Proof. From Definition 1 and (4), we get

QL(r)
n = L(r)

n + L
(r)
n+1i + L

(r)
n+2j + L

(r)
n+3k

= L
(r)
n−1 + L

(r)
n−2 +

(
L(r)
n + L

(r)
n−1

)
i

+
(
L

(r)
n+1 + L(r)

n

)
j +

(
L

(r)
n+2 + L

(r)
n+1

)
k

= QL(r)
n−1 + QL(r)

n−2.

�

Theorem 1. The Binet-like formula for the Lucas finite operator quater-

nions QL(r)
n is

QL(r)
n = A(r)γnγ̂ +B(r)δnδ̂,

where A(r) =
L

(r)
1 − δL

(r)
0√

5
and B(r) =

γL
(r)
0 − L

(r)
1√

5
.

Proof. By Definition 1 and (5), we have

QL(r)
n = L(r)

n + L
(r)
n+1i + L

(r)
n+2j + L

(r)
n+3k

=
(
A(r)γn +B(r)δn

)
+
(
A(r)γn+1 +B(r)δn+1

)
i

+
(
A(r)γn+2 +B(r)δn+2

)
j +

(
A(r)γn+3 +B(r)δn+3

)
k

= A(r)γn
(
1 + γi + γ2j + γ3k

)
+B(r)δn

(
1 + δi + δ2j + δ3k

)
= A(r)γnγ̂ +B(r)δnδ̂.

�
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Furthermore, by Binet-like formula of QL(r)
n in Theorem 1, we can derive

the following two corollaries.

Corollary 1. Let n be a positive integer. Then we get

QL(r)
n = L

(r)
1

(
γnγ̂ − δnδ̂√

5

)
+ L

(r)
0

(
γn−1γ̂ − δn−1δ̂√

5

)
,

where L
(r)
0 and L

(r)
1 are the initial conditions of the r-th Lucas finite operator

numbers L
(r)
n .

Corollary 2. Let n be a positive integer. Then we have(
QL(r)

n+1

)2
+
(
QL(r)

n

)2
= QL(r)

1 QL(r)
2n+1 + QL(r)

0 QL(r)
2n .

Corollary 3. Let n be a positive integer. Then we have(
QL(r)

n+1

)2
−
(
QL(r)

n−1

)2
= QL(r)

1 QL(r)
2n + QL(r)

0 QL(r)
2n−1.

Proof. From Proposition 2 and Corollary 2, we can derive(
QL(r)

n+1

)2
−
(
QL(r)

n−1

)2

=

((
QL(r)

n+1

)2
+
(
QL(r)

n

)2
)
−
((

QL(r)
n

)2
+
(
QL(r)

n−1

)2
)

=
(
QL(r)

1 QL(r)
2n+1 + QL(r)

0 QL(r)
2n

)
−
(
QL(r)

1 QL(r)
2n−1 + QL(r)

0 QL(r)
2n−2

)
= QL(r)

1

(
QL(r)

2n+1 −QL(r)
2n−1

)
+ QL(r)

0

(
QL(r)

2n −QL(r)
2n−2

)
= QL(r)

1 QL(r)
2n + QL(r)

0 QL(r)
2n−1.

�

Theorem 2. The generating function of the Lucas finite operator quater-

nions QL(r)
n is

QL(r)
n (x) =

QL(r)
0 +

(
QL(r)

1 −QL(r)
0

)
x

1− x− x2
.

Proof. Let QL(r)
n (x) be the generating function for QL(r)

n . That is,

QL(r)
n (x) =

∞∑
n=0

QL(r)
n xn.

Then we get

QL(r)
n (x) = QL(r)

0 + QL(r)
1 x+ QL(r)

2 x2 + · · ·+ QL(r)
n xn + · · ·

−xQL(r)
n (x) = −QL(r)

0 x−QL(r)
1 x2 −QL(r)

2 x3 − · · · −QL(r)
n xn+1 − · · ·
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−x2QL(r)
n (x) = −QL(r)

0 x2 −QL(r)
1 x3 −QL(r)

2 x4 − · · · −QL(r)
n xn+2 − · · · .

Using the above equations and Proposition 2, we can find that(
1− x− x2

)
QL(r)

n (x)

= QL(r)
0 +

(
QL(r)

1 −QL(r)
0

)
x+

∞∑
n=2

(
QL(r)

n −QL(r)
n−1 −QL(r)

n−2

)
xn

= QL(r)
0 +

(
QL(r)

1 −QL(r)
0

)
x

and so the proof is completed. �

Theorem 3. The exponential generating function of the Lucas finite op-

erator quaternions QL(r)
n is

∞∑
n=0

QL(r)
n

xn

n!
= A(r)eγxγ̂ +B(r)eδxδ̂,

where A(r) =
L

(r)
1 − δL

(r)
0√

5
and B(r) =

γL
(r)
0 − L

(r)
1√

5
.

Proof. By Binet-like formula of QL(r)
n in Theorem 1, we obtain

∞∑
n=0

QL(r)
n

xn

n!
=

∞∑
n=0

[
A(r)γnγ̂ +B(r)δnδ̂

] xn
n!

= A(r)
∞∑
n=0

(γx)n

n!
γ̂ +B(r)

∞∑
n=0

(βx)n

n!
δ̂

= A(r)eγxγ̂ +B(r)eδxδ̂.

�

Theorem 4. Let n be a non-negative integer. Then we have
n∑
i=0

QL(r)
i =

A(r)γn+1γ̂

γ − 1
+
B(r)δn+1δ̂

δ − 1
− C(r),

where A(r) =
L

(r)
1 − δL

(r)
0√

5
, B(r) =

γL
(r)
0 − L

(r)
1√

5
and

C(r) = L
(r)
1 +

(
L

(r)
0 + L

(k)
1

)
i +

(
L

(r)
0 + 2L

(r)
1

)
j +

(
2L

(r)
0 + 3L

(r)
1

)
k.

Proof. By Binet-like formula of QL(r)
n in Theorem 1, we find that

n∑
i=0

QL(r)
i =

n∑
i=0

(
A(r)γiγ̂ +B(r)δiδ̂

)
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=
A(r)

(
1− γn+1

)
γ̂

1− γ
+
B(r)

(
1− δn+1

)
δ̂

1− δ

=
A(r)γn+1γ̂

γ − 1
+
B(r)δn+1δ̂

δ − 1
+
A(r)γ̂

1− γ
+
B(r)δ̂

1− δ
.

Some basic calculations show that
n∑
i=0

QL(r)
i =

A(r)γn+1γ̂

γ − 1
+
B(r)δn+1δ̂

δ − 1
− C(r),

which is desired. �

Theorem 5 (Catalan’s Identity). For n, k ∈ Z+ such that n ≥ k, we
have

QL(r)
n+kQL(r)

n−k −
(
QL(r)

n

)2
= (−1)n−kA(r)B(r)

(
γk − δk

)(
γkγ̂δ̂ − δkδ̂γ̂

)
,

where A(r) =
L

(r)
1 − δL

(r)
0√

5
and B(r) =

γL
(r)
0 − L

(r)
1√

5
.

Proof. By Binet-like formula of QL(r)
n in Theorem 1, we obtain

QL(r)
n+kQL(r)

n−k −
(
QL(r)

n

)2

=
(
A(r)γn+kγ̂ +B(r)δn+kδ̂

)(
A(r)γn−kγ̂ +B(r)δn−kδ̂

)
−
(
A(r)γnγ̂ +B(r)δnδ̂

)2

=
(
A(r)

)2
γ2n (γ̂)2 +A(r)B(r)γn+kδn−kγ̂δ̂ +A(r)B(r)γn−kδn+kδ̂γ̂

+
(
B(r)

)2
δ2n
(
δ̂
)2
−
(
A(r)

)2
γ2n (γ̂)2 −A(r)B(r)γnβnγ̂δ̂

−A(r)B(r)γnδnδ̂γ̂ −
(
B(r)

)2
δ2n
(
δ̂
)2

= A(r)B(r)γn−kδn−k
(
γ2k − γkδk

)
γ̂δ̂

−A(r)B(r)γn−kδn−k
(
γkδk − δ2k

)
δ̂γ̂

= A(r)B(r)γn−kδn−k
(
γk − δk

)(
γkγ̂δ̂ − δkδ̂γ̂

)
= (−1)n−kA(r)B(r)

(
γk − δk

)(
γkγ̂δ̂ − δkδ̂γ̂

)
.

�

In Theorem 5, if we take k = 1, then we have Cassini’s identity of the

Lucas finite operator quaternions QL(r)
n as follows.
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Corollary 4 (Cassini’s Identity). For n ≥ 1, the following equality
holds:

QL(r)
n+1QL(r)

n−1 −
(
QL(r)

n

)2
= (−1)n−1

√
5A(r)B(r)

(
γγ̂δ̂ − δδ̂γ̂

)
,

where A(r) =
L

(r)
1 − δL

(r)
0√

5
and B(r) =

γL
(r)
0 − L

(r)
1√

5
.

Theorem 6 (d’Ocagne’s Identity). For n ∈ N, k ∈ Z+ such that
k > n+ 1, we get

QL(r)
k+1QL(r)

n −QL(r)
k QL(r)

n+1 = (−1)n
√

5A(r)B(r)
(
γk−nγ̂δ̂ − βk−nδ̂γ̂

)
,

where A(r) =
L

(r)
1 − δL

(r)
0√

5
and B(r) =

γL
(r)
0 − L

(r)
1√

5
.

Proof. By Binet-like formula of QL(r)
n in Theorem 1, we find that

QL(r)
k+1QL(r)

n −QL(r)
k QL(r)

n+1

=
(
A(r)γk+1γ̂ +B(r)δk+1δ̂

)(
A(r)γnγ̂ +B(r)δnδ̂

)
−
(
A(r)γkγ̂ +B(r)δkδ̂

)(
A(r)γn+1γ̂ +B(r)δn+1δ̂

)
=

(
A(r)

)2
γn+k+1 (γ̂)2 +A(r)B(r)γk+1δnγ̂δ̂ +A(r)B(r)γnδk+1δ̂γ̂

+
(
B(r)

)2
δn+k+1

(
δ̂
)2
−
(
A(r)

)2
γn+k+1 (γ̂)2 −A(r)B(r)γkδn+1γ̂δ̂

−A(r)B(r)γn+1δkδ̂γ̂ −
(
B(r)

)2
δn+k+1

(
δ̂
)2

= A(r)B(r)γnδn
(
γk−n+1 − γk−nδ

)
γ̂δ̂

−A(r)B(r)γnδn
(
γδk−n − δk−n+1

)
δ̂γ̂

= A(r)B(r)γnδn (γ − δ)
(
γk−nγ̂δ̂ − δk−nδ̂γ̂

)
= (−1)n

√
5A(r)B(r)

(
γk−nγ̂δ̂ − βk−nδ̂γ̂

)
.

�

3. Some binomial-sum identities of Lucas finite operator
quaternions

In this section, we give binomial-sum properties of Lucas finite operator

quaternions QL(r)
n by Binet-like formula of QL(r)

n .
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Theorem 7. For non-negative integers n and k, we get

n∑
i=0

(
n

i

)
QL(r)

i+k = QL(r)
2n+k.

Proof. By Binet-like formula of QL(r)
n in Theorem 1, we obtain

n∑
i=0

(
n

i

)
QL(r)

i+k =

n∑
i=0

(
n

i

)(
A(r)γi+kγ̂ +B(r)δi+kδ̂

)
= A(r)

n∑
i=0

(
n

i

)
γiγkγ̂ +B(r)

n∑
i=0

(
n

i

)
δiδkδ̂

= A(r) (γ + 1)n γkγ̂ +B(r) (δ + 1)n δkδ̂

= A(r)γ2n+kγ̂ +B(r)δ2n+kδ̂

= QL(r)
2n+k.

�

Theorem 8. For non-negative integers n and k, we have

n∑
i=0

(
n

i

)
(−1)iQL(r)

2i+k = (−1)nQL(r)
n+k.

Proof. From Binet-like formula of QL(r)
n in Theorem 1, we find that

n∑
i=0

(
n

i

)
(−1)iQL(r)

2i+k

=
n∑
i=0

(
n

i

)
(−1)i

(
A(r)γ2i+kγ̂ +B(r)δ2i+kδ̂

)
= A(r)

n∑
i=0

(
n

i

)
(−γ2)iγkγ̂ +B(r)

n∑
i=0

(
n

i

)
(−δ2)iδkδ̂

= A(r)
(
1− γ2

)n
γkγ̂ +B(r)

(
1− δ2

)n
δkδ̂

= A(r)
(

(−1)nγn+kγ̂
)

+B(r)
(

(−1)nδn+kδ̂
)

= (−1)nQL(r)
n+k.

�

Theorem 9. For non-negative integers n and k, we have

n∑
i=0

(
n

i

)
QL(r)

2i+k
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=

{
5n/2QL(r)

n+k , if n is even,

5(n−1)/2
(
QL(r)

n+k+1 + QL(r)
n+k−1

)
, if n is odd.

Proof. From Binet-like formula of QL(r)
n in Theorem 1, we obtain

n∑
i=0

(
n

i

)
QL(r)

2i+k

=
n∑
i=0

(
n

i

)(
A(r)γ2i+kγ̂ +B(r)δ2i+kδ̂

)
= A(r)

n∑
i=0

(
n

i

)(
γ2
)i
γkγ̂ +B(r)

n∑
i=0

(
n

i

)(
δ2
)i
δkδ̂

= A(r)
(
γ2 + 1

)n
γkγ̂ +B(r)

(
δ2 + 1

)n
δkδ̂. (8)

If n is even, i.e., n = 2t where t is a non-negative integer, using (8) we have

n∑
i=0

(
n

i

)
QL(r)

2i+k = A(r)
(
γ2 + 1

)2t
γkγ̂ +B(r)

(
δ2 + 1

)2t
δkδ̂

= A(r)5tγ2t+kγ̂ +B(r)5tδ2t+kδ̂

= 5t
(
A(r)γ2t+kγ̂ +B(r)δ2t+kδ̂

)
= 5n/2QL(r)

n+k.

If n is odd, i.e., n = 2t + 1, where t is a non-negative integer, using (8) we
have

n∑
i=0

(
n

i

)
QL(r)

2i+k = A(r)
(
γ2 + 1

)2t+1
γkγ̂ +B(r)

(
δ2 + 1

)2t+1
δkδ̂

= A(r)5t
(
γ2 + 1

)
γ2t+kγ̂ +B(r)5t

(
δ2 + 1

)
δ2t+kδ̂

= 5t
(
A(r)γ2t+2+kγ̂ +B(r)δ2t+2+kδ̂

)
+5t

(
A(r)γ2t+kγ̂ +B(r)δ2t+kδ̂

)
= 5(n−1)/2

(
QL(r)

n+k+1 + QL(r)
n+k−1

)
.

�
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4. Matrix representations of Lucas finite operator
quaternions

In this section, we construct the matrix representation of the Lucas finite
operator quaternions. We define two matrices S and L(r) as

S =

[
1 1
1 0

]
and L(r) =

[
QL(r)

2 QL(r)
1

QL(r)
1 QL(r)

0

]
. (9)

In light of our conclusion, we provide the following theorem.

Theorem 10. For n ∈ N, we have

SnL(r) =

[
QL(r)

n+2 QL(r)
n+1

QL(r)
n+1 QL(r)

n

]
.

Proof. We prove the theorem by the induction method on n. For n = 0,
the equality holds. Suppose that the hypothesis is true for n = i. That is,

SiL(r) =

[
QL(r)

i+2 QL(r)
i+1

QL(r)
i+1 QL(r)

i

]
. (10)

For n = i+ 1, by (10) and Proposition 2 we find that

Si+1L(r) = SSiL(r)

=

[
1 1
1 0

][
QL(r)

i+2 QL(r)
i+1

QL(r)
i+1 QL(r)

i

]

=

[
QL(r)

i+2 + QL(r)
i+1 QL(r)

i+1 + QL(r)
i

QL(r)
i+2 QL(r)

i+1

]

=

[
QL(r)

i+3 QL(r)
i+2

QL(r)
i+2 QL(r)

i+1

]
.

As a result, the proof is completed. �

In the following corollary, we obtain Cassini’s identity of Lucas finite op-
erator quaternions by applying the matrices given above.

Corollary 5. For n ∈ Z+, we have

QL(r)
n+1QL(r)

n−1 −
(
QL(r)

n

)2
= (−1)(n−1)

[
QL(r)

2 QL(r)
0 −

(
QL(r)

1

)2
]
.

Proof. Using (9) and Theorem 10, we obtain[
1 1
1 0

]n−1
[
QL(r)

2 QL(r)
1

QL(r)
1 QL(r)

0

]
=

[
QL(r)

n+1 QL(r)
n

QL(r)
n QL(r)

n−1

]
. (11)
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If we consider the determinant on both sides of (11), then we find that

QL(r)
n+1QL(r)

n−1 −
(
QL(r)

n

)2
= (−1)(n−1)

[
QL(r)

2 QL(r)
0 −

(
QL(r)

1

)2
]
.

�

5. Conclusions

In this work, we describe Lucas finite operator quaternions by imple-
menting finite operators to Lucas quaternions. Lucas quaternions have been
generalized to provide these new quaternions. Moreover, we obtain many
algebraic properties of Lucas finite operator quaternions including Binet-
like formula, generating function, exponential generating function, Catalan’s
identity, Cassini’s identity, d’Ocagne’s identity and numerous binomial-sum
properties. We offer two new matrices S and L(r). Finally, with these matri-
ces we construct a matrix whose entries are Lucas finite operator quaternions
and attain the Cassini’s identity.
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