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On the construction of iterated collocation-type
approximations for linear fractional differential

equations

Erik-Jürgen Määrits, Arvet Pedas, and Mikk Vikerpuur

Abstract. The present paper is concerned with the numerical solution
of initial value problems for linear Caputo-type fractional differential
equations. Some regularity results are presented and, using a reformu-
lated integral equation approach, a high-order collocation method and
its iterated version are constructed. Global superconvergence results of
the iterated version are studied. Numerical examples confirming the
theoretical results are also given.

1. Introduction

Differential equations with derivatives of fractional (non-integer) order
have been shown to be a promising tool in high-accuracy modeling of many
diverse real-life processes (see, e.g., [21,23,26]). Since an analytical solution
to a fractional differential equation is rarely possible, the numerical analysis
of fractional differential equations and operators has been a widely develop-
ing field in the last decade, see, for example, [1,2,5,7–16,19,20,22,27,28]. In
the present paper we report some recent results regarding a collocation-type
approximation and its iterated version for solving linear fractional differential
equations with initial conditions. For simplicity of presentation we restrict
ourselves to differential equations with a single Caputo-type fractional de-
rivative of order less than one. Our main results are given by Theorem 3
below.

Let R = (−∞,∞), N = {1, 2, . . . }. Let Ck(Ω) be the set of all k times
(k ≥ 0) continuously differentiable functions on Ω ⊂ R, C0(Ω) = C(Ω). In
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particular, by C[0, b] we denote the Banach space of continuous functions u
on [0, b] with the norm ‖u‖∞ = max0≤t≤b |u(t)|. For Banach spaces X and
Y , by L(X,Y ) we denote the space of linear bounded operators from X to
Y with the norm ‖A‖L(X,Y ) = sup{‖Ax‖Y : ‖x‖X < 1} for A ∈ L(X,Y ).

Let α ∈ (0, 1). We consider the following initial value problem:

(Dα
Capy)(t) + a(t)y(t) = f(t), 0 ≤ t ≤ b, b > 0, (1)

y(0) = y0, (2)

where y0 ∈ R, a, f ∈ C[0, b] are some given continuous functions, and Dα
Capy

denotes the Caputo fractional derivative of order α of an unknown function
y ∈ C[0, b], defined as

(Dα
Capy)(t) =

1

Γ(1− α)

d

dt

∫ t

0
(t− s)−α(y(s)− y(0))ds, 0 < t ≤ b.

Here Γ is the Euler gamma function: Γ(x) =
∫∞

0 e−ssx−1ds, x > 0. The
necessary and sufficient conditions for the existence of a continuous Caputo
fractional derivative are given in [25]. Note that for any solution y ∈ C[0, b]
of (1)–(2) we have that Dα

Capy ∈ C[0, b].

For δ > 0, we denote by Jδ the Riemann–Liouville integral operator Jδ :
L∞(0, b)→ C[0, b], defined by(

Jδu
)

(t) =
1

Γ(δ)

∫ t

0
(t− s)δ−1u(s)ds, t > 0, u ∈ L∞(0, b). (3)

Here by L∞(0, b) we denote the Banach space of all essentially bounded
measurable functions u : (0, b)→ R with the norm

‖u‖L∞(0,b) = inf
µ(Ω)=0

sup
t∈(0,b)\Ω

|u(t)| <∞,

where µ(Ω) is the Lebesgue measure of a (measurable) set Ω ⊂ (0, b). Note
that the operator Jδ is a compact (linear) operator from L∞(0, b) to C[0, b]
(see, for example, [4]). Note also that Dα

CapJ
αu = u for u ∈ C[0, b] [6].

To study the regularity of an exact solution y of (1)–(2), we introduce
the following class of weighted functions Cm,ν(0, b], first studied by Vainikko
in [24].

For given b ∈ R, b > 0, m ∈ N and ν < 1, by Cm,ν(0, b] we denote the
set of continuous functions u : [0, b] → R which are m times continuously
differentiable in (0, b] such that for i = 1, ...,m the following estimates hold:

∣∣∣u(i)(t)
∣∣∣ ≤ c


1, if i < 1− ν,
1 + | log t|, if i = 1− ν,
t1−ν−i, if i > 1− ν,
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where t ∈ (0, b], c = c(u) is a positive constant independent of t. Equipped
with the norm

‖u‖Cm,ν(0,b] := ‖u‖∞ +
m∑
i=1

sup
0<t≤b

ωi−1+ν(t)
∣∣∣u(i)(t)

∣∣∣ , u ∈ Cm,ν(0, b],

where, for t > 0,

ωρ(t) :=


1, if ρ < 0,

1
1+| log t| , if ρ = 0,

tρ, if ρ > 0,

the set Cm,ν(0, b] becomes a Banach space. Note that

Cq[0, b] ⊂ Cq,ν(0, b] ⊂ Cm,µ(0, b] ⊂ C[0, b], q ≥ m ≥ 1, 0 < ν ≤ µ < 1.

Using this class of functions, we can formulate the following existence,
uniqueness and regularity result (see, e.g., [27]).

Theorem 1. Let α ∈ (0, 1) and a, f ∈ C[0, b]. Then (1)–(2) has a unique
solution y ∈ C[0, b]. Moreover, if a, f ∈ Cq,µ(0, b], q ∈ N, µ < 1, then
y ∈ Cq,ν(0, b], where

ν = max{1− α, µ}.

Note that problem (1)–(2) can be reformulated as a Volterra integral equa-
tion. Indeed, let y be the exact solution of (1)–(2). Then (cf. [6])

y(t) = (Jαz)(t) + y0, 0 ≤ t ≤ b,
where z(t) := (Dα

Capy)(t), 0 ≤ t ≤ b. Since z(t) = f(t)− a(t)y(t), we obtain

y(t) = y0 +
1

Γ(α)

∫ t

0
(t− s)α−1[f(s)− a(s)y(s)]ds, 0 ≤ t ≤ b, (4)

or, in operator form,

y = Ty + g, (5)

where

(Ty)(t) = − 1

Γ(α)

∫ t

0
(t− s)α−1a(s)y(s)ds, 0 ≤ t ≤ b, (6)

g(t) = y0 +
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds, 0 ≤ t ≤ b. (7)

Clearly, operator T is compact as an operator from L∞(0, b) to C[0, b] and
g ∈ C[0, b]. Thus, if y ∈ C[0, b] is the exact solution of (1)–(2), then y
satisfies the integral equation (5). It is easy to see that the converse also
holds: if y ∈ C[0, b] is a solution of (5) (that is, y satisfies (4)), then y is also
a solution of (1)–(2).

Thus, to find a numerical solution to (1)–(2), it is sufficient to construct
an approximation method for the integral equation (5).
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2. Collocation method

In order to take into account the possible non-smoothness of the exact
solution y = y(t) of (5) at the origin t = 0, we introduce on the interval
[0, b] a graded grid ΠN = {t0, . . . , tN}. More exactly, for given N ∈ N,
we divide the underlying interval of integration [0, b] into N subintervals
[tj−1, tj ], j = 1, . . . , N , with grid points

tj = b

(
j

N

)r
, j = 0, . . . , N. (8)

The real number r ≥ 1 characterizes the non-uniformity of the grid. If
r = 1, then the grid is uniform; if r > 1, then the grid points are more
densely clustered near the left endpoint 0.

Next, for a given integer k ≥ 0, we introduce

S
(−1)
k (ΠN ) :=

{
u : u

∣∣
[tj−1,tj ]

∈ πk, j = 1, . . . , N
}
.

Here u
∣∣
[tj−1,tj ]

is the restriction of u : [0, b]→ R onto the subinterval [tj−1, tj ]

⊂ [0, b] and πk denotes the set of polynomials of degree not exceeding k. Note

that the elements of S
(−1)
k (ΠN ) may have jump discontinuities at the interior

points t1, . . . , tN−1 of the grid ΠN . We choose m ∈ N points η1, . . . , ηm in
the interval [0, 1] so that

0 ≤ η1 < · · · < ηm ≤ 1 (9)

and define in every subinterval [tj−1, tj ] ⊂ [0, b] the collocation points

tjp = tj−1 + ηp(tj − tj−1), p = 1, . . . ,m, j = 1, . . . , N. (10)

We find approximations yN ∈ S(−1)
m−1(ΠN ) to the solution y of (5) by assuming

that the following conditions hold:

yN (tjp) = (TyN )(tjp) + g(tjp), p = 1, . . . ,m, j = 1, . . . , N, (11)

where T and g are defined by (6) and (7), respectively. If η1 = 0, then by
yN (tj1) we denote the right limit limt→tj−1,t>tj−1 yN (t). If ηm = 1, then by
yN (tjm) we denote the left limit limt→tj ,t<tj yN (t). The collocation condi-
tions (11) have an operator equation representation

yN = PN,mTyN + PN,mg. (12)

Here PN,m : C[0, b]→ S
(−1)
m−1(ΠN ) is defined by

(PN,mu)(tjp) = u(tjp), p = 1, . . . ,m, j = 1, . . . , N, u ∈ C[0, b], (13)

where ΠN and {tjp} are given by (8) and (10), respectively. If η1 = 0, then by
(PN,mu)(tj1) we denote the right limit limt→tj−1,t>tj−1(PN,mu)(t). If ηm = 1,
then by (PN,mu)(tjm) we denote the left limit limt→tj ,t<tj (PN,mu)(t). It
follows from [4, 24] that PN,m ∈ L(C[0, b], L∞(0, b)) and that the norms of
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PN,m are uniformly bounded: there exists a constant c > 0 which does not
depend on N such that ‖PN,m‖L(C[0,b],L∞(0,b)) ≤ c for all N ∈ N.

The collocation conditions (11) form a system of equations whose exact

form is determined by the choice of a basis in the space S
(−1)
m−1(ΠN ). We will

use the Lagrange fundamental polynomial representation:

yN (t) =

N∑
l=1

m∑
k=1

clkϕlk(t), t ∈ [0, b], (14)

where

ϕlk(t) =


0, if t 6∈ [tl−1, tl],
m∏

i=1,i 6=k

t−tli
tlk−tli , if t ∈ [tl−1, tl],

k = 1, . . . ,m, l = 1, . . . , N.

Note that yN (tlk) = clk, k = 1, . . . ,m, l = 1, . . . , N , and using representa-
tion (14) the collocation conditions (11) form the following system of linear
algebraic equations with respect to the unknown values {cjp}:

cjp =
N∑
l=1

m∑
k=1

(Tϕlk)(tjp)clk + g(tjp), p = 1, . . . ,m, j = 1, . . . , N.

After solving this system of equations, we find the approximation yN to y,
the solution of (1)–(2), by the formula (14).

Note that this algorithm can be used also in the case if η1 = 0 and ηm = 1.
In this case we have that tj = tjm = tj+1,1, cjm = cj+1,1 = yN (tj) and hence
in the system with respect to {cjp} there are (m − 1)N + 1 equations and
unknowns.

It follows from [27] that the following convergence result holds (cf. [3]).

Theorem 2. (i) Let α ∈ (0, 1) and a, f ∈ C[0, b]. Let N,m ∈ N and as-
sume that the grid points (8) and the collocation points (10) (with collocation
parameters η1, . . . , ηm satisfying (9)) are used.

Then there exists an integer N0 such that for all N ≥ N0 equation (12)

possesses a unique solution yN ∈ S(−1)
m−1(ΠN ) and

sup
0≤t≤b

|y(t)− yN (t)| → 0 as N →∞,

where y is the solution of (1)–(2).
(ii) If, in addition to (i), we assume that a, f ∈ Cm,µ(0, b], where µ < 1,

then for all N ≥ N0 the following error estimate holds:

sup
0≤t≤b

|y(t)− yN (t)| ≤ c

{
N−r(1−ν), if 1 ≤ r ≤ m

1−ν ,

N−m, if r ≥ m
1−ν .

(15)

Here ν = max{1− α, µ}, r ≥ 1 is the grading parameter of the grid (8) and
c is a constant independent of N .
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3. Iterated approximations

Theorem 2 shows that if functions a and f are smooth enough, and if the
grading parameter r is chosen to be sufficiently large, the expected conver-
gence order of the proposed numerical method is of order O(N−m). This
convergence order can be improved by using an iterated method, assuming
a little more smoothness of a and f , together with a more precise choice of
collocation parameters η1, . . . , ηm. More precisely, let yN be the solution of
(12), with N ≥ N0 (see Theorem 2). Denote

yitN := TyN + g, N ≥ N0, (16)

where T and g are defined by (6) and (7), respectively. Note that yitN ∈
C[0, b].

To study the convergence properties of the iterated method, we prove
Lemma 3 below. To this end we will use some ideas of [18] and Lemmas 1
and 2 (see [24] and [17], respectively).

Lemma 1. Let u ∈ Cm,ν(0, b], m ∈ N and ν ∈ (0, 1). Let N ∈ N and

let PN,m : C[0, b]→ S
(−1)
m−1(ΠN ) be defined by the formula (13). Then

sup
tj−1<t<tj

|u(t)− (PN,mu)(t)| ≤ c (tj − tj−1)mt1−ν−mj , j = 1, ..., N.

Here the positive constant c is independent of j and N .

Lemma 2. Let γ < 0 and β be real numbers and let N ≥ 2 be a natural
number. Then, for all l ∈ N satisfying 2 ≤ l ≤ N , the following estimate
holds:

l−1∑
j=1

jβ(l − j)γ ≤ c


1, if β + γ < −1 and β < 0,

Nβ, if β ≥ 0 and γ < −1,

Nβ+γ+1, if β + γ ≥ −1 and γ > −1,

where c is a positive constant that does not depend on l and N .

Lemma 3. Let y ∈ Cm+1,ν(0, b], a ∈ C1,µ(0, b], where m ∈ N, ν ∈ (0, 1)
and µ < 1. Let N ∈ N and assume that the grid points (8) and the collocation
parameters η1, . . . , ηm satisfying (9) are used. Moreover, assume that the
collocation parameters are chosen so that the quadrature approximation∫ 1

0
F (x) dx ≈

m∑
k=1

wk F (ηk) (17)

with appropriate weights {wk} is exact for all polynomials F of degree m.
Finally, let α ∈ (0, 1) and let Jα and PN,m be defined by (3) and (13),
respectively. Then

‖Jα(a(y − PN,my))‖∞ ≤ c

{
N−r(1+α−ν), if 1 ≤ r < m+α

1+α−ν ,

N−m−α, if r ≥ m+α
1+α−ν .

(18)
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Here r ≥ 1 is the grading parameter of the grid (8) and c is a constant
independent of N .

Proof. Without loss of generality we assume that a ∈ C1,µ(0, b] where µ ∈
(0, 1) (if µ ≤ 0, then a ∈ C1,µ(0, b] implies a ∈ C1,ε(0, b] for all 0 < ε < 1).
Fix t ∈ (0, b] and let k ∈ {0, 1, ..., N − 1} be such that t ∈ (tk, tk+1]. Let

Aj(t) :=

∫ tj

tj−1

(t− s)α−1a(s)(y(s)− (PN,my)(s))ds, j = 1, ..., k (k ≥ 1),

(19)

Ak+1(t) :=

∫ t

tk

(t− s)α−1a(s)(y(s)− (PN,my)(s))ds.

Then

(Jα(a(y − PN,my))) (t) =
1

Γ(α)

k+1∑
j=1

Aj(t). (20)

Throughout this proof we use the notation c, c1, . . . to denote positive con-
stants that can in different places have different values, but which do not
depend on N , k and t. Let

hj := tj − tj−1, j = 1, ..., k + 1.

Since y ∈ Cm+1,ν(0, b] ⊂ Cm,ν(0, b] and a ∈ C1,µ(0, b] ⊂ C[0, b], it follows
from Lemma 1 that

|Ak+1(t)| ≤ c1 h
m+α
k+1 t

1−ν−m
k+1 .

Due to

tj = bjrN−r, 0 < hj = tj − tj−1 ≤ brjr−1N−r, j = 1, ..., N, (21)

we obtain

|Ak+1(t)| ≤ c2N
−r(1+α−ν)(k + 1)r(1+α−ν)−(m+α)

≤ c

{
N−r(1+α−ν), if 1 ≤ r ≤ m+α

1+α−ν ,

N−m−α, if r > m+α
1+α−ν .

(22)

Next, let k ≥ 1. Then, on the basis of (19) we can write

Ak(t) =

∫ tk

tk−1

(t− s)α−1a(s)(y(s)− (PN,my)(s))ds

and, due to Lemma 1 and a ∈ C[0, b], we have that

|Ak(t)| ≤ c1h
m
k t

1−ν−m
k (t− tk−1)α.

Since

t− tk−1 ≤ hk + hk+1 =

(
1 +

hk+1

hk

)
hk
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and hk+1/hk → 1, as k → ∞, we have that there exists a constant c2 > 0
(which is independent of k) such that t− tk−1 ≤ c2hk. Using this, we obtain
in a similar way as for the estimate |Ak+1(t)| that

|Ak(t)| ≤ c

{
N−r(1+α−ν), if 1 ≤ r ≤ m+α

1+α−ν ,

N−m−α, if r > m+α
1+α−ν .

(23)

If k ≥ 2, we still need to estimate Aj(t), j = 1, ..., k − 1. Let us consider
the following function ψt:

ψt(s) = a(s)(t− s)α−1, 0 ≤ s < t, (24)

where t ∈ (0, b] was fixed earlier. In every subinterval (tj−1, tj), j =
1, ..., k − 1, it holds that

ψt(s) = ψt(tj) + ψ′t(ξ(s))(s− tj), s ∈ (tj−1, tj), ξ(s) ∈ (s, tj).

Let

B0(t) :=

k−1∑
j=1

ψt(tj)

∫ tj

tj−1

(y(s)− (PN,my)(s))ds,

B1(t) :=

k−1∑
j=1

∫ tj

tj−1

ψ′t(ξ(s))(s− tj)(y(s)− (PN,my)(s))ds.

Then
k−1∑
j=1

Aj(t) = B0(t) +B1(t).

We now introduce a new collocation parameter ηm+1 ∈ [0, 1] such that
ηm+1 6= ηp, p = 1, . . . ,m. Without loss of generality we can assume that
0 ≤ η1 < · · · < ηm+1 ≤ 1. Using η1, . . . , ηm+1 we also define new collocation
points

tjl = tj−1 + ηl(tj − tj−1), j = 1, ..., N, l = 1, ...,m+ 1,

and introduce an operator PN,m+1 : C[0, b] → S−1
m (ΠN ) by conditions (cf.

(13))

(PN,m+1u)(tjl) = u(tjl), j = 1, ..., N, l = 1, ...,m+ 1, u ∈ C[0, b].

Since the quadrature approximation (17) is exact for all polynomials of de-
gree m, we have∫ tj

tj−1

(PN,mu)(s)ds =

∫ tj

tj−1

(PN,m+1u)(s)ds, j = 1, ...k − 1, u ∈ C[0, b].

Thus, for all u ∈ C[0, b] and j = 1, ..., k − 1, we have∫ tj

tj−1

(u(s)− (PN,mu)(s))ds =

∫ tj

tj−1

(u(s)− (PN,m+1u)(s))ds.
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Due to t− tj ≥ tk − tj ≥ (k − j)hj , j = 1, ..., k − 1 and a ∈ C[0, b], we have

that |ψt(tj)| ≤ c1(k − j)α−1hα−1
j , and therefore

|B0(t)| ≤ c1

k−1∑
j=1

(k − j)α−1hα−1
j

∣∣∣∣∣
∫ tj

tj−1

(y(s)− (PN,my)(s)) ds

∣∣∣∣∣
= c1

k−1∑
j=1

(k − j)α−1hα−1
j

∣∣∣∣∣
∫ tj

tj−1

(y(s)− (PN,m+1y)(s)) ds

∣∣∣∣∣ .
Now, by applying Lemma 1 with operator PN,m+1 instead of the operator
PN,m, we obtain

|B0(t)| ≤ c2

k−1∑
j=1

(k − j)α−1hα+m+1
j t−ν−mj .

From (21) it follows

|B0(t)| ≤ c3N
−r(1+α−ν)

k−1∑
j=1

(k − j)α−1jr(1+α−ν)−(m+α+1).

Since

k−1∑
j=1

(k − j)α−1jr(1+α−ν)−(m+α+1) ≤
k−1∑
j=1

(k − j)α−1jr(1+α−ν)−(m+α+1)j−α+1,

(25)
it follows from Lemma 2 that

|B0(t)| ≤ c

{
N−r(1+α−ν), if 1 ≤ r < m+α

1+α−ν ,

N−m−α, if r ≥ m+α
1+α−ν .

(26)

Next we estimate B1(t). It follows from (24) and a ∈ C1,µ(0, b], 0 < µ < 1,
that

ψ′t(s) = a′(s)(t− s)α−1 − (α− 1)a(s)(t− s)α−2, 0 < s < t.

Since t − s ≥ t − tj ≥ (k − j)hj and |a′(ξ(s))| ≤ c s−µ (0 < s < ξ(s) < t),
then there exists c1 > 0 such that

|ψ′t(ξ(s))| ≤ c1

(
(k − j)α−1hα−1

j s−µ + (k − j)α−2hα−2
j

)
, ξ(s) ∈ (s, tj).

Therefore

|B1(t)| ≤ c1

k−1∑
j=1

(k − j)α−1hα−1
j

∫ tj

tj−1

s−µ(tj − s)|y(s)− (PN,my)(s)| ds
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+ c1

k−1∑
j=1

(k − j)α−2hα−2
j

∫ tj

tj−1

(tj − s)|y(s)− (PN,my)(s)| ds. (27)

Due to Lemma 1 we see that

S1 := c1

k−1∑
j=1

(k − j)α−1hα−1
j

∫ tj

tj−1

s−µ(tj − s)|y(s)− (PN,my)(s)| ds

≤ c2

k−1∑
j=1

(k − j)α−1hα−1+m
j t1−ν−mj

∫ tj

tj−1

s−µ(tj − s)ds.

Note that for j = 1 we have∫ t1

0
s−µ(t1 − s)ds = t2−µ1

∫ 1

0
s−µ(1− s)ds ≤ c3t

2−µ
1 = c3h

2
1t
−µ
1

and for j ≥ 2 we obtain∫ tj

tj−1

s−µ(tj − s)ds = h2
j

∫ 1

0
(hjs+ tj−1)−µ(1− s)ds

≤ h2
j t
−µ
j−1

∫ 1

0
(1− s)ds ≤ c4h

2
j t
−µ
j .

Therefore, with the help of (21), we see that

S1 ≤ c5

k−1∑
j=1

(k − j)α−1hα−1+m
j h2

j t
1−ν−m−µ
j

≤ c6N
−r(1+α−ν)

k−1∑
j=1

(k − j)α−1jr(1+α−ν)−(1+α+m)

(
j

N

)r(1−µ)

≤ c6N
−r(1+α−ν)

k−1∑
j=1

(k − j)α−1jr(1+α−ν)−(1+α+m).

Due to (25) and Lemma 2 we now obtain

S1 ≤ c

{
N−r(1+α−ν), if 1 ≤ r < m+α

1+α−ν ,

N−m−α, if r ≥ m+α
1+α−ν .

(28)

Finally, we estimate the remaining terms in (27). Due to Lemmas 1 and 2
it follows

S2 := c1

k−1∑
j=1

(k − j)α−2hα−2
j

∫ tj

tj−1

(tj − s)|y(s)− (PN,my)(s)| ds
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≤ c2N
−r(1+α−ν)

k−1∑
j=1

(k − j)α−2jr(1+α−ν)−(α+m)

≤ c

{
N−r(1+α−ν), if 1 ≤ r < m+α

1+α−ν ,

N−m−α, if r ≥ m+α
1+α−ν .

(29)

Thus, from (28) and (29) we get the estimate

|B1(t)| ≤ S1 + S2 ≤ c

{
N−r(1+α−ν), if 1 ≤ r < m+α

1+α−ν ,

N−m−α, if r ≥ m+α
1+α−ν .

(30)

Since
k+1∑
j=1

Aj(t) = B0(t) +B1(t) +Ak(t) +Ak+1(t),

the equality (20) along with the estimates (22), (23), (26) and (30) yields
the estimate (18). �

Based on Theorem 1, Theorem 2 and Lemma 3, we can now prove the
following result.

Theorem 3. Let α ∈ (0, 1) and m ∈ N. Assume that a, f ∈ Cm+1,µ(0, b],
where µ < 1. Let N ∈ N and assume that the grid points (8) and the
collocation points η1, . . . , ηm satisfying (9) are used. Moreover, assume that
the collocation parameters are chosen so that the quadrature approximation∫ 1

0
F (x) dx ≈

m∑
k=1

wk F (ηk)

with appropriate weights {wk} is exact for all polynomials F of degree m.
Then there exists N0 ∈ N so that for N ≥ N0 the approximation yitN

defined by (16) is unique and the error estimate

‖y − yitN‖∞ ≤ c
{
N−r(1+α−ν), if 1 ≤ r < m+α

1+α−ν ,

N−m−α, if r ≥ m+α
1+α−ν ,

(31)

holds. Here y is the exact solution of problem (1)–(2), ν = max{1 − α, µ},
r ≥ 1 is the grading parameter of the grid (8) and c is a constant independent
of N .

Proof. It follows from Theorem 2 that there exists an N0 ∈ N such that
the iterated approximate solution yitN is defined for N ≥ N0. Note that due
to yN = PN,mTyn + PN,mg we have that

PN,myitN = PN,m(TyN + g) = PN,mTyN + PN,mg = yN , N ≥ N0.

Therefore,

yitN = TPN,myitN + g, N ≥ N0.
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From Theorem 2, we know that there exists the inverse (I−PN,mT )−1 when
N ≥ N0. One can verify that if N ≥ N0, then there also exists the inverse
(I − TPN,m)−1 and

(I − TPN,m)−1 = I + T (I − PN,mT )−1PN,m. (32)

Due to T ∈ L(L∞(0, b), C[0, b]) and PN,m ∈ L(C[0, b], L∞(0, b)), we have
that (I −PN,mT ) ∈ L(L∞(0, b), L∞(0, b)). Therefore also (I −PN,mT )−1 ∈
L(L∞(0, b), L∞(0, b)), when N ≥ N0, and, consequently, (I − TPN,m)−1 ∈
L(C[0, b], C[0, b]), when N ≥ N0.

It can be shown (see, e.g., [27]) that∥∥(I − PN,mT )−1
∥∥
L(L∞(0,b),L∞(0,b))

≤ c1, N ≥ N0, (33)

where c1 is a positive constant which does not depend on N . Therefore,
since the norms of PN,m are uniformly bounded (see Section 2), we get from
(32) and (33) that there exists a constant c2 > 0 (independent of N) such
that ∥∥(I − TPN,m)−1

∥∥
L(C[0,b],C[0,b])

≤ c2, N ≥ N0. (34)

Note that due to y = Ty + g and yitN = TPN,myitN + g, it follows that

(I − TPN,m)
(
yitN − y

)
= T (PN,my − y).

Therefore, from (34) it follows that∥∥yitN − y∥∥∞ ≤ c2‖T (PN,my − y)‖∞ = c2 ‖Jα(a(y − PN,my))‖∞ , N ≥ N0.

This together with Lemma 3 yields the estimate (31). �

Remark 1. In a more restrictive case of a, f ∈ Cm+1[0, b] we obtain from
Theorem 3, by taking ν = 1− α, that

‖y − yitN‖∞ ≤ c
{
N−2α r, if 1 ≤ r < m+α

2α ,
N−m−α, if r ≥ m+α

2α .

This result for r = 1 and r ≥ m
α > m+α

2α is also obtained in [28].

4. Examples

4.1. Example 1. Consider the following initial value problem:

(D
1
2
Capy)(t)+(t

3
4 −1)y(t) = t

5
4 +t

3
4 −t

1
2 +Γ

(
3

2

)
−1, 0 ≤ t ≤ 1; y(0) = 1.

(35)
We see that (35) is a special problem of (1)–(2) with

α =
1

2
, a(t) = t

3
4 − 1, f(t) = t

5
4 + t

3
4 − t

1
2 + Γ

(
3

2

)
− 1, y0 = 1, b = 1.
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Note that a ∈ Cm,
1
4 (0, 1] ⊂ Cm,

1
2 (0, 1], f ∈ Cm,

1
2 (0, 1] for all m ∈ N. There-

fore, by Theorem 1, it follows that the solution y ∈ Cm,ν(0, b], where

ν = max

{
1− 1

2
,
1

2

}
=

1

2
.

We apply the collocation method (see Section 2) and its iterated version
(see Section 3) with m = 2, using as collocation parameters the shifted
Gauss–Legendre points

η1 =
3−
√

3

6
, η2 = 1− η1,

which satisfy the conditions set for collocation parameters in Theorem 2 and
Theorem 3. It follows from Theorem 2 that for sufficiently large N ∈ N we
have

sup
0≤t≤b

|y(t)− yN (t)| ≤ c0

{
N−0.5 r, if 1 ≤ r < 4,
N−2, if r ≥ 4,

(36)

where
y(t) = t

1
2 + 1, 0 ≤ t ≤ 1,

is the exact solution of problem (35) and c0 is a positive constant independent
of N . Similarly, it follows from Theorem 3 that

‖y − yitN‖∞ = max
0≤t≤b

|y(t)− yitN (t)| ≤ c1

{
N−r, if 1 ≤ r < 5

2 ,
N−2.5, if r ≥ 5

2 ,
(37)

where c1 is a positive constant independent of N .
In Table 1 and Table 2 some results of numerical experiments for different

values of the parameter r are presented. The actual numerical error εN for
sup0≤t≤b |y(t)− yN (t)| and εitN for ‖y − yitN‖∞ are calculated as follows:

εN := max
j=1,...,N

max
k=0,...,10

|y(τjk)− yN (τjk)| ,

εitN := max
j=1,...,N

max
k=0,...,10

|y(τjk)− yitN (τjk)| ,

where

τjk := tj−1 + k(tj − tj−1)/10, k = 0, . . . , 10, j = 1, . . . , N,

with {tj} defined by (8). The ratios

%N :=
εN/2

εN
, %itN :=

εitN/2

εitN
,

characterizing the observed convergence rates, are also presented. Due to
(36), the ratios %N for the non-iterated collocation method for r = 1, r = 2
and r = 4 ought to be approximately 20.5 ≈ 1.41, 21 = 2 and 22 = 4,
respectively. Due to (37), the ratios %itN for the iterated method for r = 1,
r = 2 and r = 2.5 ought to be approximately 21 = 2, 22 = 4 and 22.5 ≈ 5.67,
respectively. All these ratios are also given in the last rows of Table 1 and
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Table 2. As we can see from Table 1 and Table 2, the numerical results are
in good agreement with the theoretical estimates given by Theorem 2 and
Theorem 3 (the estimates (15) and (31)).

Table 1. Numerical results for problem (35) using colloca-

tion method with m = 2, η1 = 3−
√

3
6 , η2 = 1− η1.

r = 1 r = 2 r = 4
N εN %N εN %N εN %N
4 1.62 · 10−1 7.81 · 10−2 3.12 · 10−2

8 1.12 · 10−1 1.44 3.84 · 10−2 2.03 7.19 · 10−3 4.34
16 7.81 · 10−2 1.43 1.91 · 10−2 2.02 1.87 · 10−3 3.84
32 5.47 · 10−2 1.43 9.50 · 10−3 2.01 4.68 · 10−4 4.01
64 3.84 · 10−2 1.42 4.74 · 10−3 2.00 1.17 · 10−4 4.00

128 2.71 · 10−2 1.42 2.37 · 10−3 2.00 2.92 · 10−5 4.00
≈ 1.41 2 4

Table 2. Numerical results for problem (35) using the iter-

ated method with m = 2, η1 = 3−
√

3
6 , η2 = 1− η1.

r = 1 r = 2 r = 2.5
N εitN %itN εitN %itN εitN %itN
4 1.05 · 10−2 2.48 · 10−3 2.07 · 10−3

8 5.09 · 10−3 2.07 6.00 · 10−4 4.13 3.59 · 10−4 5.77
16 2.48 · 10−3 2.05 1.48 · 10−4 4.07 6.23 · 10−5 5.76
32 1.22 · 10−3 2.04 3.66 · 10−5 4.03 1.09 · 10−5 5.71
64 6.00 · 10−4 2.03 9.10 · 10−6 4.02 1.92 · 10−6 5.68

128 2.97 · 10−4 2.02 2.27 · 10−6 4.01 3.39 · 10−7 5.67
2 4 ≈ 5.67

We also briefly highlight the case when the chosen collocation parameters
do not satisfy the quadrature condition set in Theorem 3, by applying both
methods for m = 2 with collocation parameters

η1 = 0.1, η2 = 0.9.

The obtained results for the collocation method and its iterated version are
shown in Table 3 and Table 4, respectively. The last row of Table 3 shows
the theoretical estimates of the collocation method for r = 1, r = 2 and
r = 4, respectively (see Theorem 2). Correspondingly, the last row of Table
4 shows the theoretical estimates of the iterated version for r = 1, r = 2
and r = 2.5, respectively (see Theorem 3). We see that for these collocation
parameters for r ≥ 2.5 the iterated method does not attain the convergence
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order O(N−2.5) predicted by Theorem 3. This shows that the collocation
parameter assumption of Theorem 3 can not be relaxed.

Table 3. Numerical results for problem (35) using the col-
location method with m = 2, η1 = 0.1, η2 = 0.9.

r = 1 r = 2 r = 4
N εN %N εN %N εN %N
4 1.25 · 10−1 6.07 · 10−2 2.18 · 10−2

8 8.68 · 10−2 1.44 3.00 · 10−2 2.03 5.89 · 10−3 3.70
16 6.07 · 10−2 1.43 1.49 · 10−2 2.01 1.60 · 10−3 3.68
32 4.26 · 10−2 1.43 7.43 · 10−3 2.01 4.09 · 10−4 3.92
64 3.00 · 10−2 1.42 3.71 · 10−3 2.00 1.03 · 10−4 3.97

128 2.11 · 10−2 1.42 1.85 · 10−3 2.00 2.60 · 10−5 3.96
≈ 1.41 2 4

Table 4. Numerical results for problem (35) using the iter-
ated method with m = 2, η1 = 0.1, η2 = 0.9.

r = 1 r = 2 r = 2.5
N εitN %itN εitN %itN εitN %itN
4 9.71 · 10−3 4.07 · 10−3 4.21 · 10−3

8 5.46 · 10−3 1.78 1.21 · 10−3 3.38 1.21 · 10−3 3.50
16 2.88 · 10−3 1.90 3.35 · 10−4 3.60 3.17 · 10−4 3.80
32 1.48 · 10−3 1.95 8.68 · 10−5 3.86 8.01 · 10−5 3.96
64 7.47 · 10−4 1.98 2.21 · 10−5 3.92 2.00 · 10−5 4.00

128 3.75 · 10−4 1.99 5.58 · 10−6 3.97 5.00 · 10−6 4.01
2 4 ≈ 5.67

4.2. Example 2. Consider the following problem:

(D
2
3
Capy)(t)+(t

3
4 +2)y(t) = t

17
12 +2t

3
4 +2t

2
3 +Γ

(
5

3

)
+4, 0 ≤ t ≤ 1; y(0) = 2.

(38)
This is a special case of (1)–(2) with

α =
2

3
, a(t) = t

3
4 + 2, f(t) = t

17
12 + 2t

3
4 + 2t

2
3 + Γ

(
5

3

)
+ 4, y0 = 2, b = 1.

Note that here a, f ∈ Cm,
1
3 (0, 1] for all m ∈ N. Therefore, by Theorem 1 it

follows that y ∈ Cm,ν(0, b], where

ν = max

{
1− 2

3
,
1

3

}
=

1

3
.
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We apply the collocation method and its iterated version for m = 3, using
the shifted Gauss–Legendre points

η1 =
5−
√

15

10
, η2 =

1

2
, η3 =

5 +
√

15

10
. (39)

The numerical results for the collocation method with these collocation pa-
rameters are given in Table 5. It follows from Theorem 2 that for sufficiently
large N ∈ N, we have

sup
0≤t≤b

|y(t)− yN (t)| ≤ c3

{
N−

2
3
r, if 1 ≤ r ≤ 9

2 ,

N−3, if r ≥ 9
2 ,

where y(t) = t
2
3 + 2, 0 ≤ t ≤ 1, is the exact solution of problem (38) and

c3 is a positive constant independent of N . Correspondingly, we expect for

r = 1, r = 2 and r = 4.5 the convergence order to be 2
2
3 ≈ 1.59, 2

4
3 ≈ 2.52

and 23 = 8, respectively. These values are given in the last row of Table 5.
Similarly, the numerical results for the iterated version with collocation

parameters (39) are given in Table 6. It follows from Theorem 3 that, for
sufficiently large N ∈ N, we have

‖y − yitN‖∞ = max
0≤t≤b

|y(t)− yitN (t)| ≤ c4

{
N−

4
3
r, if 1 ≤ r ≤ 11

4 ,

N−
11
3 , if r ≥ 11

4 ,

where c4 is a positive constant not dependent on N . In the last row of
Table 6 are given the corresponding values for r = 1, r = 2 and r = 2.75,
respectively.

As we can see, the numerical results are in accord with the theoretical
estimates given by Theorem 2 and Theorem 3.

Table 5. Numerical results for problem (38) using colloca-

tion method with m = 3, η1 = 5−
√

15
10 , η2 = 1

2 , η3 = 5+
√

15
10 .

r = 1 r = 2 r = 4.5
N εN %N εN %N εN %N
4 3.67 · 10−2 1.51 · 10−2 4.29 · 10−3

8 2.37 · 10−2 1.55 6.09 · 10−3 2.48 5.94 · 10−4 7.22
16 1.51 · 10−2 1.57 2.43 · 10−3 2.50 7.53 · 10−5 7.89
32 9.61 · 10−3 1.57 9.68 · 10−4 2.51 9.43 · 10−6 7.99
64 6.09 · 10−3 1.58 3.85 · 10−4 2.52 1.18 · 10−6 8.00

128 3.85 · 10−3 1.58 1.53 · 10−4 2.52 1.47 · 10−7 8.00
≈ 1.59 ≈ 2.52 8
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Table 6. Numerical results for problem (38) using the iter-

ated method with m = 3, η1 = 5−
√

15
10 , η2 = 1

2 , η3 = 5+
√

15
10 .

r = 1 r = 2 r = 2.75
N εitN %itN εitN %itN εitN %itN
4 1.45 · 10−3 2.57 · 10−4 1.50 · 10−4

8 6.19 · 10−4 2.35 4.25 · 10−5 6.04 1.30 · 10−5 11.54
16 2.57 · 10−4 2.41 6.84 · 10−6 6.22 1.23 · 10−6 10.57
32 1.05 · 10−4 2.45 1.09 · 10−6 6.30 9.31 · 10−8 13.19
64 4.25 · 10−5 2.47 1.72 · 10−7 6.33 7.41 · 10−9 12.56

128 1.71 · 10−5 2.49 2.70 · 10−8 6.34 6.24 · 10−10 11.87
≈ 2.52 ≈ 6.35 ≈ 12.70
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