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A note on Delta-points in Lipschitz-free spaces

Triinu Veeorg

Abstract. A norm one element x of a Banach space is a Daugavet-point
(respectively, a ∆-point) if every slice of the unit ball (respectively, every
slice of the unit ball containing x) contains an element that is almost at
distance 2 from x. It is known that any finitely supported element µ in
the unit sphere of a Lipschitz-free space F(M) is a ∆-point if and only
if for every ε > 0 and a slice S of BF(M) with µ ∈ SF(M) there exist
u, v ∈M with u 6= v such that muv ∈ S and d(u, v) < ε. The aim of this
note is to show that this characterization can also be applied to certain
convex series of molecules.

1. Introduction

Daugavet and ∆-points were first introduced in [2], as pointwise ver-
sions of the Daugavet property and the diametral local diameter 2 property
(DLD2P), respectively. Recall that a Banach space X has the Daugavet
property (respectively, the DLD2P), if for every x ∈ SX and for every slice
of the unit ball (respectively, every slice of the unit ball containing x) there
exists an element in the slice that is almost at distance 2 from x. By a slice
of the unit ball we mean any set of the form

S(x∗, α) := {y ∈ BX : x∗(y) > 1− α} ,
where x∗ ∈ SX∗ and α > 0. For a Banach space X and element x ∈ SX we
say that

(1) x is a Daugavet-point if for every slice S of BX and for every ε > 0
there exists y ∈ S such that ‖x− y‖ ≥ 2− ε;

(2) x is a ∆-point if for every slice S of BX with x ∈ S and for every
ε > 0 there exists y ∈ S such that ‖x− y‖ ≥ 2− ε.

From this definition it is clear that a Banach space X has the Daugavet
property (respectively the DLD2P) if and only if every element of the unit
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sphere is a Daugavet point (respectively a ∆-point). The study of Daugavet
and ∆-points has received a lot of attention in the recent years (see, e.g, [2],
[3], [6]). In Lipschitz-free spaces, these points were first considered in [10].
In particular, it was shown that a molecule mxy is a ∆-point if and only if
for every ε > 0 and a slice S of BF(M) with mxy ∈ S there exist u, v ∈ M
with u 6= v such that muv ∈ S and d(u, v) < ε (see [10, Theorem 4.7]).
Furthermore, one direction can be applied to any element of the unit sphere
of a Lipschitz-free space, i.e., if µ ∈ SF(M) is such that for every ε > 0 and
a slice S of BF(M) with µ ∈ S there exist u, v ∈ M with u 6= v such that
muv ∈ S and d(u, v) < ε, then µ is a ∆-point. However, it is unknown
whether the converse also holds for arbitrary elements of the unit sphere.
Several papers have addressed this question, and thus far we know that the
characterization holds in the following cases:

• for finitely supported elements (see [11, Theorem 4.4]);
• for elements of a Lipschitz-free space over a proper metric space (see

[12, Theorem 3.2]);
• for elements of a Lipschitz-free space over a subset of an R-tree (see

[1, Theorem 4.5]);
• for µ ∈ SF(M) such that

lim
δ→0

sup
x,y∈supp(µ)∪{0}

α ({p ∈M : d(p, x) + d(p, y) < (1 + δ)d(x, y)}) = 0

(see [1, Proposition 4.3]).

The potential characterization is strongly related to the open question that
is well-known among the experts in the field: whether a Lipschitz-free space
over a uniformly discrete metric space can contain ∆-points. Recall that a
metric space M is uniformly discrete if there exists ε > 0 such that d(u, v) >
ε for every u, v ∈ M with u 6= v. It is clear that if one were to prove
the aforementioned characterization, then the answer would be negative.
Furthermore, it is known that every element in a Lipschitz-free space over a
uniformly discrete metric space is a convex series of molecules (see [4]), thus
it would be sufficient to prove the characterization for all convex series of
molecules.

The aim of this note is to generalize the technique from the proof of
[11, Theorem 4.4] to prove the characterization for certain convex series
of molecules (see Theorem 1.1). Whilst we do not manage to prove the
characterization for all convex series of molecules, this is a step forward for
solving the question. Furthermore, diving into the details of why our result
does not work for all convex series of molecules could also prove useful if one
were to look for a counterexample to the question mentioned in the previous
paragraph.

Let us now also introduce Lipschitz-free spaces. Let M be a metric space
with metric d and a fixed point 0. We denote by Lip0(M) the Banach space
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of all Lipschitz functions f : M → R with f(0) = 0 equipped with the obvious
linear structure and the norm

‖f‖ := sup
{ |f(x)− f(y)|

d(x, y)
: x, y ∈M,x 6= y

}
.

Let δ : M → Lip0(M)∗ be the canonical isometric embedding of M into
Lip0(M)∗, which is given by x 7→ δx where δx(f) = f(x). The norm closed
linear span of δ(M) in Lip0(M)∗ is called the Lipschitz-free space over M and
is denoted by F(M) (see [8] and [13] for the background). The Lipschitz-free
space is a predual of the space of Lipschitz functions, i.e., F(M)∗ = Lip0(M).
An element in F(M) of the form

mxy :=
δx − δy
d(x, y)

for x, y ∈M with x 6= y is called a molecule. It is well known that ‖mxy‖ = 1
for every x, y ∈M with x 6= y and that the closed convex hull of all molecules
forms the unit ball of the Lipschitz-free space.

We are now ready to present our main result.

Theorem 1.1. Let I ⊂ N, let λi > 0, i ∈ I, with
∑

i∈I λi = 1, and
mxiyi ∈ SF(M), i ∈ I be such that µ :=

∑
i∈I λimxiyi ∈ SF(M). Assume that

maxi,j∈I d(xi, yj) < ∞ and there exists δ > 0 such that for every pairwise
distinct k1, . . . , km ∈ I and km+1 := k1 we have

m∑
j=1

d(xkj , ykj+1
) >

m∑
j=1

d(xkj , ykj )⇒ (1−δ)
m∑
j=1

d(xkj , ykj+1
) >

m∑
j=1

d(xkj , ykj ).

Then µ is a ∆-point if and only if for every ε > 0 and every slice S of
BF(M) with µ ∈ S there exist u, v ∈ M with u 6= v such that muv ∈ S and
d(u, v) < ε.

The theorem can be applied, for example, if I = N and d(xi, yj) = 1 for
every i, j ∈ N, a case which is not covered by previous results. Thus this
result provides us with new information in our attempt to characterize an
arbitrary element of a Lipschitz-free space. Additionally, it also provides an
alternative proof for showing that the Lipschitz-free space over N with the
discrete metric does not contain ∆-points.

2. Proof of the main theorem

Throughout the section, let M be a metric space with a fixed point 0. Let
I ⊆ N, λi > 0, i ∈ I with

∑
i∈I λi = 1, and mxiyi ∈ SF(M), i ∈ I be such

that µ :=
∑

i∈I λimxiyi ∈ SF(M). By [5, Theorem 2.4], for every sequence
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k1, . . . , km+1 ∈ I with k1 = km+1, we have

m∑
j=1

d(xkj , ykj+1
) ≥

m∑
j=1

d(xkj , ykj ). (1)

Furthermore, by, e.g., [11, Section 4] the equality in (1) yields that for every
j ∈ {1, . . . ,m} with xkj 6= ykj+1

there exist ν ∈ SF(M) and λ ∈ (0, 1] such
that µ = λmxkj ykj+1

+ (1− λ)ν, or equivalently, there exists λ ∈ (0, 1] such

that
∥∥∥µ− λmxkj ykj+1

∥∥∥ = 1− λ.

Next we will define numbers aij that measure how close we are to attaining
the equality in (1). For i, j ∈ I, let

aij = sup

{ ∑m
j=1 d(xkj , ykj )∑m
j=1 d(xkj , ykj+1

)
: k1, . . . , km+1 ∈ I, k1 = km+1 = i, k2 = j

}
.

By (1) we have aij ≤ 1. It is straightforward to check that we get the
same result if we assume in the definition of aij that k1, . . . , km are pairwise
distinct. Thus, if I is finite, then for i, j ∈ I we have aij = 1 if and only if

m∑
j=1

d(xkj , ykj ) =

m∑
j=1

d(xkj , ykj+1
)

for some k1, . . . , km+1 ∈ I, with k1 = km+1 = i and k2 = j.
Now we proceed with the main proof, which will be divided into several

parts.

Lemma 2.1. Let µ :=
∑

i∈I λimxiyi ∈ SF(M) and aij, i, j ∈ I, be as
specified in the beginning of the section. There exists f ∈ SLip0(M) with
〈f, µ〉 = 1 such that for all i, j ∈ I we have

f(xi)− f(yj) ≤ aijd(xi, yj).

Proof. The proof follows the same line as the (iv)⇒ (i) part of the proof
of [5, Theorem 2.4], with small modifications. For i, j ∈ I, let

βij = aijd(xi, yj)− d(xi, yi).

We wish to apply [5, Lemma 2.3]. Clearly aii = 1 and thus βii = 0 for every
i ∈ I. For any finite sequence k1, . . . , km+1 with k1 = km+1 we get

m∑
j=1

akjkj+1
d(xkj , ykj+1

) ≥ min
j∈{1,...,m}

akjkj+1

m∑
j=1

d(xkj , ykj+1
) ≥

m∑
j=1

d(xkj , ykj )

and therefore
m∑
j=1

βkjkj+1
≥ 0.
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By [5, Lemma 2.3] we obtain real numbers αi, i ∈ I, such that αi ≤ αj +βij
for every i, j ∈ I. Now we define a function f on the set {xi, yi : i ∈ I} by
f(yi) = αi and f(xi) = αi + d(xi, yi). Then for every i, j ∈ I we have

f(xi)− f(yj) = αi − αj + d(xi, yi) ≤ βij + d(xi, yi) = aijd(xi, yj),

f(yi)− f(xj) = αi − αj − d(xj , yj) ≤ βij − d(xj , yj)

≤ d(xi, yj)− d(xi, yi)− d(xj , yj) ≤ d(yi, xj),

f(xi)− f(xj) = αi − αj + d(xi, yi)− d(xj , yj) ≤ βij + d(xi, yi)− d(xj , yj)

≤ d(xi, yj)− d(xj , yj) ≤ d(xi, xj),

f(yi)− f(yj) = αi − αj ≤ βij ≤ d(xi, yj)− d(xi, yi) ≤ d(yi, yj).

This shows that there are no conflicting assignments of values of f and that
the Lipschitz constant of f is 1. Clearly f(mxiyi) = 1 for every i ∈ I and
thus 〈f, µ〉 = 1. We extend f to the entire M by the McShane–Whitney
Theorem and add a constant so that f(0) = 0. Then f ∈ SF(M) is the
desired function. �

Before introducing the next lemma, let us recall the Lipschitz function

fxy(p) =
d(x, y)

2
· d(y, p)− d(x, p)

d(x, p) + d(y, p)
,

where x, y ∈ M with x 6= y. This function played an important role in the
proof of [10, Theorem 4.7]. The key property of fxy, which is stated in [7,
Lemma 3.6], is the following: for every u, v ∈ M and α ∈ (0, 1) with u 6= v
and muv ∈ S(fxy, α) we have

(1− α) max {d(x, v) + d(y, v), d(x, u) + d(y, u)} < d(x, y).

Our aim with the next lemma is to construct a function with a similar
property for any convex series of molecules in Lipschitz-free spaces. The
proof of the lemma is analogous to the proof of [11, Lemma 4.3], but has
small modifications.

Lemma 2.2. Let µ :=
∑

i∈I λimxiyi ∈ SF(M) and aij, i, j ∈ I, be as
specified in the beginning of the section. There exist fµ ∈ SLip0(M) such that
the following holds:

(a) 〈fµ, µ〉 = 1;
(b) For every u, v ∈ M and α ∈ (0, 1) with u 6= v and muv ∈ S(fµ, α) there

exist i, j ∈ I with xi 6= yj and aij > 1− α such that

(1− α) max {d(xi, v) + d(yj , v), d(xi, u) + d(yj , u)} < d(xi, yj).

Proof. Without loss of generality we may assume that 0 ∈ {xi, yi : i ∈ I}.
By Lemma 2.1 there exists g ∈ SLip0(M) with 〈g, µ〉 = 1 such that for all
i, j ∈ I we have

g(xi)− g(yj) ≤ aijd(xi, yj).
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For every i ∈ I let hi : M → R be given by

hi(p) = sup

{
g(xi)− g(yj)

d(xi, p) + d(yj , p)
d(xi, p) : j ∈ I, xi 6= yj

}
,

for every p ∈ M . Since g(xi)− g(yi) = d(xi, yi), hi is nonnegative for every
i ∈ I. For all i, j ∈ I we have d(xi, yj) ≥ g(xi)− g(yj) and

d(xi, yj)

2
− fxiyj (p) =

d(xi, yj)

2

d(xi, p) + d(yj , p)− (d(yj , p)− d(xi, p))

d(xi, p) + d(yj , p)

=
d(xi, yj)

g(xi)− g(yj)

g(xi)− g(yj)

d(xi, p) + d(yj , p)
d(xi, p), (2)

and so from [13, Proposition 1.32] and [7, Lemma 3.6] we get that hi is a
Lipschitz function with Lipschitz constant at most 1. Define fµ : M → R by

fµ(p) = sup
i∈I
{g(xi)− hi(p)} .

By [13, Proposition 1.32] fµ is a Lipschitz function with Lipschitz constant
at most 1. For every i ∈ I we have

fµ(xi) ≥ g(xi)− hi(xi) = g(xi).

For fixed j ∈ I and δ > 0 let i ∈ I be such that fµ(yj) < g(xi)− hi(yj) + δ.
If xi = yj , then fµ(yj) < g(yj)− hi(yj) + δ = g(yj) + δ, otherwise

fµ(yj) < g(xi)− hi(yj) + δ

≤ g(xi)−
g(xi)− g(yj)

d(xi, yj) + d(yj , yj)
d(xi, yj) + δ = g(yj) + δ.

As δ > 0 was arbitrary, we must have fµ(yj) ≤ g(yj) for every j ∈ I. This
gives us fµ(xi)− fµ(yj) ≥ g(xi)− g(yj) for every i, j ∈ I. Furthermore,

d(xi, yi) ≥ fµ(xi)− fµ(yi) ≥ g(xi)− g(yi) = d(xi, yi)

for every i ∈ I and thus fµ(p) = g(p) for every p ∈ {xi, yi : i ∈ I}. Hence
fµ ∈ SLip0(M) and 〈fµ, µ〉 = 〈g, µ〉 = 1.

We will now show that condition (b) holds. Fix u, v ∈ M with u 6= v
and α ∈ (0, 1) such that muv ∈ S(fµ, α). Let δ > 0 be such that muv ∈
S(fµ, α − 2δ) and let i ∈ I be such that fµ(u) ≤ g(xi) − hi(u) + δd(u, v).
Then fµ(v) ≥ g(xi)− hi(v) giving us

(1− α+ 2δ)d(u, v) < fµ(u)− fµ(v) ≤ hi(v)− hi(u) + δd(u, v),

i.e, (1− α+ δ)d(u, v) < hi(v)− hi(u). There exists j ∈ I with xi 6= yj such
that

hi(v) <
g(xi)− g(yj)

d(xi, v) + d(yj , v)
d(xi, v) + δd(u, v).

By (2) we get that

(1− α)d(u, v) < hi(v)− hi(u)− δd(u, v)
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<
g(xi)− g(yj)

d(xi, v) + d(yj , v)
d(xi, v)− g(xi)− g(yj)

d(xi, u) + d(yj , u)
d(xi, u)

=
g(xi)− g(yj)

d(xi, yj)

(
fxiyj (u)− fxiyj (v)

)
≤ aij

(
fxiyj (u)− fxiyj (v)

)
≤ min

{
aijd(u, v), fxiyj (u)− fxiyj (v)

}
.

Thus aij > 1− α and from [7, Lemma 3.6] we get

d(xi, yj) > (1− α) max {d(xi, u) + d(yj , u), d(xi, v) + d(yj , v)} .

Hence the condition (b) holds. �

Now we are ready to prove our main theorem. The proof is similar to the
proof of [11, Theorem 4.4].

Proof of Theorem 1.1. One implication is a direct consequence of [10, The-
orem 2.6].

Assume that µ is a ∆-point. Fix ε > 0 and a slice S := S(f, α) with
µ ∈ S. By [9, Lemma 2.1] we can assume that α < δ and(

1

(1− α)2
− 1

)
max
i,j∈I

d(xi, yj) < ε.

Let γ > 0 be such that µ ∈ S(f, α− γ) and let J ⊂ I, finite, be such that∥∥∥∥µ− ∑i∈J λimxiyi∑
i∈J λi

∥∥∥∥ < γ.

Let ν =
∑

i∈J λimxiyi/
∑

i∈J λi and let

bij = sup

{ ∑m
j=1 d(xkj , ykj )∑m
j=1 d(xkj , ykj+1

)
: k1, . . . , km+1 ∈ J, k1 = km+1 = i, k2 = j

}
.

Then ν ∈ SF(M), and thus by Lemma 2.2 there exist fν ∈ SLip0(M) such that
〈fν , ν〉 = 1 and for every muv ∈ S(fν , α) there exist i, j ∈ J with xi 6= yj
and bij > 1− α such that

(1− α) max {d(xi, v) + d(yj , v), d(xi, u) + d(yj , u)} < d(xi, yj).

Furthermore, notice that if bij > 1 − α, then there exist k1, . . . , km+1 ∈ J
with k1 = km+1 = i and k2 = j such that∑m

j=1 d(xkj , ykj )∑m
j=1 d(xkj , ykj+1

)
> 1− α > 1− δ.
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We may additionally assume that k1, . . . , km are pairwise distinct and thus
by our assumption

m∑
j=1

d(xkj , ykj ) =

m∑
j=1

d(xkj , ykj+1
).

Therefore, by the arguments presented in the beginning of the section for ev-
ery i, j ∈ J with bij > 1−α there exists lij ∈ (0, 1] such that

∥∥µ− lijmxiyj

∥∥ ≤
1− lij .

Our aim is to show that there exist u, v ∈M with u 6= v such that muv ∈ S
and d(u, v) < ε. Set g = f + fµ. Then

〈g, µ〉 = 〈fν , µ〉+ 〈f, µ〉 > 〈fν , ν〉 − γ + 〈f, µ〉 > 2− α,
i.e., µ ∈ S (g/‖g‖, 1− (2− α)/‖g‖). Since µ is a ∆-point, by [10, Remark 2.4]
there exist u, v ∈M with u 6= v such that 〈g,muv〉 > 2− α and

‖µ−muv‖ ≥ 2− αmin {lij : i, j ∈ J, bij > 1− α} .
It is easy to see that 〈fν ,muv〉 > 1 − α and 〈f,muv〉 > 1 − α. This gives
us muv ∈ S. Furthermore, as 〈fµ,muv〉 > 1 − α, there exist i, j ∈ J with
xi 6= yj and bij > 1− α such that

(1− α) max {d(xi, v) + d(yj , v), d(xi, u) + d(yj , u)} < d(xi, yj). (3)

Then ‖µ−muv‖ ≥ 2− αlij and from
∥∥µ− lijmxiyj

∥∥ ≤ 1− lij we get

2− αlij ≤ ‖µ−muv‖
≤ lij‖mxiyj −muv‖+

∥∥µ− lijmxiyj

∥∥+ (1− lij)‖muv‖
≤ lij‖mxiyj −muv‖+ 2− 2lij ,

i.e., ‖mxiyj −muv‖ ≥ 2− α. From [11, Lemma 1.2] we deduce that

d(xi, u) + d(yj , v) ≥ d(xi, yj) + d(u, v)− αmax {d(xi, yj), d(u, v)}
> (1− α) (d(xi, yj) + d(u, v)) .

Since bij > 1− α we have bij = 1 and thus
〈
fν ,mxiyj

〉
= 1. Hence

‖mxiyj +muv‖ ≥
〈
fν ,mxiyj

〉
+ 〈fν ,muv〉 > 2− α.

We apply [11, Lemma 1.2] once more to get

d(xi, v) + d(yj , u) > (1− α) (d(xi, yj) + d(u, v)) .

Combining these inequalities, we have

min {d(xi, v) + d(yj , u), d(xi, u) + d(yj , v)} > (1− α) (d(xi, yj) + d(u, v)) .
(4)

By (3) and (4) we have

d(u, v) <
d(xi, v) + d(yj , u) + d(xi, u) + d(yj , v)

2(1− α)
− d(xi, yj)
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<
2d(xi, yj)

2(1− α)2
− d(xi, yj)

≤
(

1

(1− α)2
− 1

)
max
i′,j′∈I

d(xi′ , yj′) < ε.

Consequently we have found u, v ∈ M with u 6= v such that muv ∈ S and
d(u, v) < ε. �
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