Amalysis, Mathematical Analysis

Mathematics, University of

RSITATIS TARTUENSIS

es of the following series:

Наприменения и объемования и объемования в программиния и объемования и

and / Acta et commentationes

Учёные Записки Тартус-

Ученые Записки Тартуского мен et commentationes Univer-

e commentationes Universitatis

Zentralblatt für Mathematik

ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA Volume 1, 1996

On the absolute weighted mean summability factors

Hüseyin Bor

1. Introduction.

Let $\sum a_n$ be a given infinite series with the partial sums (s_n) . Let (p_n) be a sequence of positive numbers such that

$$P_n = \sum_{\nu=0}^n p_{\nu} \to \infty \quad as \quad n \to \infty, (P_{-i} = p_{-i} = 0, i \ge 1).$$

The sequence to sequence transformation

$$t_n = \frac{1}{P_n} \sum_{\nu=0}^n p_{\nu} s_{\nu}$$

defines the sequence (t_n) of the (\overline{N},p_n) means of the sequence (s_n) , generated by the sequence of coefficients (p_n) . The series $\sum a_n$ is said to be summable $|\overline{N},p_n|_k,k\geq 1$, if (see [1])

$$\sum_{n=1}^{\infty} (P_n/p_n)^{k-1} \mid t_n - t_{n-1} \mid^k < \infty,$$

and it is said to be summable $|\overline{N}, p_n; \delta|_k, k \ge 1$ and $\delta \ge 0$, if (see [2])

$$\sum_{n=1}^{\infty} (P_n/p_n)^{\delta k + k - 1} | t_n - t_{n-1} |^k < \infty.$$

In the special case when $\delta=0$ (resp. $\delta=0$ and $p_n=1$ for all values of n), $|\overline{N}, p_n; \delta|_k$ summability is the same as $|\overline{N}, p_n|_k$ (resp. $|C, 1|_k$) summability.

Mishra and Srivastava [4] proved the following theorem for $|C, 1|_k$ summability.

Theorem A. Let (x_n) be a positive non-decreasing sequence and let there be sequences (β_n) and (λ_n) such that

$$| \Delta \lambda_n | \le \beta_n, \tag{1.1}$$

$$\beta_n \to 0 \quad as \quad n \to \infty,$$
 (1.2)

$$|\lambda_n| x_n = 0$$
 (1.3)

$$\sum_{n=1}^{\infty} n \mid \triangle \beta_n \mid x_n < \infty. \tag{1.4}$$

If

$$\sum_{n=1}^{m} \frac{1}{n} |s_n|^k = O(x_m) \quad as \quad m \to \infty, \tag{1.5}$$

then the series $\sum a_n \lambda_n$ is summable $\mid C, 1 \mid_k, \ k \geq 1$.

The author has generalized Theorem A for $\lfloor \overline{N}, p_n \rfloor_k$ summability in the form of the following theorem (see [3]).

Theorem B. Let (x_n) be a positive non-decreasing sequence and the sequences (β_n) and (λ_n) such that conditions (1.1)-(1.4) of Theorem A are satisfied. Furthermore, if (p_n) is a sequence of positive numbers such that

$$P_n = O(np_n). (1.6)$$

$$\sum_{n=1}^{m} \frac{p_n}{P_n} \mid s_n \mid^k = O(x_m) \quad as \quad m \to \infty.$$
 (1.7)

then the series $\sum a_n \lambda_n$ is summable $|\overline{N}, p_n|_k$, $k \ge 1$.

It should be noted that if we take $p_n = 1$ for all values of n, then condition (1.7) will be reduced to condition (1.5). Also, it can be noticed that in this case condition (1.6) is obvious.

2. The main result

The aim of this paper is to generalize Theorem B for $|\overline{N}, p_n; \delta|_k$ summability methods. Now, we shall prove the following theorem.

Theorem. Let (x_n) be a positive non-decreasing sequence and the sequences (β_n) and (λ_n) such that conditions (1.1)-(1.4) of Theorem A are satisfied. If (p_n) is a sequence of positive numbers such that condition (1.6) of Theorem B is satisfied and

$$\sum_{n=1}^{m} (P_n/p_n)^{\delta k-1} |s_n|^k = O(x_m) \quad as \quad m \to \infty.$$
 (2.1)

$$\sum_{n=\nu}^{\infty} (P_n/p_n)^{\delta k - 1} \frac{1}{P_{n-1}} = O\{(P_{\nu}/p_{\nu})^{\delta k} \frac{1}{P_{\nu}}\},\tag{2.2}$$

then the series $\sum a_n \lambda_n$ is summable $|\overline{N}, p_n; \delta|_k$, $k \ge 1$ and $0 \le \delta k < 1$.

which alv

(1.7) and

Ren then we

Len

3.]

Let nition, v

Then, fc

Using A

 $T_n - T_n$

say. To sufficien

(1.2)

(1.3)

(1.4)

(1.5)

ammability in

pience and the of Theorem A numbers such

(1.6)

(1.7)

S of n, then make the noticed

 $||\overline{N},p_n;\delta||_k$

sence and the of Theorem A that condition

(2.1)

(2.2)

 $0 \le \delta k < 1$.

Remark. It may be noted that if we take $\delta = 0$ in this Theorem, then we get Theorem B. In this case condition (2.1) reduces to condition (1.7) and condition (2.2) reduces to

$$\sum_{n=\nu}^{\infty} \frac{p_n}{P_n P_{n-1}} = \sum_{n=\nu}^{\infty} \left(\frac{1}{P_{n-1}} - \frac{1}{P_n}\right) = O(1/P_{\nu}),$$

which always holds.

We need the following lemma for the proof of our theorem.

Lemma ([4]). If the conditions (1.1)-(1.4) on (x_n) , (β_n) and (λ_n) are satisfied, then $n\beta_n x_n = O(1)$ as $n \to \infty$, (2.3)

$$\sum_{n=0}^{\infty} \beta_n x_n < \infty.$$

3. Proof of the Theorem

Let (T_n) be the (\overline{N}, p_n) mean of the series $\sum a_n \lambda_n$. Then, by definition, we have

$$T_n = \frac{1}{P_n} \sum_{\nu=0}^n p_{\nu} \sum_{r=0}^v a_r \lambda_r = \frac{1}{P_n} \sum_{\nu=0}^n (P_n - P_{\nu-1}) a_{\nu} \lambda_{\nu}.$$

Then, for $n \ge 1$, we have

$$T_n - T_{n-1} = \frac{p_n}{P_n P_{n-1}} \sum_{\nu=1}^n P_{\nu-1} a_{\nu} \lambda_{\nu}.$$

Using Abel's transformation, we get

$$T_n - T_{n-1} = \frac{p_n}{P_n P_{n-1}} \sum_{\nu=1}^{n-1} \triangle (P_{\nu-1} \lambda_{\nu}) s_{\nu} + \frac{p_n}{P_n} s_n \lambda_n = -\frac{p_n}{P_n P_{n-1}} \sum_{\nu=1}^{n-1} p_{\nu} s_{\nu} \lambda_{\nu}$$

$$+\frac{p_n}{P_n P_{n-1}} \sum_{\nu=1}^{n-1} P_{\nu} s_{\nu} \triangle \lambda_{\nu} + \frac{p_n}{P_n} s_n \lambda_n = T_{n,1} + T_{n,2} + T_{n,3},$$

say. To complete the proof of the Theorem by Minkowski's inequality, it is sufficient to show that

$$\sum_{n=1}^{\infty} (P_n/p_n)^{\delta k + k - 1} \mid T_{n,r} \mid^k < \infty, \quad for \quad r = 1, 2, 3.$$
 (3.1)

Now, when k > 1, applying Hölder's inequality, we have that

$$\sum_{n=2}^{m+1} (P_{n}/p_{n})^{\delta k+k-1} | T_{n,1} |^{k}$$

$$\leq \sum_{n=2}^{m+1} (P_{n}/p_{n})^{\delta k-1} (P_{n-1})^{-k} \{ \sum_{\nu=1}^{n-1} p_{\nu} | s_{\nu} | | \lambda_{\nu} | \}^{k}$$

$$\leq \sum_{n=2}^{m+1} (P_{n}/p_{n})^{\delta k-1} \frac{1}{P_{n-1}} \sum_{\nu=1}^{n-1} p_{\nu} | s_{\nu} |^{k} | \lambda_{\nu} |^{k} \{ \frac{1}{P_{n-1}} \sum_{\nu=1}^{n-1} p_{\nu} \}^{k-1}$$

$$= O(1) \sum_{\nu=1}^{m} p_{\nu} | s_{\nu} |^{k} | \lambda_{\nu} |^{k} \sum_{n=\nu+1}^{m+1} (P_{n}/p_{n})^{\delta k-1} \frac{1}{P_{n-1}}$$

$$= O(1) \sum_{\nu=1}^{m} (P_{\nu}/p_{\nu})^{\delta k-1} | s_{\nu} |^{k} | \lambda_{\nu} |^{k-1}$$

$$= O(1) \sum_{\nu=1}^{m} (P_{\nu}/p_{\nu})^{\delta k-1} | s_{\nu} |^{k} | \lambda_{\nu} |$$

$$= O(1) \sum_{\nu=1}^{m-1} \Delta | \lambda_{\nu} | \sum_{\nu=1}^{\nu} (P_{\nu}/p_{\nu})^{\delta k-1} | s_{\nu} |^{k}$$

$$+ O(1) | \lambda_{m} | \sum_{\nu=1}^{m} (P_{\nu}/p_{\nu})^{\delta k-1} | s_{\nu} |^{k}$$

$$= O(1) \sum_{\nu=1}^{m-1} |\Delta \lambda_{\nu} | x_{\nu} + O(1) | \lambda_{m} | x_{m}$$

$$= O(1) \sum_{\nu=1}^{m-1} \beta_{\nu} x_{\nu} + O(1) | \lambda_{m} | x_{m} = O(1)$$

as $m \to \infty$, by virtue of the hypotheses of the Theorem and Lemma.

Using the fact that $|\Delta \lambda_n| \leq \beta_n$ and $P_n = O(np_n)$, and after applying Hölder's inequality, we have that

$$\sum_{n=2}^{m+1} (P_n/p_n)^{\delta k+k-1} | T_{n,2} |^k$$

$$\leq \sum_{n=2}^{m+1} (P_n/p_n)^{\delta k-1} (P_{n-1})^{-k} \{ \sum_{\nu=1}^{n-1} P_{\nu} | \Delta \lambda_{\nu} | | s_{\nu} | \}^k$$

$$= O(1) \sum_{n=2}^{m+1} (P_n/p_n)^{\delta k-1} (P_{n-1})^{-k} \{ \sum_{\nu=1}^{n-1} \nu p_{\nu} \beta_{\nu} | s_{\nu} | \}^k$$

Since

 $\sum_{n=2}^{m+1}$

5.0

<u>></u>

as m theore

 \mathbf{R}

1. H 9

2. H

have that

$$\sum_{\nu=1}^{n-1} p_{\nu} \}^{k-1}$$

$$\frac{1}{2}$$

 $\{\}^k$

$$-11^k$$

 $= O(1) \sum_{n=2}^{m+1} (P_n/p_n)^{\delta k - 1} \frac{1}{P_{n-1}} \sum_{\nu=1}^{n-1} (\nu \beta_{\nu})^k p_{\nu} \mid s_{\nu} \mid^k \left\{ \frac{1}{P_{n-1}} \sum_{\nu=1}^{n-1} p_{\nu} \right\}^{k-1}$ $= O(1) \sum_{\nu=1}^{m} (\nu \beta_{\nu})^k p_{\nu} \mid s_{\nu} \mid^k \sum_{n=\nu+1}^{m+1} (P_n/p_n)^{\delta k - 1} \frac{1}{P_{n-1}}$ $= O(1) \sum_{\nu=1}^{m} (\nu \beta_{\nu})^k (P_{\nu}/p_{\nu})^{\delta k - 1} \mid s_{\nu} \mid^k.$

Since $\nu \beta_{\nu} = O(1/x_{\nu}) = O(1)$, by (2.3), we have that

$$\sum_{n=2}^{m+1} (P_n/p_n)^{\delta k + k - 1} | T_{n,2} |^k = O(1) \sum_{\nu=1}^m (\nu \beta_{\nu})^{k - 1} \nu \beta_{\nu} (P_{\nu}/p_{\nu})^{\delta k - 1} | s_{\nu} |^k$$

$$= O(1) \sum_{\nu=1}^m \nu \beta_{\nu} (P_{\nu}/p_{\nu})^{\delta k - 1} | s_{\nu} |^k$$

$$= O(1) \sum_{\nu=1}^{m-1} \triangle (\nu \beta_{\nu}) \sum_{r=1}^{\nu} (P_r/p_r)^{\delta k - 1} | s_r |^k$$

$$+ O(1) m \beta_m \sum_{\nu=1}^m (P_{\nu}/p_{\nu})^{\delta k - 1} | s_{\nu} |^k$$

$$= O(1) \sum_{\nu=1}^{m-1} | \triangle (\nu \beta_{\nu}) | x_{\nu} + O(1) m \beta_m x_m$$

$$= O(1) \sum_{\nu=1}^{m-1} \nu | \triangle \beta_{\nu} | x_{\nu} + O(1) \sum_{\nu=1}^{m-1} \beta_{\nu + 1} x_{\nu} + O(1) m \beta_m x_m = O(1)$$

as $m \to \infty$, by virtue of the hypotheses of the theorem and lemma. Finally, as in $T_{n,1}$, we get that

$$\sum_{n=1}^{m} (P_n/p_n)^{\delta k + k - 1} \mid T_{n,3} \mid^k = O(1) \sum_{n=1}^{m} (P_n/p_n)^{\delta k - 1} \mid s_n \mid^k \mid \lambda_n \mid = O(1)$$

as $m \to \infty$. Therefore, we get (3.1). This completes the proof of the theorem.

References

- 1. H. Bor, A note on two summability methods, Proc. Amer. Math. Soc. 98 (1986), 81-84.
- 2. H. Bor, On local property of $|\overline{N}, p_n; \delta|_k$ summability of factored Fourier series, Jour. Math. Anal. Appl. 179 (1993), 644-649.

3. H. Bor, A note on absolute summability factors, Internat. J. Math. Math. Sci. 17 (1994), 479-482.

4. K. N. Mishra and R. S. L. Srivastava, On absolute Cesaro summability factors of infinite series, Portugal. Math. 42 (1) (1983-84), 53-61.

Received July 4, 1994

Department of Mathematics Erciyes University Kayseri 38039, Turkey E-mail: bor@trerun.bitnet ACTA ET CC Volume 1, 199

Итер

Пусті ство прос

Опре тивным,

Опре ным, если каждой т N такие

Очев в классе тивные. Кирк

Кирк определе дующая

 \mathbf{Teop} а отобра ординала рация T' $x \in K:T$

 $egin{array}{ccccc} {\bf A}{\bf B}{\bf T}{\bf C} \\ {\bf B}{\bf H}{\bf a}{\bf B} & {\bf H}{\bf a}{\bf B} \\ {\bf H}{\bf a}{\bf H}{\bf a}{\bf H}{\bf a}{\bf C} & {\bf C}{\bf x}{\bf O}{\bf J}{\bf M}{\bf M}{\bf O} \\ {\bf H}{\bf a}{\bf J} & {\bf X} \\ \end{array}$