ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA Volume 1, 1996

ctionals in

Math. 20

Math. 64

as, UNAM,

üsteemide ngevad palemide korkse saadud lgebrates.

ay 30, 1995

On summability in measure with speed

Terje Hõim and Heino Türnpu

1. Definitions and former results.

In this paper* we consider the F-space M[a,b] of all measurable functions defined on [a,b]. It is well-known that the Frechet-norm of f in M[a,b] is

$$\parallel f \parallel = \inf_{\alpha > 0} (\operatorname{mes}\{t : \mid f(t) \mid \geq \alpha\} + \alpha)$$

and the convergence of sequence (f_n) to f in M[a,b] is the convergence in measure, i.e. for every $\alpha>0$

$$\lim_{n\to\infty} \operatorname{mes}\{t: |f_n(t)-f(t)| \geq \alpha\} = 0.$$

Let $\lambda=(\lambda_k)$ and $\mu=(\mu_k)$, $(0<\lambda_k\nearrow\infty,\ 0<\mu_k\nearrow\infty)$ be speeds.

We have defined the convergence in measure with speed in the following form in [1].

Definition 1. A sequence (f_n) is called mes λ -convergent on [a,b] to f if for every $\alpha > 0$

$$\lim_{n\to\infty} \max\{t : \lambda_k \mid f_n(t) - f(t) \mid \geq \alpha\} = 0.$$

Definition 2. A sequence (f_n) is called λ mes -convergent on [a,b] to f if for every $\alpha > 0$ there exists

$$\lim_{n\to\infty} \lambda_n \operatorname{mes}\{t: ||f_n(t)-f(t)| \geq \alpha\}.$$

^{*} This research was supported by the Estonian Science Foundation (grants no. 762 and 1381).

Definition 3. A sequence (f_n) is called $\lambda \text{mes}\mu$ -convergent on [a,b] to f if for every $\alpha > 0$ there exists

$$\lim_{n\to\infty} \lambda_n \operatorname{mes}\{t: \mu_n \mid f_n(t) - f(t) \mid \geq \alpha\}.$$

By $c_{\mathrm{mes}\lambda}(c_{\lambda\mathrm{mes}},c_{\lambda\mathrm{mes}\mu})$ we denote the set of all $\mathrm{mes}\lambda$ -convergent ($\lambda\mathrm{mes}$ -convergent, $\lambda\mathrm{mes}\mu$ -convergent) sequences in M[a,b] and by $c_{\mathrm{mes}\lambda}^0(c_{\lambda\mathrm{mes}}^0,c_{\lambda\mathrm{mes}\mu}^0)$ we denote the set of all to f=0 $\mathrm{mes}\lambda$ -convergent ($\lambda\mathrm{mes}$ -convergent, $\lambda\mathrm{mes}\mu$ -convergent) sequences in M[a,b].

By $c^{\lambda}(c_0^{\lambda})$ we denote the set of all λ -convergent (λ -convergent to 0) sequences (see [3]).

If (f_n) is $\operatorname{mes}\lambda$ -convergent ($\lambda\operatorname{mes}$ -convergent, $\lambda\operatorname{mes}\mu$ -convergent $\mu\operatorname{mes}\lambda$ -convergent, $\lambda\operatorname{mes}\lambda$ -convergent) for every λ , then we say that (f_n) is $\operatorname{mes}\infty$ -convergent ($\infty\operatorname{mes}$ -convergent, $\infty\operatorname{mes}\mu$ -convergent, $\mu\operatorname{mes}\infty$ -convergent, $\infty\operatorname{mes}\omega$ -convergent).

By $c_{\mathrm{mes}\infty}(c_{\infty\mathrm{mes}},c_{\lambda\mathrm{mes}\infty},c_{\infty\mathrm{mes}\lambda},c_{\infty\mathrm{mes}\infty})$ we denote the set of all $\mathrm{mes}\infty$ -convergent ($\infty\mathrm{mes}$ -convergent, $\lambda\mathrm{mes}\infty$ -convergent, $\infty\mathrm{mes}\lambda$ -convergent, $\infty\mathrm{mes}\infty$ -convergent) sequences in M[a,b].

In [1] we have shown that the λ mes-convergence, mes λ - convergence and λ mes μ -convergence of sequences (f_n) are different and we have proved the following theorems

Theorem A. If $(f_n) \in c_{\lambda \text{mes} \mu}$ and

$$\sum \frac{1}{\lambda_k} < \infty, \tag{1}$$

then

$$\lim_{n} \mu_n \mid f_n(t) - f(t) \mid = 0$$

a.e. in [a,b] (i.e. the sequence (f_n) is c^{μ} -convergent a.e. on [a,b]).

Corollary A. If $(f_n) \in c^0_{\lambda \text{mes}\mu}$, where

$$\sum \frac{1}{\mu_k} < \infty$$

and (1) holds, then

$$\sum |f_n(t)| < \infty$$

a.e. on [a,b].

rgent on [a, b]

 $s\lambda$ -convergent [a,b] and by $s\lambda$ -convergent b

nvergent to 0)

 $s\mu$ -convergent say that (f_n) ent, μ mes ∞ -

the set of all nt, ∞ mes λ -

 $ext{nes}\lambda$ - $ext{conver}$

(1)

on [a,b]).

Theorem B. For every μ and λ with

$$\sum \frac{1}{\lambda_k} = \infty \tag{2}$$

there exists a sequence $(f_n) \in c^0_{\lambda \text{mes}\mu}$ such that for every $t_0 \in [a,b]$ the sequence $(f_n(t_0))$ is divergent.

In [1] we have formulated the following problem.

Let $A=(a_{nk})$ be a summability method which transforms a sequence $F=(f_n)$ into the sequence $G=(g_n)$, where

$$g_n = \sum a_{nk} f_k,$$

i.e. $G = (A_n F) = AF$.

A sequence F is said to be $A_{\mathrm{mes}\lambda}$ -summable ($A_{\lambda\mathrm{mes}}$ -summable, $A_{\lambda\mathrm{mes}\mu}$ -summable) if $AF \in c_{\mathrm{mes}\lambda}$ ($c_{\lambda\mathrm{mes}}, c_{\lambda\mathrm{mes}\mu}$).

By $c_{A \text{mes} \lambda}(c_{A \lambda \text{mes}}, c_{A \lambda \text{mes} \mu})$ we denote the set of all $A \text{mes} \lambda$ -summable ($A \lambda \text{mes}$ -summable, $A \lambda \text{mes} \mu$ -summable) sequences.

Let α be λ mes (mes λ , or λ mes μ) and β be Ames λ ($A\lambda$ mes, or $A\lambda$ mes μ). The problem is:

Under which necessary and sufficient conditions for A is the inclusion

$$c_{\alpha} \subset c_{\beta}$$

true?

In this paper we have solved this problem partly – we consider only the following inclusions:

 $c_{\mathrm{mes}\lambda} \subset c_{A\mathrm{mes}\mu}, c_{\lambda\mathrm{mes}} \subset c_{A\mathrm{mes}}, c_{\infty\mathrm{mes}\infty} \subset c_{A\mu\mathrm{mes}}, c_{\infty\mathrm{mes}} \subset c_{A\mu\mathrm{mes}}.$

If $c_{\text{mes}\lambda} \subset c_{A\text{mes}\lambda}(c_{\lambda\text{mes}} \subset c_{A\lambda\text{mes}})$, then we say that the summability method is $\text{mes}\lambda$ -convergence (λ mes-convergence) preserving. Particularly, if $c \subset c_A$, then we say that it is convergence preserving.

2. Counter examples.

Denote

$$m^0_{\lambda \operatorname{mes} \mu} := \{ F : \lambda_n \operatorname{mes} \{ t : \mu_n \mid f_n \mid \geq \alpha \} = O(1), \quad \alpha > 0 \}.$$

We demonstrate a simple proof of Theorem B in the following formulation

Theorem C. For every λ with (2) there exists $F \in m_{\lambda \text{mes}\infty}^0$ such that for every $t_0 \in [0,1]$ the sequence $(f_n(t_0))$ is divergent.

Proof. Let the natural numbers k_i be defined by the inequalities

$$0<\Lambda_{k_1-1}<1\leq\Lambda_{k_1},$$

$$1<\Lambda_{k_2-1}<2\leq\Lambda_{k_2},$$

$$i-1 < \Lambda_{k_i-1} < i \le \Lambda_{k_i},$$

where

$$\Lambda_k = \sum_{l=1}^k \frac{1}{\lambda_l}.$$

Denote

$$e_1 := [0, \frac{1}{\lambda_1}) = [0, \Lambda_1);$$

$$e_2:=[rac{1}{\lambda_1},rac{1}{\lambda_1}+rac{1}{\lambda_k})=[\Lambda_1,\Lambda_2);$$

$$e_k := [\Lambda_{k-1}, \Lambda_k);$$

 $e_{k_1-1} := [\Lambda_{k_1-2}, \Lambda_{k_1-1});$

$$e_{k_1} := [\Lambda_{k_1-1}, 1];$$

$$e_{k_1+1} := [0, \Lambda_{k_1} - 1);$$

$$e_{k_1+2} := [\Lambda_{k_1} - 1, \Lambda_{k_1+1} - 1);$$

$$e_{k_2} := [\Lambda_{k_2-1} - 1, 1];$$

..........

$$e_{k_i-1} := [\Lambda_{k_i-2} - i + 1, \Lambda_{k_i-1} - i + 1);$$

$$e_{k_i} := [\Lambda_{k_i-1} - i + 1, 1];$$

$$e_{k_i+1} = [0, \Lambda_{k_i} - i);$$

......

ing formulation

 $\in m^0_{\lambda {
m mes}\infty} \quad such$

inequalities

Also

Let $t_0 \in [0,1]$ be a fixed number. Then for every natural number i there exist the natural numbers s_i^0 and s_i^1 such that $t_0 \in e_{s_i^0}$ and $t_0 \notin e_{s_i^1}$. Let now

$$f_i(t) := \chi_{e_i}(t). \tag{3}$$

Then for every $0 < \alpha \le 1$ and for every $\mu_i > 0$ we have

$$\operatorname{mes}\{t: \mu_i: | f_i(t) | \geq \alpha\} = \operatorname{mes} e_i \leq \frac{1}{\lambda_i},$$

i.e. $(f_i) \in m_{\lambda \text{meso}}^0$.

Now $f_{s_i^0}(t_0) \equiv 1$ and $f_{s_i^1}(t_0) \equiv 0$ for every i , i.e. the limit

$$\lim_{i} f_i(t_0)$$

doesn't exist. The proof of Theorem C is completed.

Corollary C. For every λ with (2) there exists $F \in m_{\lambda \text{mes}\infty}^0$ such that the series

$$\sum_{s=1}^{\infty} f_s(t) \tag{4}$$

is divergent in measure on [0,1].

Proof. Let $F=(f_v)$ be defined by (3). Then $F\in m_{\lambda {\rm mes}\infty}^0$ and for every $0<\alpha\leq 1$

$$\max\{t : | \sum_{s=k_i+1}^{k_{i+1}} f_s(t) | \geq \alpha\} = 1,$$

i.e. the series (4) is divergent in measure.

From the corollaries C and A now follows that the next theorem holds.

Theorem 1. If $F \in c^0_{\lambda \operatorname{mes} \mu}$, then the series (4) is convergent in measure on [a,b] iff (1) holds and

$$\sum \frac{1}{\mu_k} < \infty.$$

3. The representations of the sequences F from the sets $c_{\lambda {
m mes}\infty}^0, c_{\infty {
m mes}\lambda}^0$ and $c_{\infty {
m mes}\infty}^0$.

Theorem 2. The sequence $F = (f_n)$ belongs to $c_{\lambda \text{mes}\infty}^0$ iff

$$\lim_{n} \lambda_n \operatorname{mes supp} f_n = 0.$$
 (5)

Proof. Sufficiency. According to the assumption for every $\,\alpha>0\,$ and for every speed $\,\lambda\,$

$$\lim_{n} \operatorname{mes}\{t : \lambda_n \mid f_n(t) \mid \geq \alpha\} = 0.$$
 (6)

Against the statement suppose that

$$\lim_{n} \operatorname{mes supp} f_n \neq 0. \tag{7}$$

Then we can find $\epsilon_0 > 0$ such that for every natural number k there exists n_k such that

$$\operatorname{mes supp} f_{n_k} > 5\epsilon_0.$$

Let us fix the natural number k_0 . Since $f_{n_{k_0}}$ is the measurable function, then according to Luzin's theorem there exists the measurable set $T_{\epsilon_0} \subset e$ such that on the set CT_{ϵ_0} the function $f_{n_{k_0}}$ is continuous and

$$\operatorname{mes}(CT_{\epsilon_0} \bigcap \operatorname{supp} f_{n_{k_0}}) > 4\epsilon_0.$$

Since $CT_{\epsilon_0} \cap \operatorname{supp} f_{n_{k_0}}$ is measurable, then there exists an open set

$$B_0 \subset (CT_{\epsilon_0} \bigcap \operatorname{supp} f_{n_{k_0}})$$

such that

$$\text{mes}B_0 > 3\epsilon_0.$$

eorem holds.

onvergent in

m the sets

iff

 $\alpha > 0$ and

 $\mathbf{er} \; k \; \mathbf{there}$

measurable asurable set nuous and

n set

On the other hand there exist the structural intervals (α_i, β_i) such that

$$B_0 = \bigcup_i (\alpha_i, \beta_i).$$

Let us find s_0 such that

$$\operatorname{mes} \bigcup_{i=1}^{s_0} (\alpha_i, \beta_i) > 2\epsilon_0.$$

Further on we can find the segments $[\gamma_i, \delta_i] \subset (\alpha_i, \beta_i)$ such that

$$\operatorname{mes} \bigcup_{i=1}^{s_0} (\gamma_i, \delta_i) > \epsilon_0.$$

Let us fix i_1 freely from the set $1 \le i_1 \le s_0$ and observe the segment $[\gamma_{i_1}, \delta_{i_1}]$.

Since $[\gamma_{i_1}, \delta_{i_1}] \subset CT_{\epsilon_0}$, then on that segment the function $f_{n_{k_0}}(t)$ is continuous. According to Weierstrass theorem this function is bounded on that segment and has the extremal values.

Let

$$|f_{n_{k_0}}(t^1)| = \min_{t \in [\gamma_{i_1}, \delta_{i_1}]} |f_{n_{k_0}}(t)|.$$

Since

$$[\gamma_{i_1},\delta_{i_1}]\subset \operatorname{supp} f_{n_{k_0}},$$

then

$$|f_{n_{k_0}}(t^1)| > 0.$$

Let us now find the number $\lambda_{n_{k_0}}^1$ such that

$$\lambda_{n_{k_0}}^1(t^1) \mid f_{n_{k_0}}(t') \mid > 1.$$

Since the natural number i_1 was chosen arbitrarily with the condition $i_1 \leq s_0$, therefore our discussion about the segment $[\gamma_{i_1}, \delta_{i_1}]$ is correct for every segment $[\gamma_i, \delta_i]$ that is

$$\lambda_{n_{k_0}}^m \mid f_{n_{k_0}}(t^m) \mid > 1,$$

where

$$t^m \in [\gamma_m, \delta_m], \quad | \; f_{n_{k_0}}(t^m) \; | = \min_{t \in [\gamma_{i_1}, \delta_{i_1}]} \; | \; f_{n_{k_0}}(t) \; | \quad \text{ and } \quad 1 \leq m \leq s_0.$$

Let

$$\lambda_{n_{k_0}} := \max_{1 \le m \le s_0} \lambda_{n_{k_0}}^m.$$

Then for every $m = 1, \ldots, s_0$

$$\lambda_{n_{k_0}} \mid f_{n_{k_0}}(t^m) \mid > 1.$$

Since for every $t \in \bigcup_{i=1}^{s_o} [\gamma_i, \delta_i]$

$$||f_{n_{k_0}}(t)|| > ||f_{n_{k_0}}(t^m)||,$$

hence

$$\lambda_{n_{k_0}} \mid f_{n_{k_0}}(t) \mid > 1,$$

and consequently on that

$$\operatorname{mes}\{t: \lambda_{n_{k_0}} \mid f_{n_{k_0}}(t) \mid \geq \frac{1}{2}\} \geq \operatorname{mes} \bigcup_{i=1}^{s_0} [\gamma_i, \delta_i] > \epsilon_0.$$

Since k_0 was an arbitrary number, then for every natural number k

$$\operatorname{mes}\{t: \lambda_{n_k} \mid f_{n_k}(t) \mid \geq \frac{1}{2}\} > \epsilon_0$$

and hence the equality (6) doesn't hold for every speed λ .

Consequently the equality (7) is not true and holds the statement (5). Necessity is clear since for every speed λ and for every $\alpha > 0$

$$\{t: \lambda_n \mid f_n(t) \mid \geq \alpha\} \subset \operatorname{supp} \lambda_n f_n = \operatorname{supp} f_n.$$

Theorem 3. The sequence $F \in c^0_{\infty \text{mes}\lambda}$ iff there exists a measurable subset $E \subset [a,b]$ such that mesE = 0 and $\lim \lambda_n f_n(t) = 0$ uniformly on $[a,b] \setminus E$.

Proof. Necessity. If $F \in c^0_{\infty {
m mes} \lambda}$, then $(\lambda f_n) \in c^0_{\infty {
m mes}}$, i.e. for every μ

$$\mu_n \operatorname{mes}\{f: \lambda_n \mid f_n(t) \mid \geq \alpha\} = O(1).$$

Hence for every $\alpha > 0$ there exists n_{α} such that for $n > n_{\alpha}$

$$\operatorname{mes}\{t:\lambda_n\mid f_n(t)\mid\geq\alpha\}=0.$$

Denote by

$$E_{\alpha}^{n} := \{t : \lambda_{n} \mid f_{n}(t) \mid \geq \alpha\}.$$

Then for $n>n_{\alpha}\mod E_{\alpha}^n=0$ and for fixed $\alpha>0$ we have $\mathrm{mes}E_{\alpha}=0$, where

$$E_{\alpha} = \bigcup_{n > n_{\alpha}} E_{\alpha}^{n}.$$

If $t \in [a, b] \setminus E_{\alpha}$, then $\lambda_n \mid f_n(t) \mid < \alpha$ if $n > n_{\alpha}$, i.e.

$$\lim_{n\to\infty} \lambda_n f_n(t) = 0$$

uniformly on $[a,b] \setminus E_{\alpha}$.

Sufficiency. If $\lim \lambda_n f_n = 0$ uniformly on $[a,b] \setminus E$ where $\max E = 0$, then for $n > n_\alpha$ we have $\lambda_n \mid f_n \mid < \alpha$ for all $t \in [a,b] \setminus E$, i.e.

$$\{t: \lambda_n \mid f_n \mid \geq \alpha\} = \emptyset$$

and therefore $F \in c^0_{\infty \text{mes}\lambda}$.

Theorem 4. The sequence $F \in c^0_{\infty \text{mes}\infty}$ iff there exists a natural number n_0 such that for $n > n_0$ $f_n(t) = 0$ a.e. on [a, b].

Proof. Necessity. If $F \in c^0_{\infty \mathrm{mes}\infty}$, then for every $\lambda = (\lambda_n)$ $F \in c^0_{\lambda \mathrm{mes}\infty}$ and therefore from theorem 2 it follows that

$$\lambda_n \operatorname{mes supp} f_n = O(1)$$

for every $\ \lambda = (\lambda_n)$. Hence there exists a natural number $\ n_0$ such that for $n > n_0$

$$mes supp f_n = 0,$$

i.e. $f_n(t) = 0$ a.e. on [a, b].

Sufficiency is clear.

4. The inclusion $c_{\text{mes}\lambda} \subset c_{A\text{mes}\mu}$.

By c_{mes} ($c_{A\text{mes}}$) we denote the set of all sequences $F = (f_n)$ which are convergent in measure to f (A-summable in measure to f, i.e. the sequence $A_n F = \sum_k a_{nk} f_k$ is convergent in measure). In [2,4] the inclusion $c_{\text{mes}} \subset c_{A\text{mes}}$ has been considered. For example, in [2,4] a class of summability methods of finite type is defined.

umber k

statement (5).

 $\alpha > 0$

s a measurable uniformly on

omes, i.e. for

 $n>n_{\alpha}$

We say that the summability method A is of finite type if there exists a natural number L such that the number of nonzero elements in each row is less than L.

In [2,4] the following theorems are proved.

Theorem D. For every sequence of real numbers (c_k) with $c_k \neq 0$ there exists a sequence $(g_k) \in c_{\text{mes}}^0$ such that the series

$$\sum c_k g_k(t) \tag{8}$$

is divergent in measure.

On the ground of the theorem D it follows (see [4])

Theorem E. Inclusion $c_{\text{mes}\infty} \subset c_{A\text{mes}}$ holds iff

 $1^0 \quad c \subset c_A$.

 2^0 A is of finite type.

From corollary C we obtain

Corollary E. For every sequence of real numbers (c_k) with $c_k \neq 0$ and for every λ with (2) there exists $(g_k) \in c_{\lambda \text{mes}\infty}^0$ such that the series (8) is divergent.

Proof. Let

$$g_k(t) = \frac{1}{c_k} f_k(t)$$

where $(f_k) \in c_{\text{mes}\lambda}^0$ is defined by (3). Then for every $\alpha > 0$

$$\operatorname{mes}\{t: \mid \sum_{s=k_i+1}^{k_{i+1}} c_s g_s(t) \mid \geq \alpha\} = \operatorname{mes}\{t: \mid \sum_{s=k_i+1}^{k_{i+1}} f_s(t) \mid \geq \alpha\} = 1.$$

Proof of the corollary E is completed.

Now, if $c_{\text{mes}\lambda} \subset c_{A\text{mes}\mu}$ then $c_{\text{mes}\infty} \subset c_{\text{mes}\lambda} \subset c_{A\text{mes}\mu} \subset c_{A\text{mes}}$, i.e., on the ground of the theorem E we obtain that A must be a finite type. Therefore we can prove the following theorem.

Theorem 5. The inclusion $c_{\text{mes}\lambda} \subset c_{A\text{mes}\mu}$ holds iff

there exists in each row

with $c_k \neq 0$

(8)

ith $c_k \neq 0$ t the series

= 1.

A_{mes} , i.e., finite type. $\begin{array}{ll} 1^0 & c^\lambda \subset c^\mu_A \ , \\ 2^0 & A \ \ is \ of \ finite \ type. \end{array}$

Proof. Necessity of 20 has already been proved.

Since $c^{\lambda} \subset c_{\text{mes}\lambda}$, then from $c_{\text{mes}\lambda} \subset c_{A\text{mes}\mu}$ it follows that $c^{\lambda} \subset c_{A\text{mes}\mu}$. Now for every $(c_k) \in c^{\lambda}$ we have that $(d_n) \in c^{\mu}$, where

$$d_n = \sum_{k=0}^{\infty} a_{nk} c_k,$$

i.e. $c^{\lambda} \subset c^{\mu}_A$.

Sufficiency. Assume that A is of finite type, for example L-type. Observe first the transformation

$$y_n = \sum_{i=1}^L a_{nk_i(n)} f_{k_i(n)},$$

where $(f_k) \in c_{\text{mes}\lambda}^0$, i.e. $f_k(t) = c_k \tau_k(t)$, where $(\tau_k) \in c_{\text{mes}}^0$ and $(c_k) \in c_0^\lambda$.

Now

$$\operatorname{mes}\{t: \mu_n \mid y_n(t) \mid \geq \sigma\} \leq \operatorname{mes}\{t: \sum_{i=1}^L \mid \frac{a_{nk_i(n)}\mu_n}{\lambda_{k_i(n)}} \tau_{k_i(n)}(t) \mid \geq \sigma\} \leq$$

$$\leq \sum_{i=1}^{L} \operatorname{mes}\{t : \frac{\mid a_{nk_{i}(n)} \mid \mu_{n}}{\lambda_{k_{i}(n)}} \mid \tau_{k_{i}(n)}(t) \mid \geq \frac{\sigma}{2^{L}}\}.$$

Because $c^{\lambda} \subset c_A^{\mu}$, then from [3] we have

$$\mid \frac{a_{nk}\mu_n}{\lambda_k}\mid = O(1).$$

Thus, if $1 \le i \le L$, we obtain

$$\operatorname{mes}\{t: \frac{\mid a_{nk_i(n)}\mid \mu_n}{\lambda_{k_i(n)}}, \mid \tau_{k_i(n)}(t)\mid \geq \frac{\sigma}{2^L}\} \leq \frac{\epsilon}{L}$$

and hence

$$\operatorname{mes}\{t: \mu_n \mid y_n(t) \mid \geq \sigma\} \leq \sum_{i=1}^L \frac{\epsilon}{L} = \epsilon,$$

i.e. $(y_n) \in c^0_{{
m mes}\mu}$.

n

If in second case $\,(f_n)\in c_{{
m mes}\lambda}\,$, then $\,f_n o f\,$ in measure on $\,[a,b]\,$ and

$$y_n = \sum_{i=1}^{L} a_{nk_i(n)} (f_{k_i(n)} - f) + f \sum_{i=1}^{L} a_{nk_i(n)}.$$

Since $(f_{k_i(n)} - f) \in c^0_{\text{mes}\lambda}$, then

$$\left(\sum_{i=1}^{L} a_{nk_i(n)}(f_{k_i(n)} - f)\right) \in c_{\text{mes}\mu}^0.$$

Since $c^{\lambda} \subset c^{\mu}_{A}$ and $e = (1, 1, \ldots) \in c^{\lambda}$, then there exists the limit

$$\lim_{n}\sum_{i=1}^{L}a_{nk_{i}(n)}=a.$$

Therefore

$$\lim_{n} f \sum_{i=1}^{L} a_{nk_{i}(n)} = fa$$

and

$$(y_n - fa) \in c^0_{A \operatorname{mes} \mu},$$

i.e.

$$(y_n) \in c_{A\text{mes}\mu}$$
.

5. The inclusion $c_{\lambda { m mes}}^0 \subset c_{A{ m mes}}^0$.

We will show that the inclusion

$$c_{\lambda_{\mathrm{mes}}}^0 \subset c_{A\mathrm{mes}}^0$$

doesn't imply that A must be a finite type.

Let for λ the (1) be fulfilled. On the ground of the theorem A we have for every $F \in c^0_{\lambda \rm mes}$ that a.e. on [a,b]

$$\lim f_k(t) = 0.$$

If $c^0 \subset c^0_A$, where A is not a finite type, then a.e. on [a,b]

$$\lim (A_n F)(t) = 0$$

on [a, b] and

limit

em A we have

[a, b]

and therefore $AF \in c_{\mathrm{mes}}^0$, i.e. $c_{\lambda_{\mathrm{mes}}}^0 \subset c_{A\mathrm{mes}}^0$

Let for λ the condition (2) be fulfilled. Then we consider the summability method A which is c^0 -convergence preserving and for every natural

number
$$n$$

$$a_{nki} \neq 0,$$

where

$$\sum \frac{1}{\lambda_{k_i}} < \infty.$$

Then the summability method A is not a finite type, but

$$A_n F = \sum_{i=1}^{\infty} a_{nk_i} f_{k_i},$$

where $f_{k_i}(t) \to 0$ a.e. on [a,b]. Therefore a.e. on [a,b]

$$\lim A_n F(t) = 0,$$

i.e. $c_{\lambda_{\text{mes}}}^0 \subset c_{A_{\text{mes}}}^0$.

6. The inclusion $c_{\text{mes}}^0 \subset c_{A\mu\text{mes}}^0$

We use the following

Theorem 6. For every sequence (α_n) , where $\alpha_n \neq 0$ and for every speed $\mu = (\mu_n)$ there exists a measurable function f on [0,1] such that

$$\lim_{n} \mu_n \operatorname{mes}\{t : |\alpha_n f(t)| \ge 1\} = \infty.$$
(9)

Proof. If $\alpha_n \neq 0$, then there exists a sequence $\theta = (\theta_n)$, where $0 < \theta_n \nearrow \infty$ such that

$$\frac{1}{\theta_n} \le |\alpha_n|.$$

Let $\sigma = 1$ and let $f(t) = \lambda(\mu^{-1}(\frac{1}{t^2}))$, where $\lambda = \lambda(t)$ and $\mu = \mu(t)$ are monotonically increasing functions with $\lambda(n) = \lambda_n$, $\mu(n) = \mu_n$ and μ^{-1} denotes the inverse function of μ . Then

$$\operatorname{mes}\{t:\mid \alpha_n f(t)\mid \geq 1\} \geq \operatorname{mes}\{t: \frac{\lambda(\mu^{-1}(\frac{1}{t^2}))}{\lambda_n} \geq 1\} =$$

$$= \operatorname{mes}\{t : \lambda(\mu^{-1}(\frac{1}{t^2})) \ge \lambda(n)\} = \operatorname{mes}\{t : \frac{1}{t^2} \ge \mu_n\} = \operatorname{mes}\{t : t \le \frac{1}{\sqrt{\mu_n}}\} = \frac{1}{\sqrt{\mu_n}},$$

i.e.

 $\lim_{n} \mu_n \operatorname{mes}\{t : \mid \alpha_n f(t) \mid \ge 1\} \ge \lim \sqrt{\mu_n} = \infty.$

Corollary 6. If

$$c_{\infty \mathrm{mes}\infty}^{\hat{0}} \subset c_{A\mu \mathrm{mes}}^{0}$$

then for every natural number k there exists a natural number n_k such that for $n > n_k$

$$a_{nk}=0.$$

Proof. Let for every natural numbers i and k there exists a natural number n_i such that

$$a_{n,k} \neq 0$$
.

Let k be fixed, $F^0=(f^0_v)=(f^0\delta_{kv})$, where δ_{kv} is Kronecker's symbol and f^0 is a function from Theorem 6 with $\alpha_i=a_{n_ik}$. Then

$$AF = (A_{n_i}F^0) = (a_{n_ik}f^0)$$

and

$$\lim \mu_n \operatorname{mes}\{t: |a_{nk}f^0(t)| \geq 1\} = \infty,$$

i.e.

$$AF^0 \notin c_{\mu\mathrm{mes}}^0$$
.

Since $F^0 \in c^0_{\infty mes\infty}$, then we have obtained that $c^0_{\infty mes\infty} \not\subset c^0_{A\mu mes}$. The proof is completed.

Theorem 7. The inclusion $c_{\text{mes}\infty}^0 \subset c_{A\mu\text{mes}}^0$ holds iff there exists a natural number M such that for k, n > M

$$a_{nk} \equiv 0$$
.

Proof. Necessity. Since $c_{A\mu\mathrm{mes}}^0 \subset c_{A\mathrm{mes}}^0$, then from Theorem C we get that A is a finite type. From Corollary 6 it follows that for every natural number k there exists a natural number n_k such that $a_{nk}=0$ if $n\geq n_k$.

$$t \le \frac{1}{\sqrt{\mu_n}}\} =$$

ber n_k such

ists a natural

Kronecker's . Then

 $c_{A\mu{
m mes}}^0$. The

there exists a

rem C we get every natural $if\ n\geq n_k$.

Assume that for natural numbers N and K there exist k > K and n > N such that $a_{nk} \neq 0$.

Since A is of finite type, then we can find k_1 and n_1 such that $a_{n_1k_1} \neq 0$, while $a_{n_1k} = 0$ for every $k > k_1$. From Corollary 6 there exists a natural number m_2 such that $a_{nk_1} = 0$ if $n \geq m_2$. According to our assumption we can find $n_2 \geq m_2$ and $k_2 \geq k_1 + 1$ such that $a_{n_2k_2} \neq 0$, but $a_{n_2k} = 0$, if $k > k_2$. Continuing analogously we construct the sequences of natural numbers (n_i) and (k_i) such that $a_{n_ik_i} \neq 0$, $a_{n_ik} = 0$ if $k > k_i$ and $a_{nk_i-1} = 0$ if $n > n_i$.

Let

$$f_k^0 = f^0 \delta_{kk_i},$$

where f⁰ is from Theorem 6, and for which

$$\lim_{i} \mu_{n_i} \operatorname{mes}\{t : | a_{n_i k_i} f^0(t) | \ge 1\} = \infty.$$

Then

$$A_{n_i}F = a_{n_ik_i}f^0$$

and

$$\lim \mu_{n_i} \operatorname{mes} \{t : |A_{n_i} F| \ge 1\} = \infty,$$

i.e.

$$AF \not\in c_{\mu\mathrm{mes}}^0$$
.

Hence we have obtained that at least one of the following possibilities must be true:

I: there exists a natural number K such that $a_{nk} = 0$ if k > K

II: there exists a natural number N such that $a_{nk} = 0$, if n > N.

In the first case we obtain from Lemma 6 that there exists a natural number N_K such that $a_{nk}=0$, if $n>N_K$ and k>K. Therefore we can find a natural number M such that $a_{nk}=0$ for k,n>M.

Since A is of finite type we obtain in second case that for every natural number n there exists a natural number k_n such that $a_{nk_n}=0$, if $k>k_n$. Hence, if

$$M = \max_{n < N} k_n,$$

then we have that $a_{nk} = 0$ if n, k > M.

The proof of the necessity of Theorem 7 is completed.

Sufficiency. Let the condition of Theorem 7 be fulfilled. Then for every $F \in c^0_{\mathrm{mes}\infty}$ we have

$$A_n F = \begin{cases} \sum_{k=0}^M a_{nk} f_k(t) & \text{if } n \leq M, \\ 0 & \text{if } n > M. \end{cases}$$

Therefore we have that $(A_nF) \in c^0_{\infty mes\infty}$, i.e. $F \in c^0_{A\infty mes\infty} \subset c^0_{A\mu mes}$. The proof of Theorem 7 is completed.

Remark. On the ground of Theorem 7 we have that $c_{\text{mes}\infty}^0 \subset c_{A\mu\text{mes}}^0$ holds iff $c_{\text{mes}\infty}^0 \subset c_{A\infty\text{mes}\infty}^0$.

References

- 1. H. Türnpu, On convergence in measure with speed. Seminarberichte aus dem Fachbereich Mathematik und Informatik, Fern-Universität Hagen 43 (1992), 106-113.
- 2. Ф. Вихманн, О консервативности матриц относительно сходимости по мере. Известия АН ЭССР 20 (1971), 275-278.
- 3. Г. Кангро, Множители суммируемости для рядов, λ ограниченных методами Риса и Чезаро. Уч. зап. ТГУ **277** (1971), 136–154.
- 4. Л.Д. Менихес, Суммирование в линейных топологических пространствах. Матем. записки УрГУ 9 (2) (1975), 65–76.

Received June 30, 1995

Institute of Pure Mathematics
University of Tartu
EE2400 Tartu, Estonia
E-mail:heino@math.ut.ee