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On summability in measure with speed

Terje Hoim and Heino Tiirnpu
1. Definitions and former results.

In this paper* we consider the Flspace M{a,b] of all measurable func-
tions defined on [a,b]. It is well-known that the Frechet-norm of f in
Mla,b] is

I £ ll= inf (mes{t | £(2) 2 @} + @)
and the convergence of sequence (f,) to f in M{a,b] is the convergence

in measure, 1.e. for every o > 0
le mes{t ;| fo(t) — f(t) |> a} = 0.
n o

Let A = (A) and g = (ux), (0 < M Moo, 0 < pp /7 00) be
speeds.
We have defined the convergence in measure with speed in the following

form in [1].

Definition 1. A sequence (f,) is called mesA -convergent on |[a,b]
to f if for every a >0

nli)rgo mes{t : A; | fn(t) = f(¥) |> o} =0.

Definition 2. A sequence (f,) is called Ames -convergent on |[a,b]

to [ if for every a >0 there exists

Jim Aumes{t | £,(8) = 1(0) |> o

* This research was supported by the Estonian Science Foundation
(grants no. 762 and 1381).




Definition 3. A sequence (f,) is called Amesp -convergent on [a, b]
to f if for every a > 0 there exists

Jim Aumes{t s o | fo(8) = £(0) 12 ).

BY Cmesi(Cames; CAmesy) We denote the set of all mesA -convergent

( Ames -convergent, Amesyu -convergent) sequences in M[a,b] and by

0
mesA

( Ames -convergent, Amesp -convergent) sequences in M[a, b] .

Crmesa{Chmes> Camesy) We denote the set of all to f = 0 mes) -convergent

By c*(c}) we denote the set of all A-convergent (\-convergent to 0)
sequences (see [3]).

If (fn) is mes) -convergent ( Ames -convergent, Amesy -convergent
umes) -convergent, Ames\ -convergent) for every ) , then we say that (f,)
is mesoo -convergent { comes -convergent, ocomesyu -convergent, pmesco -
convergent, oomesoco -convergent). A

BY  Cmesco(Coomes s CAmescos Coomeshs Coomesoo) We denote the set of all
mesoo -convergent ( comes -convergent, Amesoo -convergent, oomes -
-convergent, oommesco -convergent) sequences in M(a, b] .

In [1] we have shown that the Ames-convergence, mesA - conver-
gence and Amesy -convergence of sequences (f,) are different and we have

proved the following theorems

Theorem A. If (f,) € Cxmesy and

1
25 <o (1)
then
li'{n“n | fn(t) - f(t) [: 0

a.e. in [a,b] (i.e. the sequence (f,) is c* -convergent a.e. on [a,b] ).

Corollary A. If (fn) € €3 nesy » Where
1

S Lo
Kk

and (1) holds, then
D 1) <o

a.e. on [a,b].
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ent on [a,b]

A -convergent
;0] and by

s\ -convergent

1 ~convergent

(fn)

S\ - conver-

and we have

Theorem B. For every p and )\ with

z%:oo (2)

there exists a sequence (f,) € ¢ such that for every ty € [a,b] the
Amesy

sequence (f,(to)) is divergent.

In [1] we have formulated the following problem.

Let A = (anx) be asummability method which transforms a sequence

F = (fn) into the sequence G = (g,,) , where

n = Zankflﬂ

le. G=(A,F)=AF.

A sequence F is said to be Apesy -summable ( Aames - summable,
Axmesp -summable) if AF € emesx (Cames, Chmesy ) -

By cAmes,\(cMmes,cA,\meS,,) we denote the set of all Ames) -sum-
mable ( AAmes -summable, AAmesy -summable) sequences.

Let o be Ames (mesA, or Amesu) and B be Amesh (Almes, or
Almesy) . The problem is:

Under which necessary and sufficient conditions for A is the inclusion

Ca C Cp

true?
In this paper we have solved this problem partly — we consider only the

following inclusions:

Cmesx T CAmespr Cames C CAmes) Coomesos C CApmes; Coomes C CApmes-

If Cmesx C CAmesr(Cames C Caames) , then we say that the summability
method is mes) -convergence ( Ames -convergence) preserving. Particu-

larly, if ¢ C ¢4 , then we say that it is convergence preserving.

2. Counter examples.

Denote
mgmesu = A{F: Apmes{t : py | fo |> @} = 0(1), a> 0}
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We demonstrate a simple proof of Theorem B in the following formulation

Theorem C. For every ) with (2) there exists F € MY hesco SUCH

that for every to € [0,1] the sequence (fn(to)) is divergent.

Proof. Let the natural numbers k; be defined by the inequalities
0< Akl—l <1 S Ak11

1< Agy-1< 2 < Agy,

where

Denote

€ky—1 = [Aky—2, Bky-1);
e, = [Aky-1, 115
€k 41 = [OaAkl - 1)1

eky+2 = [Aky — L Bkygr — 1);
1

ep;—1 = [Aki_g — 1+ lsAki—-l — 174 1);
ex; = [Ag;-1— i+ 1, 1];
€k;+1 = [OuAk,' - Z)’
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nng formulation

Let ty € [0,1] be a fixed number. Then for every natural number

i there exist the natural numbers s} and s} such that ¢, € e,o and
1

to & €1 - Let now
Jilt) = xe; (1) (3)

Then for every 0 < o <1 and for every p; >0 we have

1
mes{t : p; | fi(t) |> o} = mes ¢; < o

i'e' (fi) e mgmesoo'

Now f,o(to) =1 and fi(tn) =0 for every i, i.e. the limit
lim f;(to)

doesn’t exist. The proof of Theorem C is completed.

Corollary C. For every A with (2) there erists F € m$_ ..., such
that the series

S A0) (4)

is divergent in measure on [0,1] .

Proof. Let F = (f,) be defined by (3). Then F € m} ..., and for
every 0 <a<1
kit1
mes{t :| Z fs@) |2 e} =1,

s=k;+1

i.e. the series (4) is divergent in measure.
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From the corollaries C and A now follows that the next theorem holds.

Theorem 1. If F € cgmesp , then the series (4) is convergent in
measure on [a,b] iff (1) holds and

Z-—1—<oo.

Bk

3. The representations of the sequences F from the sets

() 0 0
Camesco ! CoomesA and Coomesoa -

Theorem 2. The sequence F = (f,) belongs to S mesco 1T
lim A, mes suppf, = 0. (5)

Proof. Sufficiency. According to the assumption for every o > 0 and
for every speed A

limmes{t : A, | fa(t) |> a}=0. (6)
Against the statement suppose that

limmes supp f, # 0. (7

Then we can find €, > 0 such that for every natural number k there

exists ng such that

mes supp fn, > eg.

Let us fix the natural number ko . Since f"ko is the measurable
function, then according to Luzin’s theorem there exists the measurable set

Ty C e such that on the set CT,, the function f, ko is continuous and

mes(CT, ﬂsuppfnko) > 4dey.

Since CT., Nsupp fnk0 is measurable, then there exists an open set

By C (CT,, ﬂsuppf,,ko)

such that

mesBy > 3eg.
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En the sets

er k there

On the other hand there exist the structural intervals (o, 5;) such that

Bo = J(ai, Bs).

i
Let us find sg such that
50

mes U (ei; Bi) > 260.

i=1
Further on we can find the segmerts [v;,d;] C (as,6;) such that

50

mes U('y,-,ﬁ,-) > €.

i=1
Let us fix ¢ freely from the set 1 < iy < sg and observe the segment
[7iy:63] - ;

Since [y;;,di;] C CT, , then on that segment the function f,.k (t) is
contmuous Accordmg to Weierstrass theorem this function is bounded on
that segment and has the extremal values.

Let

)1 0]

tEh.l. i1

Since

[7{1 ] 6i,1] C Sup;pfﬂko7

then . .
|f,,k0 ") > 0.

Let usnow find the number AL ko such that

Ny () | g, () > 1.

Since the natural number i, was chosen arbitrarily with the condition

iy < 8o , therefore our discussion about the segment [y;,,d;;] is correct for

every segment [v;,d;] that is

"k() |fn‘k (tm) |> 1

| f"ko (t"f) |—— | f"ko( )| and 1< m< s

['7,1. i)
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;= max A .
kg 1<m<so "kg

Then for every m=1,...,80

Mg | Fg (€)1 1.

Since for every t € Uj2,[vi,6i]

| gy () 1] gy (7))
hence
A11".'0 ‘ fnko(t) l> 1:
and consequently on that
1 >
mes{t : /\""0 I f,,k0 ® 1> 5} > mes U['y,',é,-] > €g.

i=1

Since ko was an arbitrary number, then for every natural number k

1
mes{t : A, | . (2) > 5} > €

and hence the equality (6) doesn’t hold for every speed A .
Consequently the equality (7) is not true and holds the statement (5).

Necessity is clear since for every speed A and for every a >0
{t: | falt) 1> a} C suppAsfn = suppfa-

Theorem 3. The sequence F € ¢ .., iff there exists a measurable
subset E C [a,b] such that mesE =0 and lim A fa(t) = 0 uniformly on
[a,b]\ E .

Proof. Necessity. H F € %, then (M) € % mes » 1-€. for

every
pames{f : An | falt) 12 a} = O(1).
Hence for every a > 0 there exists n, such that for n > ng

mes{t : Ay | fn(t) |> a} =0.

Denote by
={t: A ]| fa@) 1> a}.
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Then for n > n, mesE? =0 and for fixed o >0 we have mesEy =0,

where
E.= |J E3

n>ng

If t€[a,b]\ Es,then Ay | fult) <o if n>ng,le.

i dofn) =

uniformly on [a,b]\ Eq .
Sufficiency. If limA, f, = 0 uniformlyon [a,b]\ £ where mesE =0,
then for n > n, we have A, | fn |[< o forall t €[a,b]\ E ,ie.

{t:\n|frlza}=2

and therefore F ec? ., .
Theorem 4. The sequence F € ¢ oo iff there erists a natural
number ny such that for n>ny fo(t) =0 a.e. on [a,b].

Proof. Necessity. If F € ¢ then for every X = (A\,) F €

00Imesoco )

€3 hesoo  and therefore from theorem 2 it follows that

Ames suppf, = O(1)

for every A = (A,) . Hence there exists a natural number ny such that for
n > ng

mes suppf, = 0,

ie. fa(t)=0 ae. on [a,b].

Sufficiency is clear.
4. The inclusion c¢pesy C Camesy -

By Cmes ( CAmes ) we denote the set of all sequences F = (f;) which
are convergent in measure to f ( A -summable in measure to f , i.e. the
sequence Ap,F = Y, anxfx is convergent in measure). In {2,4] the inclu-
$ION Cmes C Cames has been considered. For example, in [2,4] a class of

summability methods of finite type is defined.
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We say that the summability method A is of finite type if there erists
a natural number L such that the number of nonzero elements in each-row
is less than L .

In [2,4] the following theorems are proved.

Theorem D. For every sequence of real numbers (cx) with cx # 0

there erists a sequence (gi) € cO., such that the series

Z crgk (1) (8)

1s divergent in measure.
On the ground of the theorem D it follows (see [4])

Theorem E. Inclusion cmesco C Cames holds iff
1° cCecey.
.2 A is of finite type.

From corollary C we obtain
Corollary E. For every sequence of real numbers (cx) with c £0
and for every A with (2) there exists (gk) € €3 es0o Stch that the series

(8) is divergent.

Proof. Let - : L
9k (t) = —fi(t)

Ck
where (fi) € ¢Y .., is defined by (3). Then for every a >0

ki1 kg1 ’
mes{t ;| E ¢s95(t) |> o} = mes{t :| Z fs(t) > a}=1.
. s=k;+1 s=k;41

Proof of the corollary E is completed. - T

Now, if cmesa C CAmesu then cmesco C Cinesa C CAmesy C CAmes 3 ie.,

on the ground of the theorem E we obtain that~ A must be afinite type.

Therefore we can prove the following theorem.

Theorem 5. The inclusion Cmesy C CAmesp holds iff
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there exists ‘ j 1Y Hcady,
20 A is of finite type.

Proof. Necessity of 2° has already been provedQ
Since ¢* C Cmesx , then from ecmesy C CAmesy it follows that A C

Camesu - Now for every (cx) € ¢* we have that (d,) € ¢* , where'

[e ]

dp = E AnkCk,

k=0

ie. *cCdfy.
Sufficiency. Assume that A is of finite type, for example L -type.

Observe first the transformation

L
Yn = Z ank,‘(n)fk;(n):

i=l
where (fi) € cQen o e fi(t) = ckm(t), where (1) € 2. and
(ck) €} .
Now
Ank;(n)Hn

; L
 the series mes{t : pt | Yn(t) |> 0} < mes{t: Z | T()—Tki(n)(t) >0} <
i=1 in

k; |/"n o
< Zmes{t an (n)) | Tki(n)(t)\lz 5—1‘-}
fl

Because ¢* C ¢/ , then from [3] we have

Ankfn
| =5 1= 001).

Thus, if 1 <i< L, we obtain .

[ ank | l‘n

mes{t :
’\ki(n)

e €
| Ty () (@) > QT} < I

and hence
€
mes{t : ptn | yn(t) |> 0} < Z 7=
i=1
i'e' (y") € comesu -
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Therefore

and

L
anis(n)(Foan) = ) + £ tnk
=1

Since (fr;(n)— f) €

If in second case (fn) € Cmesr , then fn = f in measure on [a, b] and

L
Zanki(n)(fkg(ﬂ) - f) € c?nesy'

Since ¢* Cc4 and e=(1,1,...) € ¢* , then there exists the limit

L

im Y tnkin) = @
n < 1
1=

b~

Z Auki(n) = fa

=1

-

(yn - fa) € coAmesy'

(yﬂ) € CAmesp-

: . 0 0
5. The inclusion ¢;; s C Cames

We will show that the inclusion

0

1]
Cimes - € Ames

doesn’t imply that A must be a finite type.
Let for A the (1) be fulfilled. On the ground of the theorem A we have

for every F € c3nes that a.e. on [a, 8]

lim fi (t) = 0.

If ¢®Cc,where A is not afinite type, then a.e. on [a,d]

lim(An F)(t) = 0
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em A we have

and therefore AF € Qs 1€ Cines C CAmes -
Let for A the condition (2) be fulfilled. Then we consider the summa-

bility method A which is c®-convergence preserving and for every natural

number n
ank; # 0,

St <o

Then the summability method A is not a finite type, but

A F = Z ankifk,-a

i=1

where fi;(t) =0 ae. on [a,b]. Therefore a.e. on [a,b]
limA, F(t) =0,

H 0 0
L. Cymes - CAmes-

i : 0 0
6. The inclusion cp.; C €gpmes-

We use the following

Theorem 6. For every sequence (o), where an #0 and for every

speed = (itn) there exists a measurable function f on [0,1] such that
li’{npnmes{t | anf(t) |> 1} = oo. (9)

Proof. If a, # 0, then there exists a sequence 6§ = (6n) , where
0 <8, /oo such that
<lan|.

L
bn
Let ¢ =1 andlet f(t)=A(p~'(%)), where A =A(t) and p = u(t)

are monotonically increasing functions with A(n) = An , p(n) = pn and

p~! denotes the inverse function of p . Then

mes{t :| an f(t) |> 1} > mes{t :

35




1

Vi) =

= mes{t : /\(p‘l(tiz)) > A(n)} = mes{t : 215 > pn} =mesti:t <

1
Vi

lim g, mes{t :| a, f(t) |> 1} > lim /p, = c0.

Corollary 6. If
0

0
Coomesoo c cApmes)

then for every natural number k there exists a natural number ny such
that for n > ny

ank = 0.

Proof. Let for every natural numbers i and k there exists a natural

number n; such that
an;k #0.

Let k be fited, F° = (f%) = (f%k,), where &, is Kronecker’s

symbol and f° is a function from Theorem 6 with o; = ank . Then

AF = (An, F°) = (anf°)

lim ppmes{t :| ank fO(t) |> 1} = oo,

AF% ¢ c°

pmes”

Since F° € ¢%  osoo , then we have obtained that ¢ co00 € C%#mes . The

proof is completed.

Theorem 7. The inclusion ¢ oo C coA“mes holds iff there exists a
natural number M such that for k,n > M

Anr = 0.

Proof. Necessity. Since €% mes C Chmes 1 then from Theorem C we get
that A 1is a finite type. From Corollary 6 it follows that for every natural

number k there exists a natural number ny such that a,r =0 if n>ng .
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ber np such

ists a natural

. Kronecker’s

rem C we get

|

very natural

- Assume that for natural numbers N and K there exist k> K and
n> N such that anx # 0.

Since A is of finite type, then we can find ki and n; such that
Anpky # 0, while anx =0 for every k > ki . From Corollary 6 there
exists a natural number my such that anx; =0 if n > mg. According
to our assumption we can find ny > my and kg > ki + 1 such that
noky 70, but anye =0, if k > ko . Continuing analogously we construct
the sequences of natural numbers (n;) and (k;) such that a,uk; # 0,
an;x =0 if k>k; and ang;-1=0 if n>n;.

Let

0 _ ¢0
k _f Jkkiy

where fU is from Theorem 6, and for which

lim ;s {t :| angi; fO(2) |> 1} = oo.

An,-F = an,‘k,‘fo
lim i mes{t :| Ay, F' |> 1} = oo,

AF ¢ ¢

0
pmes

Hence we have obtained that at least one of the following possibilities must
be true:
I: there exists a natural number K such that an =0 if k> K

II: there exists a natural number N such that a,r =0 ,if n> N .

In the first case we obtain from Lemma 6 that there exists a natural
number Ny such that an, =0, if n > Ng and k > K . Therefore we
can find a natural number M such that anr =0 for k,n> M .

Since A is of finite type we obtain in second case that for every natural
number n there erists a natural number k, such that apx, = 0 , if
k > k, . Hence, if

M = maxky,,
n<N

then we have that apr =0 if n, k> M .
The proof of the necessity of Theorem 7 is completed.
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Sufficiency. Let the condition of Theorem 7 be fulfilled. Then for every

0
F € ¢ osoe we have

M

3 anefilt) if n < M,

A"F = k=0

0 ifn>M.

Therefore we have that (AnF) € Somesoo » -6 F € Choomesso C
The proof of Theorem 7 is completed.

0
CaA pmes *

Remark. On the ground of Theorem 7 we have that O esoo C COA“mes

. 0 0
holds iff criesoo € CAcomesco
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