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1. We consider* the series in form

) Erpr(t),

where ¢ = {k} is a system of integrable functions in e = [a,b], A
is a sequence with 0 < A\g 7 and z = (&) €%, i.e.

D &N < oo

The following definitions are based on [6].

Let A = (anx) be a triangular summmability method and z = (k) € ¢
with lim(x =¢ .

It is said that a sequence z € ¢ is convergent (bounded) with speed
A or A-convergent (A-bounded), if the limit

lim An(¢n =€)

exists (An(Cn — () = O(1)) .

The set of all A-convergent (A-bounded) sequences is denoted by
A(m?) .

It is said that a sequence z is A-summable (A-bounded) with speed
A or A*-summable (A*-bounded), if y € ¢*(y € m*) where y = (1,) and

n
M = Z ank(k-
k=0

* This paper was in part prepared during the visit to Fernuniversitat at
Hagen by the author, supported by DAAD. Research for this paper was also
financially supported by the Estonian Science Foundation (grants no. 476
and 1381).
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It is said that a summability method A is A-convergence (A-bounded-
ness) preserving if every element of the set ¢* is A*-summable (A*-boun-

ded).

It is said that a series (1) is A*-summable (A*-bounded) almost every-
where (a.e.) in e, if the limits

li,fn Z ankkpr(t) = f=(t)
k=0

and
lim 8, (z,1)
n

exist a.e. in ¢ where
Bn(z,t) = An (Z ankbipr(t) — fo (t))
k=0

and
Upk — Op k+1 = Ank-

The aim of the present article is to determine necessary and sufficient
conditions for the A*-summability a.e. in e of the series (1) where z € 2.

Let the series (1) be A*-summable a.e. in e for every = € 12, then the
series (1) is A-summable a.e. in e for every x € 12. It follows that the limit

lim > anstrp(l)
k=0

exists in measure in e for every z € % or, the limit

- (t)
lim S el 25
" k=0 k

exists in measure in e for every 8 = (0x) € I%, where O = & Ai.

It follows from [10] (see Lemma 2 on page 70) that the system ¢,/ A =
(¢r / k) is the convergence system in measure in 12. By Theorem 7 of
[8] we get that for every € > 0 there exist a measurable subset T, C ¢ with
mesT, > mese — ¢ and the constant M, such that for every 6el?

Ak

=0} k=0

/ 1S e Y < ()
Jz, £

is valid, i.e.

[ 13 ettt < (3o 0N
JLe k=0

=0
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gence (A-bounded-
mable (A*-boun-

d) almost every-

ystem ¢ /A =
y Theorem 7 of
bset T. C ¢ with
06 l2

for every « € 13.
In the case A\, = 1, apgp =1 or apy = (1— ;—’;71—) we get the well-known
results of Kaczmarz [2,3].

Theorem A. The orthogonal series (1) is a.e. in e convergent for
everyz €12 ifine

Ln(p,t) = O(1),

where

Ln(p.t) = / | D ext)pr(r) | dr.
& k=0

Theorem B. The orthogonal series (1) is a.c. in e C- summable for
every x € 1%, ifin e

La(C",0,1) = O(1),

where

La(CY, 0. 1) = /1%(1-71—%_1)99,‘.@)%(7) [ dr.
7 k=0

On the other hand Mdricz and Tandori have proved that there exist a
regular triangular summability method Ay, the orthogonal system g in e
and the ry € I such that for every ¢ € ¢

Ln (A()7 %())t) = 0(1)1

while the series (1) is not Ag-summable by ¢ = ¢q and £ = zg a.e. in e.
Here (see [4])

3 n
Ln(Anpo.) = [ 13 aueb(pl() | dr.
€ k=0
This motivates the introduction of the class of summability methods,
for which from the condition

Ln(A, @,t) = 04(1)

a.e. in ¢ follows that the series (1) is A-summable a.e. in e for every z € [?
(see [11]).
On the other hand the following result is proved in [11].

Theorem C. Let for every k € N
lim o = 1. (2)
n
The series (1) is A-summable a.e. in e for every © € I iff for every ¢ > 0

there exist a measurable subset Tc C e where mesT, > mese — ¢ and a
constant M, > 0 such that the inequality

v(n,p)

I /:; /T Z Nmn (1) mep(v) Z Ok Opk Pk (w) ok (v)dudv |< M,

© n=() p=0 k=0
holds uniformly for all decompositions
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m =
= (M n= 0,1,y 115 Wi [ M = @ i & # 15 () D
n=0
of e where
Xmn = XM un
and
v(n,p) = min(n, p).

From Theorem C it follows

Theorem D. Let the condition (2) be fulfilled for summability method
A Ifae e
An(Av SO.,t) = Ot(‘l)

where

An(A, 1) = [ sup | Zanwpwk( Jor(7) | dr,
L
then the series (1) is A-summable a.e. in e for every x € I%.
The following theorem is proved in [5].
Theorem E. The series (1) is A-convergent a.e. i ¢ forallx € 2 4

for each € > 0 there exist @ measurable subset T, C e where mesT, > b—a—¢
and a constant M, > 0 such that the inequality

l/T/ Zan /\anmp YAp Z Aok (t) o (T)dtdr |[< M,

Te n=o k=p(n,p)
(4)
holds uniformly for all decompositions (3) where p(n,p) = max(n,p) + L.

Corollary E. If the inequality

sup)\fl Z il "Dk()[dr<oo

m,n kentl
holds a.e. in e, then the series (1) is A-convergent a.e. ine forallx € 2.

What follows is the principal result of this paper.




Theorem. Let summability method A be X*-convergence preserving
and let (2) be valid. The series (1) s A*-summable a.e. ine forall z € l?\
ff

19 the series (1) is A-summable a.e. in e for every A € I3,

29 for each € > 0 there erist a measurable subset T, C e where mesT, >
b—a— ¢ and a constant M, > 0 such that the inequality

. M2 m=—1 m
'./T{ /TC D Xmalt) Y me(T);sov(t)sou(r)DTpkdtdr|§ M. (A)

n=0 p=n+1

holds uniformly for all decomposition (3) where

An A, .
(tmy — no){(@my — ap,,)——}—z—’i if0<v<n<p<m,
v

AnAp
X
2 /\" /\P

a D —
“muv 9
Al

3mu (e — py) fn<v<p<m,

fn<p<ov<m.

Corollary. Let A be A?-convergence preserving. If the inequalily (2)
holds, the series (1) is A-summable a.e. in e for every x €12 and a.e. ine
holds

AT (A, p,1) = O4(1)

where

~1
AV A o) = [ sup | Z Pu (t)ou (T) Dy | d,

Jep2n =y

then the series (1) is a.e. in ¢ A*-summable for all z € 13,

2. The following definitions and results are due to [8]. Let M, denote
the space of all measurable and a.e. in ¢ finite functions with

Ifill= ir;f()(u + mes{t € e :| f({) |[> a}).

It is said that the operator A from {* into M, is openlinear if for every
x € 1% there exists a linear operator T} from (* into M, such that

10 Te(z) = Ala),

20 | To(y 1) 1< Ay, 1) |

a.e. in e for every y € I




It is said that the set Q C M, is bounded in measure if for each € > 0
there exists a constant R, > 0 such that

mes{t € e :| y(t) |> Re} < ¢

for all y € Q.
It is said that the operator A from [2 into M. is bounded in measure if

the set
{A(z) ol = <1}

is bounded in measure.

Lemma 1. (see [8], p. 137). Let A be a bounded openlinear operator
from 12 into M. Then for each € > 0 there ezists a measurable subset Te C e
where mesT, > b — a — ¢ and a constant M, > 0 such that

IR AT

€

for all z € 2.

Lemma 2. (see [12], p. 142). Let f be a measurable function in e.
Then the inequality

| f(t) |[< oo

holds a.e. in e iff for each € > 0 there exists a measurable subset T C €
where mesT, > b~ a — ¢ such that

/' | F(t) | dt < .

€

Lemma 3. (see [12], p. 142). Let (fn) be a sequence of functions
integrable in ¢. Then the inequality

sup | fa(t) |< o0

holds a.e. in e iff for each € > 0 there exist a measurable subset T, C €
where mesT, > b — a — ¢ and a constant M.~q such that the inequality

]/T szn(t)fn(t)dt IS M,

< n=0

holds uniformly for every decomposition (3) of e.

Lemma 4. (see [1], p. 361). Let Dy(m € N) be the continuous
homogenous operators from 12 into M, and suppose that the inequality

| Do (21 + @2,1) |<| Dn(@1,t) | + | Dm(22,1) |
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’if for each € > 0

ded in measure if

senlinear operator
ble subset T, C ¢

b

le function in e.

k‘subset T. Ce

wce of functions

e subset T, C e
inequality

the continuous
%e inequality

holds. Then if
1°  sup | Dp(x,t) |< oo
n

a.e. ine for any x € I* and there exists
20 liT{n D, (2,1)
a.e. in e for any & from a total set in 12, then there exists
liTI)nDn (2,t)
a.e. in e for each x € 12,

Lemma 5. Let the series (1) be A*-summable a.e. in e for each z € .
Then the operator D from I? into M., where

D(z,t) = sup | Dy(z,1) |,

n

Dn‘(.’:,t) = An (Z a’nkfk'/\ksak_(t) - fz (t)>7

k=0 /\k

R ok (1)
2{t) = hm nkEp Ay ———
J2(t) = ir ga,k@ "

and

is openlinear and bounded in measure.

Proof. 1t was shown by Nikishin that D is openlinear (see [8], p. 135).
We shall prove the boundedness of D.
Since the inequality

Dn(z,t) < D(z,1)

holds a.e. in ¢ for every z € {?, then from the A*- summability of the series
(1) a.e. in e for every z € I3 we get that the equality

lim ADp (2,8) = 0

80

holds a.e. in ¢ for all z € I* uniformly in m.
Consequently, in space M, for all = € I? we have

lim #D,,(z) =0

#—=0

uniformly in m.
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By the principle of equicontinuity we have that in M.
lim D (z) =0
20

uniformly in m.
It follows that there exists a constant M > 0 such that for all z with
=<1
| Din(2) IS M

holds in M, uniformly in m. Since in M, limy Dp(z) = D(z) we have
limg—,0 AD(z) = ¢ uniformly in the unit sphere of I2.

It follows that for each € > 0 there exists a constant B such that for
all z from unit sphere of [2

inf(c + mes{t € e : D(z,t) > —g—}) <e/ 2

holds. Furthermore, there exists a constant o such that

inf(a + mes{t € e : D(z,t) > ;—;— ) >

> o + mes{t € e : D(z,t) > %} —¢ /2
If we denote R, = o / B, then we have
mes{t € e : D(z,1) > Re} < ¢
for all z from the unit sphere of I2. D is bounded in measure in [? to M..

Lemma 6. (see [10], p. 70). Let the condition (2) be fulfilled. If the
series (1) for all x € 1? is A-summable in measure in e, then the series (1)
is convergent in measure 1 ¢ for all x € 2.

Lemma 7. (see [8], p. 158). The series (1) 1s convergent in MeAsure
in e for all ¢ € 1% iff for every € > 0 there exist a measurable subset T, C e
with mesT, > b — a — ¢ and a constant M > 0 such that the inequality
. N N 1o
[ 1Y ot 1t < MY o)
Te &

=0} k=0

holds for every natural number N and for every real number {ag.a1,...
ant.

Lemma 8. (see [9], p. 338). If the series (1) s convergent tn Measure
for all z € 12, then there exist a measurable subset T, with mesT, > b—a—c¢,
a constant N. and a orthonormal system g = (gx) on €, such that on(t) =
Mg (1) a.e. inT,.
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3. Proof of Theorem. Neccessity. Let the series (1) be A*-summable
a.e. in e for every = € I3. Since

D dmebrspr(t) =

m=0 k=0

nh_}n;) Z ankbrpr(t) = fo(t)
t for all z with =

= D(z) we have

Dy(z,t) = Z Z(YmkEkAk ()

m=n+1 k=0

. such that for

By using Lemmas 5 and 1 we have that for each ¢ > 0 there exist a
measurable subset T, C e with mesT, > b — a — ¢ and a constant M, > 0
such that

2,1) | dt < M|z | (5)

bupID

holds for every z € I2.
From Levi’s Theorem and Lemma 2 it follows that the condition (5) is
equivalent to the following condition:
for every ¢ > 0 there exist a measurable subset T, C ¢ with mesT, >
b— a —¢ and a constant M, > 0 such that the inequality

Az |

[ xmn(ODn(e 0t 1< M < (6)

¢ n=0

re in 12 to M..

olds uniformly for every decomposition (3) of e and for all z € {2,
Now

fulfilled. If the
nithe series (1)

| Az | = | A%z 1< Az (<] Az |+ | Al

where

gent in measure
e subset T. C ¢
inequality

m er‘ p
A / Z Xmn (f)/\n }_{ Z ‘}pkékﬁok(t)dt

T n=t p=n+1k=0

and

4;)" ' kan )\ Z Z(xpk&\@k()

JTe =0 p=m+1 k=0

By using Lemmas 6 and 7 we have

b(’T‘ {ll(), Aly ey

' Agn: l_l Z an Z(Y1nk€k‘Pk( ) T)(f))dt IS

Ts n=g k=0

/ Zan Am I Zamkékﬁok( ) l‘(t) ] dt <

n=0 k=0

gent in measure
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< Vh—a(A2 [ | (mk — Dérpr(t) + > Erpr(t) — f=(0) 2 dt)* <
ve k=0 k=0

m m -1 2 . e _
Sx/b—a[(/\mz(a - Vea) 2+ (2 3 e’ <
k=0 k k=m+1
Am -1 & 2 -
< Vimalsup A lom LS et (3 D))
k=0

k<m d k=m+1

From [7] (see Lemma 3) it follows that

’\mlamk 1‘

Therefore, we have ‘
Az =0( 2 |])- (8)

It follows from (6), (7) and (8) that the condition (5) is equivalent to
the following condition:

for every € > 0 there exist a measurable subset T, C e with mesT; >
b—a~— ¢ and a constant N > 0 such that the inequality

| ALz IS Nl =] (9)

holds uniformly for every decomposition (3) of ¢ and for all z € 12

If we denote
k-1

A;cn(t) = Z Xmn (8)An,

n=0

then we have

. m k
Al z= /T 3 Grubuion (AT (B)dt = B + O

k=1v=0

m m
By = Z:lgv . D ar AR (1)t

c k=v

m
o = Z aroopo(t) AL (1),

Te k=1

| ALz | = | G 1<) Bz 1<) Az |+ 1 G |
Since
m
| o |=] /T 3 X (0o (0o = i 0)Eopa(t)d |
“den=1
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and, therefore

| Con I< (Am=1 | @tmo — 1 +£11<21r>l()\k—1 | ag_1,0—1 |)/ [ €opo(2) | dt,

then from [7] (see Lemma 3) it follows that
Am | ame =1 ]= O(1).

So, we have that

Cim = 0(1)
and the inequality (9) holds iff

!BmZISN: I| =

(11)

By (10) we may consider B,, as a bounded linear functional in 12 for

fixed ¢ > 0 and m € N.

Using the principle of umform boundedness, we get that the inequality

(10) holds iff
| Bm [|= Oc(1)

“ Bm ”2: ZB;ZM/
v=1

Since

mu_/‘ Z LA SDu()

¢ k=u
then the (12) holds iff

m
N B2, =

v=0

/ / Z Pt Sou 7) Z (-ikUAk Zapu

T v=0 k=uv p=v

We have

m
D G A(E) = oy AT () + Z Xn(t
k=u

n=y

where

m .
AY = Gy — Qg

and, therefore

Z B, =B. +2B% + B3

v=0
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t) A, AT

nv

(12)




A

v

/ / 5 2ueuln) 2 m o) 4 (r)dar,

T. v=0

. m—1 0 (t)(p (T) m
= / / 3 P E e AT () D xmp(T)Ap Ay dtdr
JTe JTe = /\;’

p=v+l

me~1

/ / L ‘Pv( ) i% X,nn(t)/\nA;nu i me )/\ /lpvdth

n=v41 p=ul

On the other hand,

-2 -1 m ( )

= / / }_: an([)/\n 3 \mp Z LPU (Pv

T n=0 p=n-+1 v=n-4l “

v dtdr+

el

" = 2 ,]:L‘ ki t U 9
/ / S mOX () 3 202 ") e, dtdr,

[TE=dy]

-2 - P

g-‘ Yrn (£)An };: Z\"rnp(T)AP Z

JTe T, L;:() p=n+1 vz=n4l

m-2 -1

DI OIS PR IC2 Zfﬁ—w”””( ) am AT dtdr+

T =i} p=nti vz=(

fn—1

~ T " .
+ / Z xn (1) (TN T (AT ) didT
Jr.Jr, AZ

Now we have that

RS

1

NTpo—pt Bt o4

Lo Tret in ¥t
vzt

where

By, / / ( A7) o (U, (1) DI, dtdT
e. p= i gy g

Flom

where DT, is as defined in Theorem,

m—1

B, :/7 / > A (X (7)

rezzl)




/ / Z Xomn (t an Z Pull () —_—— 4m ) )\;)L dtdr.

T. =0 v=0
Since for v > n, AY = amy, then
B, + B;, = B,
where

BZn = / / Z Xmn () Xmn (T ZSOU You (T )(A )\4;?(.) dtdr =

e Le =g v=0

) Ap AT dtdr

m—1

‘ZZ /\nA,w (/ 0o () Xmn ()dt)? =

v=0 n=0

= Z Z An 4m’ l(/l Pyt )an(‘)df')g

n=y0 v=0

dtdr+

: amv

We have

'XNAZZI |/ /\n ! Crpy = | | /\n ! Oy = 1 1 .

AT Am didr I A, = Y Ay

nv

Therefore
e (2 4]

B ZZ/ o (1) X (1) dt)*

n=0v=0 T
AD dtdr+ - . . . ,
vev Using Lemma 8 and Bessel’s inequality, we get that

i m

S ot 0t = N2 S0 [ 4t (10017 <

ve=n 7T vl Y

< N? / ’\;}'(t)\';“;m(l)dl < Nf/ \nn (1)dt = Nimes,,,,, .

¢

123
Bl = O(N2> " mest,,,, = O(1)N2(b— a). (16)
n=()
It follows from (14), (15) and (16) that the condition (13) is equivalent to
the following condition:
> 0 there exist a measurable subset T, C ¢ with mesT. >
b—a — ¢ and a constant M, > 0 such that the inequality

for every e

m~1

l/ / T Xomn (% Z Xap )Z%(U%( ) D 1Fpu(h‘d7-].<:, Ne
vz

T. =l =n-4i




holds uniforinly for all decompositions (3) of e.
The proof of the necessity of Theorem is complete.

Sufficiency. Let the conditions 1° and 2° of Theorem be fulfilled. From
29 it follows that the condition (13) holds. As the condition (13) is equivalent
to the condition (9), then by 1° we have that the condition (8) holds. It
follows that the condition (9) is equivalent to the condition (5). Now, from
Lemma 2 it follows, that the condition 1° of Lemma 4 holds.
Since
Daerst) = An(1 = )i (0),

and from [7] (see Lemma 3) it follows that
lim Ay (cns — 1) = im A ()~ ankdrs — 1) =0,
' k=0

(because A is A?- convergence preserving) and the set {e; = (6;x) i € N} is
total in /4, then the condition 2% of Lemma 4 is fulfilled. In addition, the
series (1) is A*-summable a.e. in e for every « € (3. The proof is complete.

Remark. If we take in the inequality (A) in our Theorem ay, = 1 if
v < n and g,y = 0if v > n, then we get the following inequalities

m—2 m-—1

ve, = //kan S Z o (t sou( eoe(n) o 1< u

Te n=y0 p=n+1 v=p+1 15
and
b3 - Ol
m =] / / D xmp WA > Xmn(7) Z ol dtdr |< M.
Te p=1 n=0 v=p+1
On the other hand we can write the condition (4) in Theorem E in the form
U+ V5= 0e(1)
where
T n=>0 p—n+1 k=p+1
and

/ / "i:x” HAn Zx,np Z Pt ()dtd

Te p=1 p=0 k=n+1

f:n =/, +Ufn
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Ve, =VE +WE + WE,

fulfilled. From

) is equivalent , L ,
(8) holds. It , Ue, / / Xm,m—1(8)Xm m—1(T)AZ,_ 1%7&&(&,

§5) Now, from

//men Ao (e 30 5L ()dtd

Te n=1 k=n+1

j/ /[ Xmo (1 AoXmolT §£:¢% Lﬁd
0% = 0(1)( [ 1 om(®) |4 = 011,
P 3 (mo e 0)de)?

7. (1) Xm o () k(1))

22 / X7 (€)X (B (£) )2

([ x7.0xm (e 0)a1)”

, then by using Lemma 8 and Bessel’s inequality, we get that
in the form

W, < / X2, (X2, o(8)dt < b—a

we, < Z / X7 ()xZ, (t)dt = Z mesMy, = b — a.
n=1v¢ n=1

Therefore we get US, = O¢(1) and V¢, = O(1), i.e. the condition (4) is
fulfilled and we have that Theorem E follows from our Theorem.
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