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On the ideal structure and functional
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Jorma Arhippainen

Introduction. Let X be a completely regular space and A be a topo-
logical algebra over C. By C(X,A) we denote the algebra of all con-
tinuous functions from X to A and by A(A) the set of all continuous
nontrivial complex homomorphisms on A. (We shall assume that A(A)
is nonempty). The set A(A) endowed with the Gelfand topology will
be called the carrier space of A. If above A = C, then we shall write
C(X) instead of C(X, A). For each point ¢y in X and Y = X \ {to} let
C(Y)oo = {gv| 9 € C(X),9(to) = 0}. Moreover, for each z € A let Z be
the Gelfand function defined by Z(7) = 7(z) for each 7 € A(A) and let
A= {#z] = € A}. The mapping ¢ — 7 , for each = € A, will be called
the Gelfand transform. It is clear that the Gelfand transform is an algebra
homomorphism from A into C(A(A)).

The space A(C(X, A)) has been studied in many papers under various
kinds of topological assumptions on X , A and C(X, A). In this paper we
shall study the case in which A is a commutative locally m-pseudoconvex
algebra over the field of complex numbers. Such kind of algebras are
the generalizations of locally m-convex algebras (see [19] or [20]) and of
p-normed algebras studied in [26]. Let ry € (0,1] for each A € A and let
Q = {ga| A € A} be a family of r)-homogeneous submultiplicative semi-
norms defining a topology T(Q) on A. Let K be a compact cover of X
which is closed under finite unions. For each K € K let rx € (0,1] and
let Q(K,A) = {9k K € K,X € A} be a family of rgry-homogeneous
seminorms on C'(X, A) where

gk, 0 (f) = [sup x (F(£)]™,
teK

FEC(X,A), K€K and A€ A.

The topology on C(X, A) defined by the family Q(K,A) we denote by
T(K,A). If A does not have unit, let A, = A x C be an algebra with
an adjoint unit. We can define a topology on A, by using the family Q. =
{@x] A € A} of seminorms where Qi ((z, @)) = gx(z)+|e|™ for each (z, @) €
Ae and A € A. Tt can be shown that A(A.) = A(A)U{rw } where 7o, (2, @) =
a for all (z, o) € Ac (see [10], p. 3). Let Ny = kerqy, My = kerQ, for each
A € A and I be an ideal of A. The hull of I is the set h(I) = {r €
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A(A)| #(r) = 0,z € I}, the kernel of a nonempty subset £ of A(A) is the
set k(E) = {z € A|Z(r) = 0,7 € E} and k(E) = A if the subset E is
empty. Moreover, for a given K € K and A € A let Q(k.») be a seminorm
on ('(X, A.) defined by

Qk.n(f) = [sup @a(F())]™™
teK

for each f € C(X,A.). The family {Qx | K € KA € A} defines a
locally m-pseudoconvex topology on C(X, A,) denoted by Te(K,A). Now
(C(X,A), T(K,A)) is a closed ideal of (C(X, A), Te(K, A)). It is clear that
(C(X, A), T(K, A)) is not necessarily a maximal ideal of (C(X, Ae), Te(K, A)).
For a given qx € Q let px be a mapping from A into C defined by pa(z) =
[q)‘(r)]':? for each z € A. We shall say that (A,7(Q)) has the property
(LC), if p is a homogeneous seminorm on A for each A € A.

Given an element z of A, we denote the constant function, ¢+ z,t € X,
by fz. Thus f, is the unit element of C(X, A).

We shall say that (A,7(Q)) is a square algebra, if qx(z?) = ga(2)?
forall z € A and A € A (see [6) or [17]). It is known that each locally
m-pseudoconvex square algebra has the property (LC) {see [10}, Lemma
9). Furthermore, it can be shown that each square preserving seminorm
is automatically submultiplicative. This has been shown for homogeneous
seminorms in [8], Theorem 1. See also [11], Theorem 1. So if we deal
with locally convex square algebras we do not need any extra assumption
of multiplicativity of these seminorms.

Let now A be an algebra with an involution 2 — z*, x € A. Then we can
define an involution f = f* on C(X,A) by f*(t) = f(1)*, 1 € X. We shall
say that (A, T(Q)) with an involution is a star algebra if ¢x(zz") = g (z)?
for all z € A and A € A. Obviously each commutative stara lgebra is
a square algebra and thus is automatically locally m-pseudoconvex. It is
known that for a complete star algebra A we have A = Co(A(A)) (see
[10], Theorem 4). Such algebras were called full by [20]. There are also
noncomplete full star algebras (see [10], Example 3).

On the ideal structure of (C(X, A), T(K,A)). Let X be a completely
regular space and let (A, T(Q)) be a locally m-pseudoconvex algebra. It is
known that for a locally m-convex case ( that is; the case where rg =7y =1
for all K € K and X € A ) the carrier space A(C(X, A), T(K,A)) is homeo-
morphic to X x A(A) (see [6], Theorem 5, and [9], Theorem 2.2). The de-
scription of all closed ideals or all closed regular ideals of (C'(X, A), T(K, A))
has been studied in [6] and [9]. The ideal structure of C(X, A) has been
studied in many papers under various topological assumptions on X, A and
C(X, A) (see, for example, [1-6], [9], [12], [14-18], [21-23], [25]). In particu-
lar, in discribing the carrier space A(C(X, A)), the denseness of linear hull
LIC(X),A) = {1 aife,] @i €C(X), 2 € A,i=1,..,n,n €N} of
C(X) and A in (C(X,A),T(K,A)) has been used in most of the papers
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mentioned above (see, for example, [12], [13] or [8]). We shall now sketch
the proof where this denseness property has not been used. First we prove
the following useful result:

Lemma 1. Let (4, T(Q)) be a commutative locally m-pseudoconver al-
gebra, 1 be a closed ideal of it and Iy be a closed regular (proper) ideal of
(I, T(Q)r) where T(Q); denotes the subspace topology on I. Then there is
a closed reqular ideal I of (A, T(Q)) such that 1 ¢ Iy and Iy =1;N1. If Iy
is a closed mazimal regular ideal in (I,T(Q)1) , then I, 15 a closed mazimal
regular ideal in (A, T(Q)). i

Proof Let u be an identity element in I modulo Iy (i.e. ur —x € Iy
for all z € I) and define I; = {¢ € Al ua € Io}. Then I, satisfies the
demanded conditions. For a proof see [5], Lemma 3.2. Clearly I; is closed
ideal in (A,T(Q)) since the multiplication is continuous in (I, T(Q)r) and
in (A, T(Q)). If I is another closed regular ideal in (A,7T(Q)) such that
Io = I, N I, then for an arbitrary z € I, we have uz € LNT =1, NI C I;.
On the other hand we have uz — z € I;. (Note that u is also identity
in A modulo I, since u(uz — 2) = u(uz) — uz € I for all z € A). So
we have ¥ = ux — (ux — ) € I, and thus Iy C ;. Suppose that Ip 1s
a closed maximal regular ideal of (I,7(Q)). Let now M be an arbitrary
regular ideal of (A,7(Q)) such that I; C M. Then [y = LNnI C MNI
and from the maximality of Iy we get that M NI = [y or M NI = 1. This
latter condition is not possible, whence M NI = I NI = . Therefore
M C I;. Consequently, M = I; and thus I; is a closed maximal regular
ideal of (A, T(P)}).

Corollary 1. Let (A, T(Q)) be a commutative locally m-pseudoconver
algebra the carrier space A(A) of which is nonempty and I be a closed ideal
of it. If A(I) # ¥ and w € A(I) then there is a unique T € A(A) such that
N = w. ; s

Proof. Let w € A([I) be given, then kerw is a closed maximal regular
ideal of (I.T(Q)r). By Lemma 1 there is an unique closed maximal regular
ideal Iy of (4, T(Q)) such that kerw = I; N /. If we now choose an element
7 from A(A,T(Q)) such that kerr = I, we capn see that 7 satisfies the
demanded condition. . ‘

-Let now X and 4 be as above; J be an ideal of ('(X, A), t be a given
point of X and I(t) = cl({f(t)| f € J}). Here ¢l means the closure in
(A, T(Q)) with respect to the topology T(Q).  Now it is easy to see that
either I(t) is a closed proper ideal of (A, T(Q)) or otherwise I(t) = A. Note
that if ./ is a regular ideal and I(t) is a proper ideal of A, then I(t) is also a
regular ideal. Following Theorem is useful for our purposes to describe the
ideal structure of (C'(X, A), T(K, A)).

Theorem 1. Let X be a completely regular space, (A, T(Q)) be a com-
mutative locally m-pseudoconver algebra with unit which has the property
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(LC) and J be a closed ideal of (C(X,A),T(K,A)). Then there 1s at least
one point in X such that I(t) is a closed proper ideal of (4,T(Q))-

Proof. Suppose that I(t) = A for allt € X. Let KeK,AeA z€ A,
€ > 0 be given and e be the unit element of A. Now for each { € K there
is fi, € J such that

pa (oo (t) — €) = pa(fio (to) = Folto)) < €T .

Since fi, and f. are continuous at to, there is a neighbourhood U(to) of o
in X such that .
Pa(fro(t) — felt)) < ek (2)

for each t € U(to). The sets {U(to)| to € K} form an open cover of the
compact set K. So there is a finite subcover Ui,...,Un. Let f; be a such
element of J for which inequality (2) holds for each i = 1,...,n. By Lemma
2.1.1 of [13] we can pick up elements o; € C(X) wherei=1,..,n such that
0 < a;(t) < 1forallt € K, suppa; C Us and Y i, ai(t) = Lforallt € K.
If F=Y7 , a:fi, then F € J and it is easy to see that

pA(F(t) = folt)) < €7

for all t € K. Thus we get q(x x){F — fe) < € which shows that f. € cl(J) =
J. Hence, J = C(X, A) and we get a contradiction.

Remark. Above we need the assumption that (A, T(Q)) has the property
(LC), otherwise the use of partition of unity in the proof would not be
possible (compare [4], Theorem 1, and [24], Theorem 1).

For a given t € X and 7 € A(A) let ¢(;,r) be a mapping from C(X, A)
into C defined by ¢ )(f) = 7(f(t)) for each f € C(X, A). Clearly é(:,r) €
A(C(X, A)).

Lemma 2. Let X be a completely regular space and (A, T'(Q)) be a locally
m-pseudoconver algebra with the property (LC). If N is a closed mazimal
reqular ideal of (C(X, A), T(K,A)), then there are unique points t € X and
T € A(A) such that N = kerd; 7).

Proof. If A has unit, then this result can be shown just like as it has
been done in the locally m-convex case (see [6], Lemma 4). If A does
not have unit, then we study C(X, A) instead of C(X,4). 1t 1s known
that C(X,A) is isomorphie with a closed ideal of C(X, A.) by Corollary
1. Therefore there is a maximal closed ideal N of (C(X,Ae),Te(IC,A))
for which N = N. N C(X,A). Since C(X,Ac) has unit, then we have
N, = kergy; ;) for some t € X and 7 € A(A). As A(Ae) = A(A) U {7},
then 7 # Too, but otherwise we would have ¢,y (f) =0forall f € C(X, A).
It implies that N = C(X, A), which is not possible.

We can now define a mapping ¢ : X x A(A) = A(C(X, A)) by
p(t,7) = b, 3)
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Theorem 2. Let X be a completely regular space, (A, T(Q)) be a locally
m-pseudoconver algebra with the property (LC). Then the mapping ¢ de-
fined in (3) is a bijection from X x A(A) onto A(C(X, A)). The inverse
mapping ¢~' of it is continuous, but ¢ itself is continuous, if the carrier
space A(A) of A is locally equicontinuous.

Proof. For a proof see [6], Theorem 5 (see also [1] and [2]).

Corollary 2. Let X be a completely regular space and (A, T(Q)) be a
locally m-pseudoconver algebra with the property (LC). If the carrier space
A(A) of A is locally equicontinuous, then the carrier space A(C(X, A)) of
the algebra (C(X, A), T(K,A)) is homeomorphic to X x A(A).

Let I be an ideal of A and let t be a given point of X. We define an ideal
J(r,’]) of (/(X, A) by J(t.,I) = {f S C(‘«Y,A)I f(t) & I}. 1t is clear that J(t’])
is a closed ideal of (C(X, A),T(K,A)). if I is a closed ideal of (4,T(Q)).

Theorem 3. Let X be a completely regular space and (A, T(Q)) be a
locally in-pseudoconver algebra with the property (LC). If J 1s a proper
closed regular ideal of (C(X,A), T(K,A)), then there is a subset E of X
and a family {I(t)| t € EY} of proper closed regular ideals of (A, T(Q)) such
that J = Niep e, 10t))-

Proof. For a proof see [6], Theorem 8.

The set E above is not necessarily closed (see [6], p. 315). Several
conditions that quarantee E to be closed have been given in {6] (Theorem
9, p. 316).

On functional representation of (C(X,A), T(K,A)). Next we shall
consider the Gelfand functions of (C(X, A),T(Q,A)). If f € C(X, A), then
its Gelfand function is defined by f(qﬁ) = ¢(f) for each ¢ € A(C(X, A)).
Moreover, if (A,T'(Q)) has the property (LC), then by Theorem 3 each
¢ € A(C(X, A)) is of the form ¢ = ¢(; ) for some t € X and 7 € A(A). So

o~

F(8) = F(.m) = dien(f) = 7(f(1)).

This means that we can consider the Gelfand function f also as a complex
valued function defined on X x A(A). From now let F be the function
defined by f(t,7) = f(¢u.n) = 7(f(t)) for each (t,7) € X x A(A). If
A(A) is locally equicontinuous, then f € C'(X x A(A)) (see [12], Theorem
4, or [16], Lemma 3). Thus, if A(A) is locally equicontinuous, the Gelfand
transform f ]?, f e C(X,A), is an algebra homomorphism from C'(X, A)
into C'(X x A(A4)).

We shall now provide (X x A(A)) with a locally m-pseudoconvex topol-
ogy that makes the Gelfand transform of it continuous.

Lemma 3. Let (A, T(Q)) be a commutative locally m-pseudoconver alge-
bra with the property (L('). Then A(A) = U{h(N,)| A € A}, where h(Ny)




is a locally compact subset (a compact subset, if A has unit) for each A € A.
Furthermore, if T € h(N)), then |7(z)|™ < qa(z) for all z € A.

Proof. For a proof see [10], Theorem 1.

Let now A be an algebra without unit and A, be the algebra obtained
from A by adjoining the unit element. Let T.(Q) be the topology on A.
defined by the seminorms {@x]| A € A} where Qi (z, @) = ga(z) + |a|™ for
each (z,a) € A.. Denote by h, the hull operation on A.. Since My =
kerQx = {(z,0)] = € Ny} we see that ho(Mx) = h(N)) U{7o}. Each
he(M)) is compact and thus h.(My) is a one point compactification of
h(N»). Note that h(N)) is compact if 7o, is an isolated point of hA(Ny).

Since we assumed that the family P = {g;> | A € A} is directed, then
{R(Nx)] A € A} is a locally compact cover of A(A) by Lemma 3, which is
closed under finite unions (see also [10], Theorem 1). We can now equip A

~

with a topology T'(Q) generated by the family of seminorms A={{|re
A} where

n(@)=[ sup |z(r)||™
rEh(N»)

for each 7 € A and A € A. It is easy to see that each gy € Q is rx-homo-
geneous. By Lemma 3 we have ¢)(7) < ¢gx(z) for all ¢ € A and A € A. This
shows that the Gelfand mapping z 7 is continuous from (A4, T(Q)) onto
(A, T(Q)). Note that A C Ceo(A(A)) = {g1aca)| 9 € C(A(A)), 9(Te0) =
0} (it is easy to see that Coo (A(A)) = C(A(A)), if A has unit).

~

We can consider C(X,A) as an ideal of C(X,A.). Since f(t,70) =
Too (f(t)) = 0 for all £ € X, we can see that the functions of C'(X, A)"vanish
on the slice X x {7o}. Therefore

C(X,A)"C k(X x{r}) = {9 € C(X xA(Ae))| 9(t, 7o) =0 for all t € X}
We shall put
Coo(X x A(A)) = {g1xxa(a)| 9 € C(X x (A(Ae)), g € k(X x {7 }) }.

So we have C(X, A)"C Cw(X x A(A)). If A does not have unit, then we
could also consider the algebra C(X, A). instead of the algebra C'(X, Ac).
But for our purposes it is better to study the latter algebra. Note that in
genera/.\l these two algebras are not identical. To show that the mapping
f— f from (C(X, A),T(K)) into (C(X x A(A)),T(K x A)) is continuous
we need the following results:

Lemma 4. Let X be a completely regular space and (A,T(Q)) be a
locally m-pseudoconver algebra with the property (LC). Then we have that
{@,7)| é(t,r) € M(Nk,))} = K x h(Ny). Furthermore, if A(A) is locally
equicontinuos, then h(N(k »)) and K x h(N)) are homeomorphic.

Proof. See [6], Corollary 10.
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Lemma 5. Let X be a completely regular space and {A,T(Q)) be a
locally m-pseudoconver algebra with the property (LC). Then the family
{K x h(N»)| K € K,A € A} forms a locally compact cover of X x A( )
and if (t,7) € K x h(N,\) then

¢,y (DI = Ir(FEN™™ < g0 ()

for all f € C(X, A).
Proof. This result follows from Lemmas 3 and 4.

We shall define now a locally m—pseudoconvex topology T(K x A) on
Coo (X x A(A)) by using the family Q(IC A) = {Gx | K € K,A € A} of
seminorms where

~

axn(f)=[ sup
(t,7)EK xh(Nx)

lg(¢, T[]

for each ¢ € Coo(X x A(A)). Since C(X,A)" C Ceo(X x A(A)) we can
define the topology T(K x A) also on C(X, A)” and the Gelfand mapping
[ f, with f € (/(X,A), is a continuous algebra homomorphism from
(C(X, A), T(K,A)) into (Coe (X x A(A)),T(K x A)) by Lemma 5. Thus we
have ‘

Theorem 5. Let X be a completely reqular space and (A,T(Q)) be
a locally m-pseudoconver algebra with the property (LC). If the carrier
space A(A) of A is locally equicontinuous, then the Gelfand mapping from
(C(X,A), T(K,A)) into (Coo (X x A(A)), T(K x A)) 15 continuous.

Proof. For the proof see Theorem 3 of [10].

Corollary 3. Let X be a completely regular space and (A, T(Q)) be a
locally pseudoconver algebra which carrier space A(A) is locally equicontinu-
ous. If (A, T(Q)) is a square algebra, then algebras (C(X, A), T(K,A)) and
(C(X,A)",T(K x A)) are topologically isomorphic.

Next we shall consider locally pseudoconvex star algebras. As it was
noted earlier, each (commutative ) star algebra (A4, T(Q)) is a square algebra
and thus is automatically locally m-pseudoconvex and has the property
(LC). We shall now consider conditions under which

C(X, A= Coo (X x A(A)), @
g (f) = Ef(K,,\)(J?) (5)

forall f € C(X,A), K € K and X € A.

Theorem 7. Let X be a completely regular space and (A,T(Q)) be a
full locally pseudoconver star algebra with the locally equicontinuous carrier
space A(A). Then the Gelfand transform of (('(X A),T(K,A)) has the
properties (4) and (5).
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Proof. Since each commutative locally pseudoconvex star algebra is also
a square algebra it follows that (C(X, A), T(K, A)) has the property (5). To
prove (4) we first assume that A has unit. Let g € C(X x A(A)) be arbitrary.
For each fixed ¢y in X the function g;,, defined by g;,(7) = g({o, 7) for each
T € A(A), belongs to C(A(A)) = A. Thus there is an element z,, € A
such that g, = Z;,. Letting now ¢y vary thorough all the points of X we
get a function f from X into A defined by f(t) = z: foreach t € X. It
can be shown that f is continuous (for a detailed proof see [7], Theorem
3). Since f(t,7) = Z,(r) = g(t, 7) for all (t,7) € X x A(A) we see that
f: g. Suppose now that A does not have unit. Let g € C, (X x A(A)) be
arbitrary. Now g can be considered as a function of k(X x {7, }) (we must
only define g((¢,7.)) = 0 for each ¢ € X). Since A is full it follows that
A, = C(A(Ag)) (see [10], Theorem 5). Just like above we get a function
F(t) = (21, 04) , for each ¢t € X, such that f € C(X, Ae) and f: g. Since
g(t, 7o) = 0 for all t € X, we see that o, = 0. Thus f(t) = z; € A which
proves (4).

Corollary 4. Suppose that the hyphotheses of Theorem 7 are valid. Then
C(X,A)"= Cu(A(C(X, A))).

In the particular case, when (A, T(Q)) is a full locally pseudoconvex star
algebra, the description of all closed ideals of (C'(X, A), T(K, A)) are given
just like in the locally convex case by using different kinds of slice ideals.
This has been done in [7], pp. 388-391, for the case when A is a locally
convex algebra with unit. However the same type of description for the
locally pseudoconvex algebra (C'(X, A), T'(K, A)) with or without unit is also
possible. Let now (A, T(Q)) be a full locally pseudoconvex star algebra and
J be a closed proper (not necessarily regular) ideal of (C(X, 4), T(K, A)).
Then J = {f| f € J} is a closed ideal of (Coo(X x A(A)), T(K x A))
and we can consider h(J) as a closed subset of X x A(A). Now J can
be studied also as a closed ideal of (C(X, A¢), T.(K,A)). By Theorem 7
and Lemma 4 of {10] there is a closed subset F of X x A(A.) such that
J={9€C(X x A(A))| gt. 7) =0.(t,7) € F}. As F = h(T) U X x {10},
then J = k(h(f)) from which it follows that k(k(J)) = J. We have proved
the following result.

Lemma 6. Suppose that the hyphotheses of Theorem 7 are valid. If J
is a closed ideal of (C(X, A),T(K,A)), then k(h(J)) = J.

Theorem 8. Let X be a completely regular space, (A, T(Q)) be a full
locally pseudoconvez star algebra with the nonempty locally equicontinuous
carrier space A(A) and J be a closed ideal of (C(X, A), T(K,A)). Then there
is a subset E of X and a family I(t), t € E of closed ideals of (A, T(Q))
such that J = ﬂtEEJ(t,I(t,))'

Proof. Let E = {t € X| ¢,y € h(J)}. It can be shown that h(J) =

10|t 7) € h(N)} and h(J) = {(t,7)| ¢ = ¢(s.r) € h(J)} (for a proof
see [7], Lemma 4.2). So we have E = {t € X| (t,7) € h(f)} Sitce J #
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C(X,A) we have E # (). Moreover, by Theorem 7 and Lemma 6 we have
k(h(J)) = J, and thus also k(h(J)) = J. Now for each t € E let E;, =
h(J) 0 {t} x A(A)}. It is clear that each k(E:), t € E, is a proper closed
ideal of (A,7(Q)) and J = NiepJit,1()) (for a detailed proof see [5], pp.
53-54).

Corollary 5. Suppose that the hyphotheses of Theorem 8 are valid. Then
cd({f(t)| f € J})=k(E;) forallt € E where B, = h(J)N{t} xA(A),t € E.
Moreover, if J is regular, then 1., is an isolated point of E; for allt € E.

Proof. The first claim is obvious and the second claim follows from
Theorem 6 of [10].

The 1deals J(t k(E,)) In Theorem 8 are slice ideals of the first type defined
in [7], p. 388. By using same kind of technics that was used in [5] (Theorem
4.2) and [7] (Theorem 4) it can be shown that under the hyphotheses of
Theorem 8 for each closed ideal (not necessarily regular) there are a subset
Ey C A(A) and a family J,, 7 € Ey, of slice ideals of the second type (for
a definition see [5] or [7]) such that J = N,¢g,J,. Furthermore, if 4 is an
algebra without unit and J is regular, then T, is an isolated point of Ep
(this condition follows from Corollary 5). Note that in the proof of Theorem
8 in describing all (and not just regular) closed ideals we have used technics
that differs from the technics for the corresponding results proved in [22]
and [23]. The original technics used in those papers are due to Kaplansky
(see [17]).
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