développements

lath. 5 (1935),

ly of orthogonal

unctional series 46 (1989), 150-

ядов, Таллин,

в λ-ограниченsed **277** (1971),

йные операто-

e в l_2 , Матем.

тем суммиру-

имости и сум-Ann. Univ. Sci.

в почти всюду,

х рядов почти

August 15, 1995

ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA Volume 1, 1996

On the ideal structure and functional representation of the topological algebra C(X,A)

Jorma Arhippainen

Introduction. Let X be a completely regular space and A be a topological algebra over $\mathbb C$. By C(X,A) we denote the algebra of all continuous functions from X to A and by $\Delta(A)$ the set of all continuous nontrivial complex homomorphisms on A. (We shall assume that $\Delta(A)$ is nonempty). The set $\Delta(A)$ endowed with the Gelfand topology will be called the carrier space of A. If above $A = \mathbb C$, then we shall write C(X) instead of C(X,A). For each point t_0 in X and $Y = X \setminus \{t_0\}$ let $C(Y)_{\infty} = \{g_{|Y} | g \in C(X), g(t_0) = 0\}$. Moreover, for each $x \in A$ let \widehat{x} be the Gelfand function defined by $\widehat{x}(\tau) = \tau(x)$ for each $\tau \in \Delta(A)$ and let $\widehat{A} = \{\widehat{x} | x \in A\}$. The mapping $x \mapsto \widehat{x}$, for each $x \in A$, will be called the Gelfand transform. It is clear that the Gelfand transform is an algebra homomorphism from A into $C(\Delta(A))$.

The space $\Delta(C(X,A))$ has been studied in many papers under various kinds of topological assumptions on X, A and C(X,A). In this paper we shall study the case in which A is a commutative locally m-pseudoconvex algebra over the field of complex numbers. Such kind of algebras are the generalizations of locally m-convex algebras (see [19] or [20]) and of p-normed algebras studied in [26]. Let $r_{\lambda} \in (0,1]$ for each $\lambda \in \Lambda$ and let $Q = \{q_{\lambda} | \lambda \in \Lambda\}$ be a family of r_{λ} -homogeneous submultiplicative seminorms defining a topology T(Q) on A. Let \mathcal{K} be a compact cover of X which is closed under finite unions. For each $K \in \mathcal{K}$ let $r_K \in (0,1]$ and let $Q(\mathcal{K},\Lambda) = \{q_{(K,\lambda)} | K \in \mathcal{K}, \lambda \in \Lambda\}$ be a family of $r_K r_{\lambda}$ -homogeneous seminorms on C(X,A) where

$$q_{(K,\lambda)}(f) = [\sup_{t \in K} q_{\lambda}(f(t))]^{r_K},$$

 $f \in C(X, A)$, $K \in \mathcal{K}$ and $\lambda \in \Lambda$.

The topology on C(X,A) defined by the family $\mathcal{Q}(\mathcal{K},\Lambda)$ we denote by $T(\mathcal{K},\Lambda)$. If A does not have unit, let $A_e = A \times \mathbb{C}$ be an algebra with an adjoint unit. We can define a topology on A_e by using the family $\mathcal{Q}_e = \{Q_{\lambda} | \lambda \in \Lambda\}$ of seminorms where $Q_{\lambda}((x,\alpha)) = q_{\lambda}(x) + |\alpha|^{r_{\lambda}}$ for each $(x,\alpha) \in A_e$ and $\lambda \in \Lambda$. It can be shown that $\Delta(A_e) = \Delta(A) \cup \{\tau_{\infty}\}$ where $\tau_{\infty}(x,\alpha) = \alpha$ for all $(x,\alpha) \in A_e$ (see [10], p. 3). Let $N_{\lambda} = \ker q_{\lambda}$, $M_{\lambda} = \ker Q_{\lambda}$ for each $\lambda \in \Lambda$ and I be an ideal of A. The hull of I is the set $h(I) = \{\tau \in A_e \in A_e$

 $\Delta(A)|\widehat{x}(\tau)=0, x\in I\}$, the kernel of a nonempty subset E of $\Delta(A)$ is the set $k(E)=\{x\in A|\widehat{x}(\tau)=0, \tau\in E\}$ and k(E)=A if the subset E is empty. Moreover, for a given $K\in\mathcal{K}$ and $\lambda\in\Lambda$ let $Q_{(K,\lambda)}$ be a seminorm on $C(X,A_e)$ defined by

$$Q_{(K,\lambda)}(f) = [\sup_{t \in K} Q_{\lambda}(f(t))]^{r_K}$$

for each $f \in C(X, A_e)$. The family $\{Q_{(K,\lambda)} | K \in \mathcal{K}, \lambda \in \Lambda\}$ defines a locally m-pseudoconvex topology on $C(X, A_e)$ denoted by $T_e(\mathcal{K}, \Lambda)$. Now $(C(X, A), T(\mathcal{K}, \Lambda))$ is a closed ideal of $(C(X, A_e), T_e(\mathcal{K}, \Lambda))$. It is clear that $(C(X, A), T(\mathcal{K}, \Lambda))$ is not necessarily a maximal ideal of $(C(X, A_e), T_e(\mathcal{K}, \Lambda))$. For a given $q_{\lambda} \in \mathcal{Q}$ let p_{λ} be a mapping from A into \mathbb{C} defined by $p_{\lambda}(x) = [q_{\lambda}(x)]^{\frac{1}{r_{\lambda}}}$ for each $x \in A$. We shall say that $(A, T(\mathcal{Q}))$ has the property (LC), if p_{λ} is a homogeneous seminorm on A for each $\lambda \in \Lambda$.

Given an element x of A, we denote the constant function, $t \mapsto x$, $t \in X$, by f_x . Thus f_e is the unit element of C(X, A).

We shall say that (A, T(Q)) is a square algebra, if $q_{\lambda}(x^2) = q_{\lambda}(x)^2$ for all $x \in A$ and $\lambda \in \Lambda$ (see [6] or [17]). It is known that each locally m-pseudoconvex square algebra has the property (LC) (see [10], Lemma 9). Furthermore, it can be shown that each square preserving seminorm is automatically submultiplicative. This has been shown for homogeneous seminorms in [8], Theorem 1. See also [11], Theorem 1. So if we deal with locally convex square algebras we do not need any extra assumption of multiplicativity of these seminorms.

Let now A be an algebra with an involution $x \mapsto x^*$, $x \in A$. Then we can define an involution $f \mapsto f^*$ on C(X,A) by $f^*(t) = f(t)^*$, $t \in X$. We shall say that (A,T(Q)) with an involution is a star algebra if $q_{\lambda}(xx^*) = q_{\lambda}(x)^2$ for all $x \in A$ and $\lambda \in \Lambda$. Obviously each commutative stara lgebra is a square algebra and thus is automatically locally m-pseudoconvex. It is known that for a complete star algebra A we have $\widehat{A} = C_{\infty}(\Delta(A))$ (see [10], Theorem 4). Such algebras were called full by [20]. There are also noncomplete full star algebras (see [10], Example 3).

On the ideal structure of $(C(X, A), T(K, \Lambda))$. Let X be a completely regular space and let (A, T(Q)) be a locally m-pseudoconvex algebra. It is known that for a locally m-convex case (that is, the case where $r_K = r_{\lambda} = 1$ for all $K \in \mathcal{K}$ and $\lambda \in \Lambda$) the carrier space $\Delta(C(X, A), T(K, \Lambda))$ is homeomorphic to $X \times \Delta(A)$ (see [6], Theorem 5, and [9], Theorem 2.2). The description of all closed ideals or all closed regular ideals of $(C(X, A), T(K, \Lambda))$ has been studied in [6] and [9]. The ideal structure of C(X, A) has been studied in many papers under various topological assumptions on X, A and C(X, A) (see, for example, [1-6], [9], [12], [14-18], [21-23], [25]). In particular, in discribing the carrier space $\Delta(C(X, A))$, the denseness of linear hull $L(C(X), A) = \{\sum_{i=1}^{n} \alpha_i f_{x_i} | \alpha_i \in C(X), x_i \in A, i = 1, ..., n, n \in \mathbb{N}\}$ of C(X) and A in $(C(X, A), T(K, \Lambda))$ has been used in most of the papers

 $\Delta(A)$ is the subset E is a seminorm

A) defines a \mathcal{K}, Λ). Now is clear that (x, λ) by (x, λ) by (x, λ) he property

 $\mapsto x, t \in X,$

 $q_{\lambda}(x)^{2}$ each locally 10], Lemma g seminorm omogeneous o if we deal assumption

Then we can X. We shall x^*) = $q_{\lambda}(x)^2$ ara lgebra is onvex. It is $(\Delta(A))$ (see here are also

a completely algebra. It is $r_K = r_{\lambda} = 1$ (1) is homeo-2.2). The de-A), $T(\mathcal{K}, \Lambda)$) A) has been on X, A and . In particuof linear hull x, $x \in \mathbb{N}$ of the papers

mentioned above (see, for example, [12], [13] or [8]). We shall now sketch the proof where this denseness property has not been used. First we prove the following useful result:

Lemma 1. Let (A, T(Q)) be a commutative locally m-pseudoconvex algebra, I be a closed ideal of it and I_0 be a closed regular (proper) ideal of $(I, T(Q)_I)$ where $T(Q)_I$ denotes the subspace topology on I. Then there is a closed regular ideal I_1 of (A, T(Q)) such that $I \not\subset I_1$ and $I_0 = I_1 \cap I$. If I_0 is a closed maximal regular ideal in $(I, T(Q)_I)$, then I_1 is a closed maximal regular ideal in (A, T(Q)).

Proof. Let u be an identity element in I modulo I_0 (i.e. $ux - x \in I_0$ for all $x \in I$) and define $I_1 = \{x \in A | ux \in I_0\}$. Then I_1 satisfies the demanded conditions. For a proof see [5], Lemma 3.2. Clearly I_1 is closed ideal in (A, T(Q)) since the multiplication is continuous in $(I, T(Q)_I)$ and in (A, T(Q)). If I_2 is another closed regular ideal in (A, T(Q)) such that $I_0 = I_2 \cap I$, then for an arbitrary $x \in I_2$ we have $ux \in I_2 \cap I = I_1 \cap I \subset I_1$. On the other hand we have $ux - x \in I_1$. (Note that u is also identity in A modulo I_1 , since $u(ux - x) = u(ux) - ux \in I_0$ for all $x \in A$). So we have $x = ux - (ux - x) \in I_1$, and thus $I_2 \subset I_1$. Suppose that I_0 is a closed maximal regular ideal of (I, T(Q)). Let now M be an arbitrary regular ideal of (A, T(Q)) such that $I_1 \subset M$. Then $I_0 = I_1 \cap I \subset M \cap I$ and from the maximality of I_0 we get that $M \cap I = I_0$ or $M \cap I = I$. This latter condition is not possible, whence $M \cap I = I_1 \cap I = I_0$. Therefore $M \subset I_1$. Consequently, $M = I_1$ and thus I_1 is a closed maximal regular ideal of (A, T(P)).

Corollary 1. Let (A, T(Q)) be a commutative locally m-pseudoconvex algebra the carrier space $\Delta(A)$ of which is nonempty and I be a closed ideal of it. If $\Delta(I) \neq \emptyset$ and $\omega \in \Delta(I)$ then there is a unique $\tau \in \Delta(A)$ such that $\tau_I = \omega$.

Proof. Let $\omega \in \Delta(I)$ be given, then $\ker \omega$ is a closed maximal regular ideal of $(I, T(Q)_I)$. By Lemma 1 there is an unique closed maximal regular ideal I_1 of (A, T(Q)) such that $\ker \omega = I_1 \cap I$. If we now choose an element τ from $\Delta(A, T(Q))$ such that $\ker \tau = I_1$, we can see that τ satisfies the demanded condition.

Let now X and A be as above, J be an ideal of C(X,A), t be a given point of X and $I(t) = cl(\{f(t)| f \in J\})$. Here cl means the closure in (A, T(Q)) with respect to the topology T(Q). Now it is easy to see that either I(t) is a closed proper ideal of (A, T(Q)) or otherwise I(t) = A. Note that if J is a regular ideal and I(t) is a proper ideal of A, then I(t) is also a regular ideal. Following Theorem is useful for our purposes to describe the ideal structure of $(C(X,A),T(K,\Lambda))$.

Theorem 1. Let X be a completely regular space, (A, T(Q)) be a commutative locally m-pseudoconvex algebra with unit which has the property

(LC) and J be a closed ideal of $(C(X,A),T(\mathcal{K},\Lambda))$. Then there is at least one point in X such that I(t) is a closed proper ideal of $(A,T(\mathcal{Q}))$.

Proof. Suppose that I(t) = A for all $t \in X$. Let $K \in \mathcal{K}$, $\lambda \in \Lambda$, $x \in A$, $\epsilon > 0$ be given and e be the unit element of A. Now for each $t_0 \in K$ there is $f_{t_0} \in J$ such that

$$p_{\lambda}(f_{t_0}(t_0)-e)=p_{\lambda}(f_{t_0}(t_0)-f_e(t_0))<\epsilon^{\frac{1}{r_Kr_{\lambda}}}.$$

Since f_{t_0} and f_e are continuous at t_0 , there is a neighbourhood $U(t_0)$ of t_0 in X such that

 $p_{\lambda}(f_{t_0}(t) - f_e(t)) < \epsilon^{\frac{1}{r_K r_{\lambda}}}$ (2)

for each $t \in U(t_0)$. The sets $\{U(t_0)|\ t_0 \in K\}$ form an open cover of the compact set K. So there is a finite subcover $U_1,...,U_n$. Let f_i be a such element of J for which inequality (2) holds for each i=1,...,n. By Lemma 2.1.1 of [13] we can pick up elements $\alpha_i \in C(X)$ where i=1,...,n such that $0 \le \alpha_i(t) \le 1$ for all $t \in K$, supp $\alpha_i \subset U_i$ and $\sum_{i=1}^n \alpha_i(t) = 1$ for all $t \in K$. If $F = \sum_{i=1}^n \alpha_i f_i$, then $F \in J$ and it is easy to see that

$$p_{\lambda}(F(t) - f_{e}(t)) < \epsilon^{\frac{1}{r_{K}r_{\lambda}}}$$

for all $t \in K$. Thus we get $q_{(K,\lambda)}(F - f_e) < \epsilon$ which shows that $f_e \in cl(J) = J$. Hence, J = C(X, A) and we get a contradiction.

Remark. Above we need the assumption that (A, T(Q)) has the property (LC), otherwise the use of partition of unity in the proof would not be possible (compare [4], Theorem 1, and [24], Theorem 1).

For a given $t \in X$ and $\tau \in \Delta(A)$ let $\phi_{(t,\tau)}$ be a mapping from C(X,A) into \mathbb{C} defined by $\phi_{(t,\tau)}(f) = \tau(f(t))$ for each $f \in C(X,A)$. Clearly $\phi_{(t,\tau)} \in \Delta(C(X,A))$.

Lemma 2. Let X be a completely regular space and (A, T(Q)) be a locally m-pseudoconvex algebra with the property (LC). If N is a closed maximal regular ideal of $(C(X, A), T(K, \Lambda))$, then there are unique points $t \in X$ and $\tau \in \Delta(A)$ such that $N = \ker \phi_{(t,\tau)}$.

Proof. If A has unit, then this result can be shown just like as it has been done in the locally m-convex case (see [6], Lemma 4). If A does not have unit, then we study $C(X, A_e)$ instead of C(X, A). It is known that C(X, A) is isomorphic with a closed ideal of $C(X, A_e)$ by Corollary 1. Therefore there is a maximal closed ideal N_e of $(C(X, A_e), T_e(K, \Lambda))$ for which $N = N_e \cap C(X, A)$. Since $C(X, A_e)$ has unit, then we have $N_e = \ker \phi_{(t,\tau)}$ for some $t \in X$ and $\tau \in \Delta(A_e)$. As $\Delta(A_e) = \Delta(A) \cup \{\tau_\infty\}$, then $\tau \neq \tau_\infty$, but otherwise we would have $\phi_{(t,\tau)}(f) = 0$ for all $f \in C(X, A)$. It implies that N = C(X, A), which is not possible.

We can now define a mapping $\varphi: X \times \Delta(A) \mapsto \Delta(C(X, A))$ by

$$\varphi(t,\tau) = \phi_{(t,\tau)} \tag{3}$$

re is at least (Q)).

 $\in \Lambda, x \in A, t_0 \in K \text{ there}$

 $d U(t_0) \text{ of } t_0$

(2)

cover of the f_i be a such By Lemma , n such that for all $t \in K$.

 $f_e \in cl(J) =$

the property vould not be

 $\operatorname{rom} C(X, A)$ early $\phi_{(t,\tau)} \in$

)) be a locally sed maximal $ts\ t\in X$ and

like as it has
If A does
It is known
by Corollary $\{a_e\}, T_e(\mathcal{K}, \Lambda)\}$ hen we have $\{A \in A \cup \{\tau_\infty\}, f \in C(X, A)\}$

(3)

) by

for each $(t, \tau) \in X \times \Delta(A)$.

Theorem 2. Let X be a completely regular space, (A, T(Q)) be a locally m-pseudoconvex algebra with the property (LC). Then the mapping φ defined in (3) is a bijection from $X \times \Delta(A)$ onto $\Delta(C(X, A))$. The inverse mapping φ^{-1} of it is continuous, but φ itself is continuous, if the carrier space $\Delta(A)$ of A is locally equicontinuous.

Proof. For a proof see [6], Theorem 5 (see also [1] and [2]).

Corollary 2. Let X be a completely regular space and (A, T(Q)) be a locally m-pseudoconvex algebra with the property (LC). If the carrier space $\Delta(A)$ of A is locally equicontinuous, then the carrier space $\Delta(C(X, A))$ of the algebra $(C(X, A), T(K, \Lambda))$ is homeomorphic to $X \times \Delta(A)$.

Let I be an ideal of A and let t be a given point of X. We define an ideal $J_{(t,I)}$ of C(X,A) by $J_{(t,I)} = \{f \in C(X,A) | f(t) \in I\}$. It is clear that $J_{(t,I)}$ is a closed ideal of $(C(X,A),T(\mathcal{K},\Lambda))$, if I is a closed ideal of $(A,T(\mathcal{Q}))$.

Theorem 3. Let X be a completely regular space and (A, T(Q)) be a locally m-pseudoconvex algebra with the property (LC). If J is a proper closed regular ideal of $(C(X, A), T(K, \Lambda))$, then there is a subset E of X and a family $\{I(t)|\ t \in E\}$ of proper closed regular ideals of (A, T(Q)) such that $J = \bigcap_{t \in E} J_{(t,I(t))}$.

Proof. For a proof see [6], Theorem 8.

The set E above is not necessarily closed (see [6], p. 315). Several conditions that quarantee E to be closed have been given in [6] (Theorem 9, p. 316).

On functional representation of $(C(X, A), T(\mathcal{K}, \Lambda))$. Next we shall consider the Gelfand functions of $(C(X, A), T(\mathcal{Q}, \Lambda))$. If $f \in C(X, A)$, then its Gelfand function is defined by $\widehat{f}(\phi) = \phi(f)$ for each $\phi \in \Delta(C(X, A))$. Moreover, if $(A, T(\mathcal{Q}))$ has the property (LC), then by Theorem 3 each $\phi \in \Delta(C(X, A))$ is of the form $\phi = \phi_{(t,\tau)}$ for some $t \in X$ and $\tau \in \Delta(A)$. So

$$\widehat{f}(\phi) = \widehat{f}(\phi_{(t,\tau)}) = \phi_{(t,\tau)}(f) = \tau(f(t)).$$

This means that we can consider the Gelfand function \hat{f} also as a complex valued function defined on $X \times \Delta(A)$. From now let \hat{f} be the function defined by $\hat{f}(t,\tau) = \hat{f}(\phi_{(t,\tau)}) = \tau(f(t))$ for each $(t,\tau) \in X \times \Delta(A)$. If $\Delta(A)$ is locally equicontinuous, then $\hat{f} \in C(X \times \Delta(A))$ (see [12], Theorem 4, or [16], Lemma 3). Thus, if $\Delta(A)$ is locally equicontinuous, the Gelfand transform $f \mapsto \hat{f}, f \in C(X, A)$, is an algebra homomorphism from C(X, A) into $C(X \times \Delta(A))$.

We shall now provide $C(X \times \Delta(A))$ with a locally m-pseudoconvex topology that makes the Gelfand transform of it continuous.

Lemma 3. Let (A, T(Q)) be a commutative locally m-pseudoconvex algebra with the property (LC). Then $\Delta(A) = \bigcup \{h(N_{\lambda}) | \lambda \in \Lambda\}$, where $h(N_{\lambda})$

is a locally compact subset (a compact subset, if A has unit) for each $\lambda \in \Lambda$. Furthermore, if $\tau \in h(N_{\lambda})$, then $|\tau(x)|^{r_{\lambda}} \leq q_{\lambda}(x)$ for all $x \in A$.

Proof. For a proof see [10], Theorem 1.

Let now A be an algebra without unit and A_e be the algebra obtained from A by adjoining the unit element. Let $T_e(Q)$ be the topology on A_e defined by the seminorms $\{Q_{\lambda} | \lambda \in \Lambda\}$ where $Q_{\lambda}(x,\alpha) = q_{\lambda}(x) + |\alpha|^{r_{\lambda}}$ for each $(x,\alpha) \in A_e$. Denote by h_e the hull operation on A_e . Since $M_{\lambda} = \ker Q_{\lambda} = \{(x,0) | x \in N_{\lambda}\}$ we see that $h_e(M_{\lambda}) = h(N_{\lambda}) \cup \{\tau_{\infty}\}$. Each $h_e(M_{\lambda})$ is compact and thus $h_e(M_{\lambda})$ is a one point compactification of $h(N_{\lambda})$. Note that $h(N_{\lambda})$ is compact if τ_{∞} is an isolated point of $h(N_{\lambda})$.

Since we assumed that the family $\mathcal{P} = \{q_{\lambda}^{\frac{1}{r_{\lambda}}} | \lambda \in \Lambda\}$ is directed, then $\{h(N_{\lambda}) | \lambda \in \Lambda\}$ is a locally compact cover of $\Delta(A)$ by Lemma 3, which is closed under finite unions (see also [10], Theorem 1). We can now equip \widehat{A} with a topology $T(\widehat{\mathcal{Q}})$ generated by the family of seminorms $\widehat{\mathcal{Q}} = \{\widehat{q}_{\lambda} | \lambda \in \Lambda\}$ where

 $\widehat{q}_{\lambda}(\widehat{x}) = [\sup_{\tau \in h(N_{\lambda})} |\widehat{x}(\tau)|]^{r_{\lambda}}$

for each $\widehat{x} \in \widehat{A}$ and $\lambda \in \Lambda$. It is easy to see that each $\widehat{q}_{\lambda} \in \widehat{Q}$ is r_{λ} -homogeneous. By Lemma 3 we have $\widehat{q}_{\lambda}(\widehat{x}) \leq q_{\lambda}(x)$ for all $x \in A$ and $\lambda \in \Lambda$. This shows that the Gelfand mapping $x \mapsto \widehat{x}$ is continuous from (A, T(Q)) onto $(\widehat{A}, T(\widehat{Q}))$. Note that $\widehat{A} \subset C_{\infty}(\Delta(A)) = \{g_{|\Delta(A)} | g \in C(\Delta(A_e)), g(\tau_{\infty}) = 0\}$ (it is easy to see that $C_{\infty}(\Delta(A)) = C(\Delta(A))$, if A has unit).

We can consider C(X,A) as an ideal of $C(X,A_e)$. Since $\widehat{f}(t,\tau_{\infty}) = \tau_{\infty}(f(t)) = 0$ for all $t \in X$, we can see that the functions of C(X,A) vanish on the slice $X \times \{\tau_{\infty}\}$. Therefore

 $C(X,A) \subset k(X \times \{\tau_{\infty}\}) = \{g \in C(X \times \Delta(A_e)) | g(t,\tau_{\infty}) = 0 \text{ for all } t \in X\}.$

We shall put

$$C_{\infty}(X\times\Delta(A))=\{g_{|X\times\Delta(A)}|\ g\in C(X\times(\Delta(A_e)),g\in k(X\times\{\tau_{\infty}\})\}.$$

So we have $C(X,A)^{\smallfrown} \subset C_{\infty}(X \times \Delta(A))$. If A does not have unit, then we could also consider the algebra $C(X,A)_e$ instead of the algebra $C(X,A_e)$. But for our purposes it is better to study the latter algebra. Note that in general these two algebras are not identical. To show that the mapping $f \mapsto \widehat{f}$ from $(C(X,A),T(\mathcal{K}))$ into $(C(X\times\Delta(A)),T(\mathcal{K}\times\Lambda))$ is continuous we need the following results:

Lemma 4. Let X be a completely regular space and (A, T(Q)) be a locally m-pseudoconvex algebra with the property (LC). Then we have that $\{(t,\tau)|\ \phi_{(t,\tau)}\in h(N_{(K,\lambda)})\}=K\times h(N_\lambda)$. Furthermore, if $\Delta(A)$ is locally equicontinuos, then $h(N_{(K,\lambda)})$ and $K\times h(N_\lambda)$ are homeomorphic.

Proof. See [6], Corollary 10.

each $\lambda \in \Lambda$.

bra obtained cology on A_e ; $) + |\alpha|^{r_{\lambda}}$ for Since $M_{\lambda} = \{\tau_{\infty}\}$. Each ctification of nt of $h(N_{\lambda})$. irected, then a 3, which is now equip \widehat{A}

 $\widehat{\mathbb{Q}} = \{\widehat{q}_{\lambda} | \lambda \in \mathbb{R}\}$

 $\lambda \in \Lambda$. This A, T(Q) onto A, T(Q) = 0

 $\widehat{f}(t, au_{\infty}) = X,A)$ vanish

or all $t \in X$.

 $\times \{\tau_{\infty}\})\}.$

unit, then we pra $C(X, A_e)$. Note that in the mapping is continuous

A, T(Q)) be a we have that A(A) is locally phic.

Lemma 5. Let X be a completely regular space and (A, T(Q)) be a locally m-pseudoconvex algebra with the property (LC). Then the family $\{K \times h(N_{\lambda}) | K \in \mathcal{K}, \lambda \in \Lambda\}$ forms a locally compact cover of $X \times \Delta(A)$ and if $(t, \tau) \in K \times h(N_{\lambda})$, then

$$|\phi_{(t,\tau)}(f)|^{r_K r_\lambda} = |\tau(f(t))|^{r_K r_\lambda} \le q_{(K,\lambda)}(f)$$

for all $f \in C(X, A)$.

Proof. This result follows from Lemmas 3 and 4.

We shall define now a locally m-pseudoconvex topology $T(\mathcal{K} \times \Lambda)$ on $C_{\infty}(X \times \Delta(A))$ by using the family $\widehat{Q}(\mathcal{K}, \Lambda) = \{\widehat{q}_{(K,\lambda)} | K \in \mathcal{K}, \lambda \in \Lambda\}$ of seminorms where

$$\widehat{q}_{(K,\lambda)}(\widehat{f}) = [\sup_{(t,\tau) \in K \times h(N_{\lambda})} |g(t,\tau)|]^{r_K r_{\lambda}}$$

for each $g \in C_{\infty}(X \times \Delta(A))$. Since $C(X,A) \cap \subset C_{\infty}(X \times \Delta(A))$ we can define the topology $T(\mathcal{K} \times \Lambda)$ also on C(X,A) and the Gelfand mapping $f \mapsto \widehat{f}$, with $f \in C(X,A)$, is a continuous algebra homomorphism from $(C(X,A),T(\mathcal{K},\Lambda))$ into $(C_{\infty}(X \times \Delta(A)),T(\mathcal{K} \times \Lambda))$ by Lemma 5. Thus we have

Theorem 5. Let X be a completely regular space and (A, T(Q)) be a locally m-pseudoconvex algebra with the property (LC). If the carrier space $\Delta(A)$ of A is locally equicontinuous, then the Gelfand mapping from $(C(X,A),T(\mathcal{K},\Lambda))$ into $(C_{\infty}(X\times\Delta(A)),T(\mathcal{K}\times\Lambda))$ is continuous.

Proof. For the proof see Theorem 3 of [10].

Corollary 3. Let X be a completely regular space and (A, T(Q)) be a locally pseudoconvex algebra which carrier space $\Delta(A)$ is locally equicontinuous. If (A, T(Q)) is a square algebra, then algebras $(C(X, A), T(K, \Lambda))$ and $(C(X, A)^{\hat{}}, T(K \times \Lambda))$ are topologically isomorphic.

Next we shall consider locally pseudoconvex star algebras. As it was noted earlier, each (commutative) star algebra (A, T(Q)) is a square algebra and thus is automatically locally m-pseudoconvex and has the property (LC). We shall now consider conditions under which

$$C(X,A)^{\hat{}} = C_{\infty}(X \times \Delta(A)),$$
 (4)

$$q_{(K,\lambda)}(f) = \widehat{q}_{(K,\lambda)}(\widehat{f})$$
 (5)

for all $f \in C(X, A)$, $K \in \mathcal{K}$ and $\lambda \in \Lambda$.

Theorem 7. Let X be a completely regular space and (A, T(Q)) be a full locally pseudoconvex star algebra with the locally equicontinuous carrier space $\Delta(A)$. Then the Gelfand transform of $(C(X, A), T(K, \Lambda))$ has the properties (4) and (5).

Proof. Since each commutative locally pseudoconvex star algebra is also a square algebra it follows that $(C(X,A),T(\mathcal{K},\Lambda))$ has the property (5). To prove (4) we first assume that A has unit. Let $g \in C(X \times \Delta(A))$ be arbitrary. For each fixed t_0 in X the function g_{t_0} , defined by $g_{t_0}(\tau) = g(t_0,\tau)$ for each $\tau \in \Delta(A)$, belongs to $C(\Delta(A)) = \widehat{A}$. Thus there is an element $x_{t_0} \in A$ such that $g_{t_0} = \widehat{x}_{t_0}$. Letting now t_0 vary thorough all the points of X we get a function f from X into A defined by $f(t) = x_t$ for each $t \in X$. It can be shown that f is continuous (for a detailed proof see [7], Theorem 3). Since $\widehat{f}(t,\tau) = \widehat{x}_t(\tau) = g(t,\tau)$ for all $(t,\tau) \in X \times \Delta(A)$ we see that $\widehat{f} = g$. Suppose now that A does not have unit. Let $g \in C_{\infty}(X \times \Delta(A))$ be arbitrary. Now g can be considered as a function of $k(X \times \{\tau_{\infty}\})$ (we must only define $g((t,\tau_{\infty})) = 0$ for each $t \in X$). Since A is full it follows that $\widehat{A}_e = C(\Delta(A_e))$ (see [10], Theorem 5). Just like above we get a function $f(t) = (x_t, \alpha_t)$, for each $t \in X$, such that $f \in C(X, A_e)$ and $\widehat{f} = g$. Since $g(t,\tau_{\infty}) = 0$ for all $t \in X$, we see that $\alpha_t = 0$. Thus $f(t) = x_t \in A$ which proves (4).

Corollary 4. Suppose that the hyphotheses of Theorem 7 are valid. Then $C(X,A)^-=C_{\infty}(\Delta(C(X,A)))$.

In the particular case, when (A,T(Q)) is a full locally pseudoconvex star algebra, the description of all closed ideals of $(C(X,A),T(\mathcal{K},\Lambda))$ are given just like in the locally convex case by using different kinds of slice ideals. This has been done in [7], pp. 388-391, for the case when A is a locally convex algebra with unit. However the same type of description for the locally pseudoconvex algebra $(C(X,A),T(\mathcal{K},\Lambda))$ with or without unit is also possible. Let now (A,T(Q)) be a full locally pseudoconvex star algebra and J be a closed proper (not necessarily regular) ideal of $(C(X,A),T(\mathcal{K},\Lambda))$. Then $\widehat{J}=\{\widehat{f}|f\in J\}$ is a closed ideal of $(C_{\infty}(X\times\Delta(A)),T(\mathcal{K}\times\Lambda))$ and we can consider $h(\widehat{J})$ as a closed subset of $X\times\Delta(A)$. Now J can be studied also as a closed ideal of $(C(X,A_e),T_e(\mathcal{K},\Lambda))$. By Theorem 7 and Lemma 4 of [10] there is a closed subset F of $X\times\Delta(A_e)$ such that $\widehat{J}=\{g\in C(X\times\Delta(A_e))|g(t,\tau)=0,(t,\tau)\in F\}$. As $F=h(\widehat{J})\cup X\times\{\tau_{\infty}\}$, then $\widehat{J}=k(h(\widehat{J}))$ from which it follows that k(h(J))=J. We have proved the following result.

Lemma 6. Suppose that the hyphotheses of Theorem 7 are valid. If J is a closed ideal of $(C(X, A), T(K, \Lambda))$, then k(h(J)) = J.

Theorem 8. Let X be a completely regular space, (A, T(Q)) be a full locally pseudoconvex star algebra with the nonempty locally equicontinuous carrier space $\Delta(A)$ and J be a closed ideal of $(C(X, A), T(K, \Lambda))$. Then there is a subset E of X and a family I(t), $t \in E$ of closed ideals of (A, T(Q)) such that $J = \bigcap_{t \in E} J_{(t, I(t))}$.

Proof. Let $E = \{t \in X | \phi_{(t,\tau)} \in h(J)\}$. It can be shown that $h(J) = \{\phi_{(t,\tau)} | (t,\tau) \in h(\widehat{J})\}$ and $h(\widehat{J}) = \{(t,\tau) | \phi = \phi_{(t,\tau)} \in h(J)\}$ (for a proof see [7], Lemma 4.2). So we have $E = \{t \in X | (t,\tau) \in h(\widehat{J})\}$. Since $J \neq \{t \in X | (t,\tau) \in h(\widehat{J})\}$.

ebra is also erty (5). To e arbitrary. τ) for each nt $x_{t_0} \in A$ ts of X we $t \in X$. It], Theorem we see that $\times \Delta(A)$) be) (we must ollows that a function = g. Since $\in A$ which

valid. Then

convex star

) are given slice ideals. is a locally ion for the unit is also algebra and $T(\mathcal{K}, \Lambda)$. $T(\mathcal{K} \times \Lambda)$ Now J can Theorem 7 such that $X \times \{\tau_{\infty}\}$, ave proved

valid. If J

)) be a full icontinuous Then there f(A,T(Q))

 $\begin{array}{l}
\text{nat } h(J) = \\
\text{for a proof} \\
\text{Since } J \neq
\end{array}$

C(X,A) we have $E \neq \emptyset$. Moreover, by Theorem 7 and Lemma 6 we have k(h(J)) = J, and thus also $k(h(\widehat{J})) = \widehat{J}$. Now for each $t \in E$ let $E_t = h(\widehat{J}) \cap \{t\} \times \Delta(A)\}$. It is clear that each $k(E_t)$, $t \in E$, is a proper closed ideal of (A, T(Q)) and $J = \bigcap_{t \in E} J_{(t,I(t))}$ (for a detailed proof see [5], pp. 53-54).

Corollary 5. Suppose that the hyphotheses of Theorem 8 are valid. Then $cl(\{f(t)|\ f\in J\})=k(E_t)$ for all $t\in E$ where $E_t=h(\widehat{J})\cap\{t\}\times\Delta(A)$, $t\in E$. Moreover, if J is regular, then τ_∞ is an isolated point of E_t for all $t\in E$.

Proof. The first claim is obvious and the second claim follows from Theorem 6 of [10].

The ideals $J_{(t,k(E_t))}$ in Theorem 8 are slice ideals of the first type defined in [7], p. 388. By using same kind of technics that was used in [5] (Theorem 4.2) and [7] (Theorem 4) it can be shown that under the hyphotheses of Theorem 8 for each closed ideal (not necessarily regular) there are a subset $E_0 \subset \Delta(A)$ and a family J_τ , $\tau \in E_0$, of slice ideals of the second type (for a definition see [5] or [7]) such that $J = \bigcap_{\tau \in E_0} J_\tau$. Furthermore, if A is an algebra without unit and J is regular, then τ_∞ is an isolated point of E_0 (this condition follows from Corollary 5). Note that in the proof of Theorem 8 in describing all (and not just regular) closed ideals we have used technics that differs from the technics for the corresponding results proved in [22] and [23]. The original technics used in those papers are due to Kaplansky (see [17]).

References

- 1. M. Abel, Description of linear multiplicative functionals in algebras of continuous functions, Tartu Ül. Toimetised 430 (1977), 14-21.
- 2. M. Abel, Description of the space of continuous linear multiplicative functionals of the algebra of vector-valued functions, Abstracts of the conference "Theoretical and applied problems of mathematics", Tartu, 1980, pp. 111-113 (in Russian).
- 3. M. Abel, Description of closed ideals in algebras of continuous vector-valued functions, Math. Notes 30 (1981), 887-892.
- 4. M. Abel, On dense subsets in some spaces of vector-valued functions, Tartu Ül. Toimetised 770 (1987), 26-37.
- J. Arhippainen, On the ideal structure and approximation properties of algebras of continuous B*-algebra-valued functions, Acta Univ. Ouluensis Ser. A 187 (1987).
- J. Arhippainen, On the ideal structure of algebras of LMC-algebra valued functions, Studia Math. 101 (1992), 311-318.
- J. Arhippainen, On the ideal structure of star-algebra valued functions, Proc. Amer. Math. Soc. 123 (1995), 381-391.
- 8. J. Arhippainen, On locally convex square algebras, Funct. et Appr. XXII (1993), 57-63.

- 9. J. Arhippainen, On some properties of algebras of LMC-algebra valued functions, (to appear in Demonstr. Math.).
- 10. J. Arhippainen, On functional representation of locally m-pseudoconvex algebras, (submitted).
- 11. S.J. Bhatt and D.J. Karia, Uniqueness of the uniform norm with an application to topological algebras, Proc. Amer. Math. Soc. 116 (1992), 499-503.
- 12. W. Dietrich, The maximal ideal space of the topological algebra C(X, E), Math. Ann. 183 (1969), 201–212.
- 13. W. Dietrich, Function algebras on completely regular spaces, Diss. Northwestern Univ. Evanston Ill., 1971.
- 14. W. Hery, Rings of continuous Banach algebra valued functions, Diss. Abstr., Polytech. Instit. of New York 45 (1974).
- W. Hery, Maximal ideals in algebras of continuous C(S)-valued functions, Atti Acad. Naz. Lincei Rend. Cl. Sci. Fis. Mat.Natur. (8) 58 (1975), 195-199.
- 16. W. Hery, Maximal ideals in algebras of topological algebra valued functions, Pacific J. Math 65 (1976), 365-373.
- 17. I. Kaplansky, The structure of certain operator algebras, Trans. Amer. Math. Soc. 70 (1951), 219-255.
- 18. A. Mallios, Heredity of tensor products of topological algebras, Math. Ann. 162 (1966), 246-257.
- 19. A. Mallios, Topological algebras. Selected topics, North-Holland, Amsterdam. 1986.
- 20. E. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. 11 (1952).
- 21. J. Prolla, Approximation of vector-valued functions, North-Holland, Amsterdam, 1977.
- 22. J. Prolla, On the spectra of non-Archimedean function algebras, Lecture Notes in Math. 843 (1980), 547-560.
- 23. J. Prolla, Topological algebra of vector-valued continuous functions, Anal. and Appl. Part B Adv. in Math. Supplementary Studies 7 (1981), 727-740.
- 24. A. Shuchat, Approximation of vector-valued continuous functions, Proc. Amer. Math. Soc. 31 (1972), 97-103.
- 25. B. Yood, Banach algebras of continuous functions, Amer. J. Math. (1951), 30-48.
- 26. W. Zelazko, Selected topics in topological algebras, Lecture Notes Ser. Math. Aarhus Univ. 31 (1971).

Received September 7, 1995

Department of Mathematical Sciences University of Oulu P.O.Box 400 SF 90571 Oulu, Finland E-mail: jarhippa@cc.oulu.fi