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On the sequence space defined by a sequence
of moduli and on the rate-spaces?

Virge Soomer

A function f: [0,00) = [0,00) s called a modulus if

(1) f(t) =0iff t =0,

) F(t4 ) < 70+ (@), wt 20,

(i) f1s increasing,

(iv) f is continuous from the right of 0.

For a certaln sequence space X of real or complex numbers Ruckle [6]
and Maddox [4] considered. a new sequence space

X (f) = {o = (@) | U 2 D) € X

s definition was given by Kolk [2], for a sequence space

= (fx) he defined

The extension of thi
X, and a sequence of moduli F

X(F) = {z = (zx) | F(2) = (sl 2x D) € X}.

The sequence space X 18 called normal if from (yx) € X, | ze 1<) s |,

=0,1,... it follows that (zk) € X.

is a normal hnear space then X(F) 1s also a

Theorem 1. If X
normal linear space.

Theorem 2. If f and g are moduli then @,
is also a modulus.

where ®(t) = glr ()l

ms 1 and 2.

We omit the standard proofs of Theore
X is called a paranorm if

The real function g on the linear space
@ 9(0)=0,
(i) g(-z)=g(a);
(i) gle+y) < g(x) + g(y), for all ¢,y € X,
(iv) ifty =t tn, teRand g(z" —x) =0, then
g(tnx™ — tz) =0, n— 0.
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Theorem 3. Let X be a paranormed space with a paranorm g and
F = (fn) a sequence of moduli. If the conditions
1) Jzel<lw|=g(z) <g(y) forall z,y € X,
(ii)  there exists a function h such that fi (ut) < h(u)fi(t) for all
0<u<l,t>0and limyo4 h(u) =0
hold, then X(F) is a paranormed space with a paranorm gr, where

gr(z) = g(F ().

Proof. Tt follows immediately from the definitions of modulus and para-
norm that gp(0) =0, gr(—2z) = gr(z). As

Sl ex 4y ) < fill 2 1) + fill we 1),

then by the condition (i) of the present theorem we have
gr(@ +y) < gllfell z& + ye )]

< g[(fe(l 2 D]+ 9l(fe(l w6 D] = gr (=) + g£(y)-
(n)

Let now t, —t, t,, t €R and gp(z" ~z) = 0, where z" = (z;/), =
(zx). The sequence (t,) as a convergent scalar sequence is bounded and
let
K =max{{t, []+1,
n

where [t] denotes the integer part of t. Then we have
g (tn” = 12) < gr(tn(” = 2)) + gr ((ta - )2). (1)

By the condition (i) of the present theorem and by the properties (ii) and
(iii) of modulus we may write

gr(ta(z" — 2)) = gl(f(| ta (2" — 2x) )]

< Kgl(full 2" — 24 )] = Kgp(a" ~ 2) = o(1).
Using the conditions (i) and (ii) of the present theorem we have
gFl(tn —)z] = g[(fe (| (ta — )ax [))]
< gl(h(tn — ) fie(| =& 1))] = o(1).

Consequently, it follows from (1) that gp(tnz™ —tz) = 0, n — oo. This
completes the proof.

Example 1. (The space m(p)). Let X =m (the space of bounded
sequences with supremum norm) and fi(t) = tP*, 0< o <px <1. Then
the conditions of Theorems 1, 2 and 3 are fulfilled and hence m(p) is a
normal linear space with the paranorm gp(x) = supy | 2, [P* .
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Example 2. (The space [A,F,plo.) Let A = (@anx) be a matrix
method with anx > 0; p = (pr) a sequence of positive real numbers and
F = (fx) a sequence of moduli. We denote

[cals = {z = (&) | lir{nz ank | 2k [P*= 0},
k

ie. [eaq]) is the space of strongly A-summable to zero sequences with
exponent p. Then it is known that in the case suppr < oo the space
[cal® is a normal linear topological space with the paranorm g where

g{z) = sup( E ank | Tk |1"“)I7l ,
n
k

and M = max{l, sup; px}.
Let

[4, F,plo = {z = (2&) | im ) _ anx[fe(] 24 )JP* = 0},
k

then for X = [cA]¥ and G = (gx) where gr(t) = [fi(1)]¥ we may
write [A, F,plo = X(G) = [ca]¥(G). It is easy to see that the paranorm
g satisfies the condition (i) of Theorem 3 and if the moduli fi satisfie
the condition (ii) of Theorem 3 and if infy px > 0, then by Theorem 2 the
condition (ii) of Theorem 3 is fulfilled for gx, k=0, 1,.... Consequently, if
0 <'infg px < supy px < oo, then by Theorems 1 and 3 the space [A, F,plo
is a normal linear paranormed space with the paranorm § where

§(@) = sup(}_ annlfi (| 2 ).

k

For F = (f) this result is proved by Bilgin [1] (without the restriction (ii)
of Theorem 3 for f ).

Let now p = (px) be a real sequence with p; >0 and X = () be
a real sequence with g # 0. We define

X(p,A) = {z = (2k) | (| Mezx P¥) € X},

X(p) = {z = () | (| = I™*) € X}.

If 0 <ps <1 then X(p,A) = X(F) where fi(t) = (| A | 1)P*. Let
X =cg,m,l and infp, > 0, then the conditions of Theorem 1 are satisfied.
For a real sequence space X Sikk [7] introduced the rate-space

X = {a: = (xk) } (/\k:ck) € X}

Let a matrix method A be determined by a matrix A = (@nk). If for
every sequence ¢ = (xx) the sequence y = (O ankzk) € Y, we write
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A € (X,Y). Since X(p,A) = (X(p))x, then it follows immediately from
Theorem 1 of [7] that the next theorem is valid.

Theorem 4. Let A = (ank), AL 1) = (ankb>), Ak, ik #0 and
progr > 0. Then A€ (X(p,A),Y(g,n) iff AT p) € (X(p),Y(9))-

The conditions for A € (X(p,A),Y (g, 4)) have been found for several
special cases (see [5]). But if we know conditions for A € (X(p),Y(q)),
then it is very easy to find conditions for A € (X(p, A),Y(p,q)) by using
Theorem 4.

For example, let X = co(p) = {& = (zx) | limk | 2k [P*= 0}, then (see
[3]) A € (colp) colg) iff

(i) limp |apk [**=0, k=0,1, s
(i) limylimsup, (3, | ank | N-Upe)tn =0,
Then by Theorem 4 we get that A € (co(p, ), co(g, w)) iff
(i)  limg | apf =0, k=0,1,..,
(i) limy limsup, (3 | ank5> | N-Vpk)an = Q.
This result is also proved in [5].
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