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A note on Kno§p’s core of
a vector valued sequence*

Leiki Loone

The concept of the core of a sequence in space C of complex numbers
1s due to Knopp [2]. The definition of core by Knopp is equivalent to the
following one:

The core K°(z) of the sequence z = (z,) C C is the intersection of
all closed convex sets in space C which contains all except finitely many
of the points =z, .

Knopp’s core of a sequence of numbers has two essential propertiés.
A. A sequence is convergent if and only if its core is a singleton.

This property establishes a simple connection between the theory of
topological vector spaces and the theory of cores. It is now easy to use
topological methods in sequence spaces for the study of cores.

B. If a sequence is bounded, then its core is not empty.

The sequence z = (x4) with empty core is written as zx ~ 0o, and
it is called essentially divergent sequence. It is vital to be aware of elements
with empty cores in investigations of core inclusion problems like

K°(Az) C K°(z) Vze E (1)

where A is an operator between sequence spaces E and X. If the range
of operator A has sequences with empty cores, the inclusion (1) may hold
In trivial case. For example, let w be the space of all sequences of complex
numbers and ¢ be the space of convergent sequences. Let a = (1,2,3,..)
and let A:c—w be defined as

Az =a-limz,.

Then
K°(Az) C K°(z) Vzee.

* This research was supported by Estonian Science Foundation (grant
no. 2416) '
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Following Knopp, N.R.Das and Ajanta Chowdhury have defined the
core for a sequence in a topological vector space (see [1]). Their definition
is as follows.

Let E be a topological vector space and let Z = (z,) be a sequence
in E. Let

En(2) :=A{&n, Tnt1,..-}

and let R,(Z) be the closure of the convex hull of E,(Z) inspace E, ie.,

R, (%) := clco En(Z).
Definition 1. The intersection
(2)

is called core of the sequence T = (x,).
We shall call this core Knopp’s core for the vector valued sequences.

The purpose of the present note is to show that Knopp’s core for a
vector valued sequence does not have properties A and B .

Let E be a Hausdorff locally convex topological vector space and let
E’ be its topological dual.

Proposition 1. A sequence & = (z,) in E has the same Knopp’s
core in every topology which is compatible with the duality between E and
E .

Proof. Any two locally convex topologies which are compatible with
the duality between E and E’ have the same closed convex sets. This

means that the sets R,(Z) are same for those topologies. The result follows
from (2). B

Proposition 2. Knopp’s core of a sequence & = (x,) contains its
weak cluster points.

Proof. If y isa weak cluster point of Z, then for every n it belongs
to the weak closure of E,(Z). Therefore, it belongs to R,(Z), since weak
and original closures for the co E,(Z) are the same. The result follows
from (2). &

Proposition 3. If E is weakly sequentially non-complete, then there
exists a bounded sequence which has emply Knopp’s core.

Proof. Let & = (zy,%3,...,2p,...) be asequence in E which is weakly

Cauchy and divergent in the weak topology. This sequence is bounded. To
prove the proposition, let us show that K°(Z) = @. Suppose the contrary.
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Let y € K°(Z). Then there exists (ynx) C E such that, for every &
and n ,

Ynk € Co{xn, Lol - }

and
limlimy,, =y
n k

in the topology of E.

Let f be an arbitrary element in E’. Then, for every k and n,

f(yﬂk) € CO{f(l‘n), f(mn+1), .- )} C C.

Moreover,
limlim f(ynk) = f(y)

and, therefore, f(y) belongs to the Knopp’s core of the sequence
f(@) = (f(z1), flz2), .. )
of complex numbers, i.e.,
fly) e K°(f(&)) C C.

The sequence f(Z) = (f(z1), f(z2),...) is a Cauchy sequence in C' and,
therefore, its Knopp’s core is a singleton, i.e.,

{fly)} = K°(f(z)) VfeE.

It means that y is a weak limit on Z. By the proposition, & has no weak
limits, therefore, K°(Z) must be empty. B

Proposition 4. Let E be a space with a topology stronger than the

weak topology. There exists a non-convergent sequence the Knopp’s core of
which is a singleton.

Proof. Let & = (21,%3,...,2n,...) be a non-convergent sequence that
is weakly convergent to y. By Proposition 2,

y € K°(T).
If there exists another 2 such that
z € K°(%),

then analogously to the proof of Proposition 3 we can show that z is the
weak limit on Z. This means that z =y and K°(Z) is a singleton. B
Let ¢ denote the subspace of sequences z = (&) for which & # 0 at
most finitely often. Let E be a K-space that is a linear space of sequences
containing ¢ and having a locally convex Hausdorff topology with the
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property that the coordinate linear functionals = — £, are continuous.
Let P(z) := (Pn(z)), where P,(z) = (£1,€2,...,€4,0,0,0,...). As ¢ C
E, P(z) is asequence in E . Let

Esp:={z: P(z)is bounded in E},
Eag :=A{z: Py(z) - z in E},

Epakx :={z: (Pa(z)) is weakly Cauchy in E},

Esak 1= {z: (Pa(z)) is weakly convergent in E}.

Proposition 5. Let x € Eyp.
a) If z € Epax \ Esak, then KO(P(.’B)) =g.

b) If r€ Esax \ Eaxk, then Ko(P(:L‘)) = {1:}

Proof. ¥ © € Erpak \\ Esak, then P(z) is a sequence in" £ which
is weakly Cauchy and divergent in the weak topology. Thus the part a)
follows from the proof of Proposition 3.

If x € Fsak \ Eak, then P(z) is a sequence which is non-conver-
gent in the topology of E but convergent in the weak topology. Thus part
b) follows from the proof of Proposition 4. W

Example. Let E be the space ¢ of convergent sequences with ordi-
nary norm || z ||=sup; | €k | . It is well-known that

E' := {(ax) € w, where Z | g |< o0}

Let & =(0,1,0,1,0,..). As

F(Palx)) = en(1 — (—1)%),
k=1

then forevery m > n

| (P (2) = Pa(=)) I< D e |y

k=n

Zlak|<oo

then (f(Pn(z))) is a Cauchy sequence in C for every f = (ax) € F’, i.e.
z € Erpax. In addition, =z € Esax as z is not a convergent sequence,
i.e., zE. Therefore,

and as

K°(P(z)) = @.
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Let us consider the sequence ¢ = (1,1,1,...). It is obvious that

e e ESAK \ EAK and w — llmPn(e) = e.
Therefore,
K°(P(e)) = {e}.
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Vektorvairtusega jadade tuumadest
Resiimee
Vaadeldakse Dasi ja Chowdhury poolt defineeritud tuuma omadusi (

(1]). Osutub, et Knoppi tuuma maiste formaalsel tlekandmisel suval
topoloogilisse ruumi lahevad kaduma kaks jargmist olulist omadust.

vt.
isse

A. Jada on koonduv parajasti siis, kui ta tuum on thepunktiline,

B. Tokestatud jada tuum pole tihi.

Kaesolevas t66s naidatakse, et formaalselt iildistatud tuuma korral on
tithepunktilise tuumaga ka mittekoonduvaid Jadasid ja leidub tokestatud
Jadasid, mille tuum on tiihi.

Naited. Vaatleme koonduvate Jadade ruumi c. Olgu z = {(€x) suvaline
arvjada. Olgu P(z) = (Pa(z)) tema ldigetest koosnev Jada ruumis ¢, s.t.

P (z) = (51,52,...,{’,,,0,0,...). Kui ¢ = (1,0,1,0, 1,...), siis P(z)C e
ja K°(P(z)) = @.

Jada e=(1,1,...,1,...) korral K°(P(e)) = {e}.
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