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Some notes on a convexity theorem
for Cesaro-type families
of summability methods

Monika Miiristaja and Anne Tali

In this paper the convexity theorem well known for the family of Cesaro
methods (see' [4], Theorem 3.1) is transferred to the larger class of summa-
bility methods and applied to estimating the speed of summability.

1. Preliminaries

Let us consider sequences z = (6n) with &, e K (K=C or K = R) for
n€N={0,1,2,..}. Let Abea summability method given by sequence-
to-sequence transformation of? ¢ € wA into Az = (7n) where n, € K.
The method A can be, in particular, the matrix method A = (ank) with
anr €K (Tl,k € N)

Suppose A = (},) is a non-decreasing positive sequence. In the sequel
we need the following notations:

m* = {z = (¢n) €c| (Bn) = (An(n —lim&,)) € m},

A ={zem*|(8,)ec},

cd ={z€c|(Bn) € co}.

The sequence z is said to be summable by method A with speed A
(shortly A’\—summable) if Az € c*. The sequence z is said to be A*-bounded
if Az € m* (see [1], p. 252).

This paper is concerned with families {Aq} of summability methods
Aq given by transformations of z € wA, into Agz = (ng) where o is a
continuous parameter with values o > ag.

2. Cesaro-type families of summability methods

2.1. Let us consider first the family of generalized Nérlund methods
defined in [9].

! See also [6], Theorems 1 and 2.

2 We denote by wA the set of all sequences r where the transformation
A is applied.
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A matrix method A = (an) is said to be a generalized N6rlund method
(see [1], p. 138) A= (N,pn,qn) if

- {pn_qu/Pn if k <n,
0 ifk>n

where P, =3} pn—kqx # 0 and p,, ¢, €K (n €N).
Suppose further that the sequence® (A7) is formally defined by the
power series

Jas () = (1 =)~ (log 7=2)° = 3~ A7*x"
n=0

where o, 8, x € R and e is the base of Napierian logarithm.
Let {Aq} be the family of generalized Norlund methods (see [9])

(Nx p'roztﬁ"in) where pa/}(, Zk ()Aa v ﬂupk: Pn,qn €K, B R, a>
and P2Po =% paﬂ" qr # 0.

Remark 1. 1) In particular, if By = 0 then the methods (N, p®*° q,)
become the generalized Nérlund methods (N, p%, q,,) (see [8, 9]).

2) If besides the condition 8y = 0 there is g, = 1 (n =0,1,2,...) then
we get the Norlund methods (N, p%) (see [2, 9]).

3) If g, = AJ°?° (7 and &y are fixed real numbers) and p, = A"
A;' then the methods (N,p2#° q,) become the quasi-Cesiro methods
(C,a, Bo,v0,00) (see [3]).

4) If By = o¢ = 0 then the methods (C, a, o, 70, 00) become the gene-
ralized Cesaro methods (C, @, 7y9) with & > ag = —vy — 1; if we add to the
previous conditions the presumption vy = 0 then we get the Cesaro methods
(Ca) with o > —1.

It was shown in [9] that the methods A, = (N, p&#e,¢,) and As =
(N,pBPo q,) for every ag < a < /3 are connected by the relation

& «
—5e DAV T PP (neN), (2.1)

(N p.@ﬂn n) — (N, Ag_“_J,Pfﬁ") (N paﬁn )

2.2. The process of constructing new families of generalized Norlund
methods can be continued with the help of methods (N, ps B In).

3 In particular, if # = 0 then AZ" = A% are Cesaro numbers.
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Let us have besides the sequences (pn) and (¢ ) also the sequence ()
with 7, € K and consider the family of generalized Nérlund methods A
(N, PgPo p ). ‘

It is easy to see that the last family satisfies the relation (2.1) with

Qnfe =50 o P ri and Q5P instead of P2Po and PBPo  respe
the relation

o —=

ctively, i.e.

(N, PJPo 7)) = (N, AB==-1 QnP°) - (N, PgPo, 1)

holds for every oy < o < 8.

The process of constructing new families of generalized Norlund meth-

ods can be further continued with the help of the methods (N, P2Po ) in
the same way.

2.3. Let us generalize the above c

onsidered constructions for a family
of summability methods A, in general.

Definition.

A family {A,} is said to be a Cesaro-type family if the
methods A, and

Ap for every ay < a < B are connected by the relation

L L hmactia o .
W= AT (e ewAy) (2.2)

™ k=

where by € K, b2 # 0 (n € N).

So a Clesiro-type family {A4,}

is a family satisfying for every
@ < a < fBand ¥ € wA, the relation

Apx = Dog(Agz) (2.3)

where Doy = (d%7) is a matrix defined by (2.2), i.e.

0 = {AL’::“b;:/bﬁ if k < n, (2.4)
0 ifk>n.
We notice that the families of generalised Norlund methods A4, =

(N.pgPo qn) and A, = (N, PgPo r.) are Cesaro-type families satisfying

for every ay < o < 8 the condition (2.3) with Doy = (N, AS::'I,P;“’“)

and D,y = (N, .AZ:;:_I,Q;{’j"), respectively. Thus for those families we
have (2.2) with b2 = P8 4pq by = QuP°, respectively.
Further Cesaro-

type families can be constructed with the help of fol-
lowing remark.

Remark 2. [) Let {A.} be a Cesaro-type family and 4 be a summa-
bility method such that Az

€ wAq for every x € wA and o > ag. Then the
family {B,.} with By=A,-Ais a Cesaro-type family also.
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2) Let Dgop = (df:,‘;ﬂ) be defined by (2.4) for every 8 > oo and A be
a summability method. Then {Ag} where Ag = Dg,p - A is a Cesaro-type
family with 8 > ay.

3) Let {Ay} be a Cesaro-type family and (c%) be sequences with ¢ € K
and ¢ # 0. Then the family {B,} where B,z = (c3n3) and (95) = Aqz is
a Cesaro-type family also.

3. Notes on a convexity theorem

3.1. Let us denote

n
S =2 ALZim:
k=0
where 1, € K (n € N) and o > —1. Let (U,) and (V,) be two positive
sequences,
Our notes are concerned with the following theorem which is a slight
generalization of Theorem 3.1 from [4]. '

Theorem. Suppose (U,) and (V,,) satisfy the conditions

Up < MUpyr (n,k€N) (3.1)
and
Vo <NVpye (n,k€eN). (3.2)
Then the following statements hold for every 0 < 4§ < p:
1) 7, = O(U,), SE =0(V,) = S5 =0(W*H) (3.3)

where

WH = (U,) 7 (Va)r.
2) IflimU,, = oo then

N = o(Un), Sk = = o(W§?). (3.4)
3) If limV,, = co then
M = O0(Un), Sh=0(Va) = S5 =o(Wh). (3.5)

The formulated theorem is an immediate consequence of the following
lemma (see [4], Lemmas 3.1 and 3.2).

Lemma. If0 < d < p then there exists a number C,s such that

, 3 p=4 apn
sup [Si| < Cus(sup [ml) ™ (sup [SE)F  (n €N).
k<n k<n k<n
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In paper [4] the Theorem was given in assumptions 0 < U,,, V, 1 0o. The
statements 1) - 3) from Theorem for 0 < § < u were first proved by M. Riesz
in 1922 (see [6]) for integral forms of Cesiro methods and non-decreasing
functions [/ (x) and V(z) (z = o0); in particular, the statement 1) was first
proved by ;. H. Hardy and J. E. Littlewood in 1912 for integer 0 < § < p.
The modifications of Theorem with some of implications (3.3) - (3.5) and
different restrictions on /,, and Vi, were also proved by other authors. For
example, the theorems stating the implication (3.5) were proved by A. L.
Dixon and W. L. Ferrar, K. Kanno, M. §. Rangachari and H. Sakata (see
[5]).

In this paper we do not focus our attention on bettering the restrictions
on (I/;) and (17,} but on drawing conclusions from implications (3.3) - (3.5)

3.2. The Theorem together with Lemma can be transferred to a
Cesaro-type family.

Let us further consider a Cesaro-type family {A,} with @ > ay and
denote

W i x
7 n bn 7171

where (%) = A, . & € wA,, and by is defined by (2.2). Denote also

rady _(rr ‘g—:?{ / d::t /3 3.6
W™ = (17,) 7 (V) (r<y<B neN).  (36)

Proposition 1. Lot {A4,} be a Cesaro-type family and (U,,) and (V,,)
be positive sequences.

If the wmplication (3.3), (3.4) or (9.5) s true for every 0 < 8 < p and
€K (n=20.1,2,..) then, respectively, the implication

1) T = O(), T4 = 0(Va) = T} = O(Wem),

2) T3 =o(ln), TS = O(V) == T7 = o(Weh)
or

3) T =0(). T =o(V,) = T3 = oW
18 true for every oy < o < y< 3 andx € wA,.

Proposition 2. If {As} 1s a Cesaro-type famuily then for every

g < a0 <y < 3 there exists a number Cap~y such that
~ ) 3— y — Y

Sup [T7] < Clan (s [TE) 75 (sup [TZ)F (0 € )

k<n k<n k<n

foreach v € wA,,.

Proofs of Propositions | and 2. The truth of these propositions follows
directly from implications (3.3)  (3.5) and Lemma, respectively, if we take
M =Ty, pt=f~aoand § =y — « in them and realize with the help of
(2.2) that 55 = 370 AN 70 = T8 and 58 =77

n—

25
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Thus we can reformulate the Theorem as a convexity theorem for a
Cesaro-type family {A,} by replacing the inequalities 0 < § < g and impli-
cations (3.3) — (3.5) by inequalities g < @ < v < B and implications 1) ~
3) from Proposition 1, respectively?.

Let us denote further:

An = 1651/ Un,
p = 651/ V2, : (3.7)

PP = |BY|/WEPT (ag < a <y < B, n€N)

where b7 and b] are defined by the Cesaro-type family {4,} and W2#" by
(3.6).

The next result is a slight generalization of Proposition 1.

Proposition 3. Let {A,} be a Cesaro-type family satisfying

=Y AT (nel) (3.8)

k=0

for every ag < o < B. Let (U,) and (V,,) be positive sequences,

If the implication (3.3), (3.4) or (8.5) is true for every 0 < 6 < p and
M €K (n €N) then, respectively, the implication

D AR —n) = 0(1), pf(nf —n) = O(1) = 43P (n] —n) = O(1),

2) A3 —m) = o(1), g (nf ~n) = O(1) = v§” (n] —n) =o(1),
or

3) Az(ny =) = O(), p (0] —n) =o(1) = 3™ (n] —n) = o(1)
i true for every g < a <y < B, n€K and & € wA,.

Proof. Let us take 7, = bX(n% — ), § =y —a and p = 3 — o in
implications (3.3) ~ (3.5). Now we see with the help of (2.2) and (3.8) that
] R ad F TN 4 :

S5 = Sheo ATTeT b (ng — ) = by(nY — ) and SE = b (5 — 7). This
completes our proof.

The last proposition enables us to apply the Theorem to summability
with speed.

Proposition 4. Let {A,} be a Cesaro-type family and the sequences
Aae = (A7), pp = (1) and vapy = (YPY) defined by (3.7) be non-
decreasing for some a < v < 3.

If the implication 1), 2) or 8) from Proposition 3 is true for everyn € K
and & € WA, then, respectively, the implication

4 For a corollary from this result for the family of methods (N, pZ, gn)
see [7], Theorem 1.
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) o5P7 oo, Agw € mPe, Agz € mPs, limp® = limyf —
Az € mlpuﬂ‘v7 .

. . 3 Y
2) Agx € e, Agzr € m#s, limn® = limy — Az € ¢, P

n
or

«

. . P
3) Aoz € m*e, Agz € c*, limn® =limp? — Az € ¢, ™7,
is true for every x € wA,.

Proof. 1t is sufficient to notice that
YEP O — ) = o(1) = limy) =1

and that the last implication is true also with O(1) instead of o(1) if
Yl Sfoo (n = o).

Remark 3. The Theorem and further propositions remain true for the
summability of sequences in a locally convex space F over K with the set of
continuous seminorms P = {p}. To prove this it is sufficient. to realize (with
the help of the proofs of Lemmas 3.1 and 3.2 from [4]) that Lemma can be
transferred to the sequences (,) where 7, € E (n € N) by replacing the
module | - | by every seminorm p(-).

4. The comparative estimates for speeds of summability in a
Cesaro-type family

Suppose {A.} is still a Cesaro-type family and A, = (AS), s = (118)
and gy = (¥5P7) are the sequences defined by (3.7). The comparative
estimates for these sequences can be easily inferred from (3.7).

Proposition 5. Let {A,} be a C 2saro-type family and (U,) be a posi-
twe sequence satisfying (3.1). Then the tmplications

T3 =0() = Th = 0(U,n’"") (4.1)
and ; J
TS = oflh) = T4 = o{llyn®=") (4.2)

are true for every oy < @ < 3 and r € wA,.

Proof. By (2.2} we have that

3 n ]
Tn — 1 A(S-—cz—ll/'k&
né—a Un .,lé — Un /;_.(:) n—k U/c

Our implications are true because the triangular matrix Cas = (cX)

¢
k
. S com . _ . . n
with 28 = A=y, /17, né-e (k < n)is acy = co matrix for every
g < o < 8.
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Remark 4. It follows from the last proposition that if (I/,) satisfies
(3.1) and V,, > Mn?~¢U, (n € N) then the implications 1) and 2) from
Proposition 1 for a < v < 3 are equivalent, respectively, to the implications
(4.1) and (4.2) for every a < 4.

Proposition 6. Suppose the condition
Mogn® =% < BB/ < Nogn™* (n=1,2,...) (4.3)
holds for every ap < a0 < .

Then the sequences Ay, g and Yoy satisfy for every op < o <7y < g
the inequalities

- J-a B= o
Mgy 0I5 (W) T8 < g1 < Ny O 0 (u)F50 (49)

{n e N).
Proof. By the relations (3.7) we have the equality

B=y =« oo BN
U = (AG)F= () = b |/ () A (bR P

The condition (4.3) implies the inequalities

-

B=q J-c
Mgy < 83171651 P (1BR1)P=" < Nes
and therefore the condition (4.4) is satisfied for every oy < o <y < /3.

Remark 5. We note that the inequalities (4.3) are satisfied, for exam-
ple, for the family of methods Ay = (C,a, Bo, Y0, 00) with —yg =1 < a < 3
because here b% = A&+t70.Pota0 and (see (3], (1.7))

n&tvo

‘4‘-‘+’Yu,ﬁn+”n ~
" Fla 4y +1)

(logn)?oté  (n — o). (4.5)

In particular, the inequalities (4.3) hold for A, = (C',«,v) and for
Ag = (C, ) with o > —1.

The inequalities (4.3) are satisfied also for the family of methods A4, =
(N,p&) if py > 0, p, > 0 and the sequence (p,) is non-increasing (see [2],
p. 359).

Proposition 7. Suppose the inequality
(B2 /%] < Ny ™™ (n=1,2,..)) (4.6)

is satisfied for every ag < a < 3 and there exists @ number § > 0 such that

Vo > MUpn®  (n=1,2,...). (4.7)
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Then the sequences A, tp and a5y satisfy the condition
Mapyiy S U577 < Nagy Ay (n €N) (4.8)

for every oy < o < y<B=a+.
The formulated statement remains true if we replace inequalities (4.6) -
(4.8) by their contrary inequalities.

Proof. By the relations (3.7) we have

—

1=«
YR = ASIBL/6 | (Un f Vi) P

With the help of conditions (4.6) and (4.7) we involve from the upper equal-
ity the right-hand of inequalities (4.8). The left-hand equality follows with
the help of the same conditions drectly from the equality

,/‘,;rm — /‘;1 lkb:;/b,jl(vn/l‘)ﬂ )11_(,'

T

The statement with contrary mequalities can be proved analogously.

Remark 6. The Cesaro-type family {A,} satisfies (4.6) for every
a0 < o < 7 if the conditions (3.8) and [b2| < M by k] (n,k € M) hold
for every ag < o < 3.

So the inequality /4.6) is satisfied, for example, for the family of
methods A, = (N,p%, q,) for every | < o < 7 if po > 0, p, > 0 and
4 > 0 (see [9], Corollary 3.1).

Remark 7. Propositions 3. 4, 6 and 7 remain true if we replace the

sequences Ay, fiy and g5 defined by (3.7) by those which are determined
by the inequalities

U o By ,
M(ﬁ’ <A< ANF,T}:. (4.9)
b5 |6
Po— < plf < Ry =22, 4.10
v, = e S fey (4.10)
e 2] 152)
Y b"f
< n wid ’
“*”%"WW < "/]n K _<_ Eh’"/ﬁﬂ' (411)

(an<o<y<d. ne F).

To complete our baper we give the following numericai example as a
simple illustration for our results.

14 S

Example. Let {4,} be the family of methods A, = (Chex, 1,2,3) with
@ > —3. Let us consider, for example, two speeds A = (A,) and p = (u,,)

26
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with A, = n% and p,, = nflogn (for n > 2} and the methods As and Ayq.
Suppose that:
Asz € m*, Az et (4.12)

for some x.

Let us estimate the speed of summability of sequence x by method
A7. We know that {A,} is the Cesaro-type family with b = AZT?4, the
condition (3.8) is satisfied for every —3 < o < # and the methods A, are
pairwise consistent ([3], Theorem 1). Let us denote As = A and py0 = p.
In order to satisfy the inequalities (4.9) - (4.10) we can take [/, =n log*n
and V,, = nlog®n (for n > 2) because due to (4.5) we have the relations

/\5 - 7l6 — 717 10g4 n ~ I‘(S)l‘AZLAI — 1-\(8) !bi|
" nlog®n n log* n Uy
and
12 4 D 12,4 10
i0 5 n Iog n F(l';)l‘lln ) g ‘bn .
ol =n"logn = ~ - = [(13)—=— (n — x).
fn %% n8 log” n nb log® n (13) Va ( )

The sequences (i/,) and (V,) satisfy the all restrictions put in Theorem.
Thus the implications 1) - 3) from Proposition 3 are true for every
~3 < a <y < 3 with

2 4 :ER 4
n*t2log* n 5 nft¥log®n B
Ay = —-—45—— =n*tt 4l = ———G——f— =n""*logn,
nlog" n nblog” n
and A
v+2
v = ](;g n
- ap
Wik
. n 975 . . . .
In particular, we have 5107 = n8log?/® n. Due to the implication 3) from
p 1 n g p

Proposition 4 the relations (4.12) imply the relation A7z € ™17 which
says that « is summable by A7 with speed 5 10 7. [t remains to notice that
this example illustrates also the Propositions 6 and 7.
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