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A global stability result for
a certain system of fifth order nonlinear
differential equations

CeMIL TuNg

ABsTRACT. This paper establishes sufficient conditions which ensure the uni-
form global asymptotic stability of the zero solution of (1.1).

1. Introduction and statement of the result

We consider the real non-linear autonomous vector differential equation
of fifth order

XO 4+ X XNXY +0(X, X))+ GX) + HX) +¥(X)=0  (L1)

in which X € R™, R" denotes the real n-dimensional Euclidean space, F is
a nxn matrix function, @ : R® X R® -+ R®, G:R”» - R*, H : R* - R"
and ¥ : R® — R".

The non-linear functions F, &, G, H and ¥ are continuous and so con-
structed such that the uniqueness theorem is valid. The equation (1.1) rep-
resents a system of real fifth-order differential equations of the form

n
xg ) +Zf,—k(z1,...,wn; Tyy..., mn)ng)
k=1

+¢,(:t1,,.zn,ml,,a'n)—l—gz(a:l,,mn)
+hi(Z1, .o E0) + iz, .. 2,) =0 (= 1,2,...,n). (1.2)
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For convenience, we fix some notations. Given any matrix M, its eigenval-
ues will be denoted simply by X\;(M) (i =1,2,...,n). Next, given any pair
of vectors X = (z1,29,.-.,24) and Y = (y1,¥2,.--,Yn), We use (X,Y) to
denote their scalar product Y ; z;y;. Thus, in particular, (X X)) =|X]>
Also the Jacobian matrices J(®(Z, W)|Z), J(®(Z, W)|W), Ja(Z), Ju(Y),
and Jy(X) are given by

7(8(2,W))7) = (§¢) sz wiw) = (52),

Ja(Z) = (gi) Ju(Y) = (g;j) Jo(X) = (3?) (,j=1,2,...,n).

Moreover, let the Jacobian matrices J(®(Z, W)|Z), J(®(Z, W)|W), Je(Z),
Ju(Y) and Jg(X) exist and be continuous.

The problem in this paper, in the case n = 1, has been investigated to
quite a considerable extent.

Chukwu [4] established sufficient conditions for the asymptotic stability
in the large of the zero solution of the equation

20+ az + fo(F) + ¢ + ful@) + f5(2) =

In [2], Abou-El-Ela and Sadek derived similar results for the problem

2B 4 fi()2W + f(F) + fo(E) + f1(2) + fs(z) =
Yuanhong [9] and Tung [7, 8] investigated the differential equations
2 + oz, 4,7, 2®)a® + T + h(E) +9(4) + f(2) =
2® 4 o(z, &, &, F,2@)e® 4 bF + () + g(x, &) + f(:v) =
and
2B 4+ (e, 3, %, T, 2™ 4 9(E,F) + h(Z) + g(¢) + f(z) =

respectively and proved stability in the large under certain conditions.

Recently, Abou-El-Ela and Sadek [3] and Sadek [6] also presented suffi-
cient conditions for the asymptotic stability in the large of zero solution of
the equations

X6 4 AX® + o(X)+GX)+H(X)+BX =0

and
XG4+ F(X)XW 4+ &(X) + G(X) + H(X) +¥(X) =0,

respectivi
This
and Chul
and Sade
Using
will be t1

The purg

Theo:
and ¥, u
as, G5 ai
such thai

(i) 1

(iii) d



A GLOBAL STABILITY RESULT

respectively.

This paper for n = 1 includes the results of Abou-El-Ela and Sadek [2]
and Chukwu [4] and also extends the correspondent results of Abou-El-Ela,
and Sadek [3] and Sadek [6].

UsingY =X, Z=Y, W = Z and U = W the differential equation (1.1)
will be transformed to the equivalent system

X:Y, Y:Z, Z::W,WZU,

U= ~F(Z,W)U -®2Z,W)-G(Z) - H(Y) - ¥(X). (13)

The purpose of the paper is to prove the following

Theorem. In addition to the fundamental assumptions on F, &, G, H
and ¥, we suppose the ezistence of arbitrary positive constants aq, as, as,
as, as and of sufficiently small positive constants gg, €, €1, €2, €3, €4, €5
such that

(i) There is

ayay — az > 0, (a1a2 - a3)a3 - (a1a4 — a5)a1 > 0,

8o = (azaq — asas)(araz — az) — (ayaq — as)? > 0
and for allY € R",

(a3a4 — agas)(alag - 03)
ajaq — as

— [ llVr(Y)|| - as] > 2cas,

_ Q304 — agas ajayg — as

- ryy- —>o,
104 — Qs a4(a1a2 —113) ( )

A =

1
ry) :/ Ju(oY)do;
0
(i) F(Z,W) is symmetric and for all Z, W € R™,
EOS’\i(F(va)_a'II)Sgl (221,2,,71,),

(iii) (Z,0) = 0, J(®(Z,W)|Z) is negative-definite, J(P(Z, W)|W) is
symmetric and for all Z, W € R™,

0< A (/01 [J(8(Z, oW)|oW) — a31] da> <ep (i=1,2...,m);
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(iv) G(0) =0, Jg(Z) is symmetric and for all Z € R", Le
1
0< A\ ; [Jg(cZ) —azl]do ) < &3 (i=1,2,...,n); a
(v) H(0) =0, Ju(Y) is symmetric and for allY € R" and 1 <1< m, (I
1 (111
Ai / Jua(oY)do | > aq, |laad — Ja(Y)|| < €4,
0
1
asbg (v
Ml JgY)— Jr(oY))do ) < ;
H(¥) 0 nlo¥)o ) < aj(araz — a3)
(vi) (0) =0, Jy(X) is symmetric and for all X € R™, Pr
OS)\,‘(G,{,I—JW(X))ScEs (121,2,,71,),
(vil) Jg(X) commutes with Jg(X') for all X, X' € R™ and
1
i Jy(@X)do ) >a; >0 (i=1,2,...,n)
Jo
for all X € R™. S
ince
Then every solution X (t) of (1.1) satisfies
IX @)1= 0, 1X®)I -0, X =0, Xl -0, [XW(B)[ -0 J

ast — o0.
In the subsequent discussion we require the following lemmas.

Lemma 1.1[6]. Let M be a real symmetric nxn matriz and

d>M\M)>a>0 (i=1,2,...,n).

Then

d|IX|* > (MX, X) > all X|P,
*|IX|2 > (MX, MX) > a*|| X"
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Lemma 1.2. The following statements hold:
d 1
V) 5 [ @0w),Wde < (@(2,W),0);
0
d 1
W g [ ©62),2)0=G(2),W)
0

(%/0 (H(a¥),Y)do = (H(Y), Z);

d

(Iv) i

/0 (@(0X), X)do = (F(X),Y).

Proof. (I). We have

1 rl
- /0 (@(Z,aW),W)da:/o (@(Z,0W), U)do
+ /0 @2, 0W)| 2)W, W
+ /0 o (B(Z, oW o WU, W do.

Since J(P|W) is symmetric from condition (iii) we have

1

/ (@7, W W)U, Wdor / o (J(B(Z, aW)|aW)W, U)do
_ / 10%(@(2, o W), Udo
= (@(2,W),U) - / (@(2,0W), U)o, (1.9)

Then we get

4
dt .

/0 1 (B(Z,0W),W)do = (B(Z, W), U) + / 1 (J(D(Z,cW)| Z)W, W)do
0
<(®(Z,W),U),

since J(®|Z) is negative-definite from assumption (iii).
Statements (II), (IIT) and (IV) can be proved similarly as (I).
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2. The Lyapunov function V(X,Y, Z, W,U)

The main tool in the proof of Theorem is the function V(X,Y, Z,W,U)
defined for arbitrary X, Y, Z, W and U in R™ by

W(U Z) + 25(Y,U)

2V =(U,U) + 24, (U, W) +
aja4 — as

+2 /0 1 (B(Z, o W), W)do + [ai - M] (W, W)

aijayg — Qs

+2 [aa + a1a4(ala2 - G;B) _ 5] (W, Z)+2(5a1<W, Y)

104 — Q4

+ 2W(X), W)+ 2W, H(Y)) + 2a; / ' G(02), 2ydo

+ [a2a4(a1a2 - a3) — a4 — a15] (Z,Z) 4+ 2a,0(Y, Z)
ajay — as

+2a,(Z, H(Y)) — 2a5(Y, Z) + 201 (¥(X), Z)

+ (8as — ayas)(Y, v) + 2alms: — as) /I(H(GY),Y)da
JO

2104 — a5
2(14(0,1(12 — 113) 1
2aa(0102 — 03) 1y, y) 4 26 / @(GX), X)do,  (2.1)
a1a4 — as 0
where
5o Gslmar—as) (2.2)
ayaq — a4

The following two lemmas are essential for the actual proof of the Theo-
rem.

Lemma 2.1. Suppose that the conditions of the Theorem hold. Then the
function V' satisfies '

VXY, Z,W,0)=0, at|[X|*+[Y]* +1ZIP +IIW|* + V| = 0,
2

V(X,Y,Z,W,U)>0, IXIF+IYI*+ 121> + 1wl + |UI > o,
(2.4)

V(X,Y,Z,W,U) » oo, as | X|P+|[Y|*+12)* + IW|]* + ||U||* = co.
(2.5)

Proof. V(0,0,0,0,0) = 0, since $(Z,0) = H(0) = G(0) = ¥(0) = 0. By
virtue of (1.7) the matrices I'" are symmetric, because Jy(Y) is symmetric.
The eigenvalues of I" are positive because of (v). Consequently the square

root I'l/
Therefo:

2V =

where

The func
there she

Since

then

Therefor
Va=—
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root I''/? exists, and this is again symmetric and nonsingular for all Y € R”™.
Therefore the function V(X,Y, Z, W,U ) can be rearrangered as follows:
aq(aya; — aa)Z-i-JY : +
aiaq — as (a1a4 — as)?
aq(araq — as) || @122 — a3 F“l/zu'f(X) +
a a3 —as a 64 — as @104 — a5

oW =|\U + a; W + 2

aijay — ag

2 5
+8prg ey + AW+ ezl +Y
a4 a4

i=1

Vi= 25/1@(0)(),)()(10 - “4—~("1“L1“3—)||r-1/2W(X)HZ,

ajayg — as

_ag(agay —a3) [, 1 B
Vo= )y [ (ov) Vdo - (1), Y)]
a§50

a4 (CHG4 - as)

+ [5&3 — adjdys — - 62] ”Y”z,
1
Vo= I +2 [ (@(2,0W), Wydo — asll W,
J0

1
Vy = 2, / (G(02), 2)do — ayas|| 2],
J0

_ 25(03(14 - agas)

Vs (Y, Z).

a1a4 — ag
The functions Vi, V; and V; can be estimated as in [6]. In fact the estimates
there show that

Vi >eah]| X2, Vo> ——22 _IVI2 V> 0. 2.7
12 eas|| X || 2_4a4(a1a4_a5)|| 1", Va > (2.7)

asdp

Since
%@(Z, oW) = J(D(Z,0W)|oW)W,
then .

&(Z, W) = / J(8(Z, W) |o W)W do.
Therefore ’

1
£
I +2 [ (@2, 0W), Wydo - a1
J0

1 1
;—IIIWH2 +2 / / (I [B(Z, 010:W) 0103 W] — as T} 03 W, W)dodory
JO JO

i (28)

3
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by (iii) and Lemma 1.1.
Combining inequalities (2.7) and (2.8) in (2.6) we obtain

2 2
- )
A U+alw+a_4(_‘_‘_1_.a_2_a§lz+5y +___ﬁ‘3_°_.__2 74+ 8y
ayag4 — as (a1a4 - a5) a4
do
As||W + a1 Z|)* +eat|| X || % Y|
AW+ 2P + X + Y|
9 -
b S 4 22l Z at) iy g, (2.9)
1 ayaq — as

Then it follows that

2V > Di||X|* +2Do||Y|® + 2Ds|Z||* + Ds||W||* + Ds||U|I*

4 2el03as = a305) 1y, (2.10)
aja4 — as

for some sufficiently small positive constants D; (¢ =1,2,3,4,5). Let

aza4 — azas)
a1ay — as

(Y, Z)+ Ds| 2|

2e
Vo= Dy|v|f + L

Since by Schwarz’s inequality
Ky, 2) < Y2 < Y IE+ 1207 /2,

then we get

glasaq — aq2Q
Vo 2 DallY[[2 - SBU D) 1y 7y 4 2
144 — as

> Ds(|IYI* + 11211,

for some Dg > 0, Dg = (1/2) min{D,, D3}, if

ayts — as

e < min{D,, Ds}.

- 2(0,30,4 — azas)
Consequently

2V > Di||X|* + (D2 + De)||Y |2 + (D3 + De)l|ZII* + Dal|W|* + Ds|IU|I%,

which proves the lemma.

Lemm

We define

In particu

d

Proof.

d
Et‘”(t) <

By using
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Lemma 2.2. Let (X(t),Y(t),Z(t), W(t),U(t)) be any solution of (1.3).
We define 9(t) = V(X (¢),Y (t), Z(t), W(t),U(¢)). Then

9(t) <0 forall t<0. (2.11)

In particular

d
00 <0, whenever | X|[* +[[Y]* + || Z]* + IW|* + [U|I* > 0. (2.12)

Proof. Starting from (2.1) we obtain by applying Lemma 1.2

%ﬁ(t) < - [(F(2,W)U,U) - a1 (U, U)]

— ay(B(Z, W), W) — [a3 4 ata(me —a) 5] (W, W)

a1aq4 — Qs
-2t i‘f;}az:a:s) (G(2), 2)
+ [agd(Z, Z) + a (JH(Y)Z, Z) - a5<Z, Z)]

2104 — Ay

G (OY,Y)| - o (F(Z, W)U W)

+a}(U, W) - [(G(2),U) — a3(Z,U)]
_ @2 =) pos oy

ajag — as

+ 0104(01112 - 03)
a1aq4 — Qs

_ ﬁ%f%“‘zi). (D(Z, W), Z) — ay(W, Z)]
144 — Qg

— [as(W, Z) — (W, Ju(Y) Z)]

= as(Y, W) + (Jo (X)Y, W) — §[(G(2),Y) - a3(Y, Z)]
—8[P(Z,W),Y) — as(W,Y)]

—a1a5(Y, Z) + a1 (Ju (X)Y, Z).

(U, Z) = §(F(Z, W)Y, U) + 6a, (Y, U)

By using (ii) and Lemma 1.1 we find

(F(Z,W)U,U) - ax(U,U) > eo||U|1*.
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We get also from (2.2), (iii) and Lemma 1.1

m@@ymw%{%+mwww_“twka)

ay1ay4 — as
1
= a / ([ (B(Z, W) |oW) = ax | W, W)do
0

1G4 (0102 - as)
ajag — as

+[al(12—a3+5— ](W,W>

> el (2.15)

By using techniques similar to those used by Sadek (6] and (2.13)- (2.15)
it can be seen that ¥#(t) < 0 for all £ > 0 and in particular

d .
—9(t) <0 whenever |LX|[* + ||V [|* + || Z[* + [W]* + |U)* > 0

which proves the lemma.

3. Completion of the proof

The usual Barabashin-type arguments, Theorem 1.5 in [4], applied to
(2.3)-(2.5), (2.11) and (2.12) would then show that for any solution
(X(),Y(t), Z(t), W(t),U(t)) of (1.3) we have

XN =0, [Y®) =0, |1Z(®)]| = 0, W) =0, [UE)]—0
as t — oo, which are equivalent to
IX @)= 0, IX@) = 0, IX@)N -0, XO =0, [XW )| -0

as t — oo. This completes the proof of the Theorem.
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