A global stability result for a certain system of fifth order nonlinear differential equations

CEMIL TUNG

ABSTRACT. This paper establishes sufficient conditions which ensure the uniform global asymptotic stability of the zero solution of (1.1).

1. Introduction and statement of the result

We consider the real non-linear autonomous vector differential equation of fifth order

$$X^{(5)} + F(\ddot{X}, \ddot{X})X^{(4)} + \Phi(\ddot{X}, \ddot{X}) + G(\ddot{X}) + H(\dot{X}) + \Psi(X) = 0$$
 (1.1)

in which $X \in \mathbb{R}^n$, \mathbb{R}^n denotes the real *n*-dimensional Euclidean space, F is a $n \times n$ matrix function, $\Phi : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$, $G : \mathbb{R}^n \to \mathbb{R}^n$, $H : \mathbb{R}^n \to \mathbb{R}^n$ and $\Psi : \mathbb{R}^n \to \mathbb{R}^n$.

The non-linear functions F, Φ , G, H and Ψ are continuous and so constructed such that the uniqueness theorem is valid. The equation (1.1) represents a system of real fifth-order differential equations of the form

Received February 22, 1996; revised July 3, 1997.

1991 Mathematics Subject Classification. 34D20, 34D40.

Key words and phrases. System of non-linear differential equations of the fifth order, Lyapunov function, global stability.

For convenience, we fix some notations. Given any matrix M, its eigenvalues will be denoted simply by $\lambda_i(M)$ $(i=1,2,\ldots,n)$. Next, given any pair of vectors $X=(x_1,x_2,\ldots,x_n)$ and $Y=(y_1,y_2,\ldots,y_n)$, we use $\langle X,Y\rangle$ to denote their scalar product $\sum_{i=1}^n x_i y_i$. Thus, in particular, $\langle X,X\rangle=\|X\|^2$. Also the Jacobian matrices $J(\Phi(Z,W)|Z)$, $J(\Phi(Z,W)|W)$, $J_G(Z)$, $J_H(Y)$, and $J_{\Psi}(X)$ are given by

$$J(\Phi(Z,W)|Z) = \left(\frac{\partial \phi_i}{\partial z_j}\right), \ J(\Phi(Z,W)|W) = \left(\frac{\partial \phi_i}{\partial w_j}\right),$$

$$J_G(Z) = \left(\frac{\partial g_i}{\partial z_j}\right), \ J_H(Y) = \left(\frac{\partial h_i}{\partial y_j}\right), \ J_{\Psi}(X) = \left(\frac{\partial \psi_i}{\partial x_j}\right) \quad (i,j=1,2,\ldots,n).$$

Moreover, let the Jacobian matrices $J(\Phi(Z,W)|Z)$, $J(\Phi(Z,W)|W)$, $J_G(Z)$, $J_H(Y)$ and $J_{\Psi}(X)$ exist and be continuous.

The problem in this paper, in the case n=1, has been investigated to quite a considerable extent.

Chukwu [4] established sufficient conditions for the asymptotic stability in the large of the zero solution of the equation

$$x^{(5)} + ax^{(4)} + f_2(\ddot{x}) + c\ddot{x} + f_4(\dot{x}) + f_5(x) = 0.$$

In [2], Abou-El-Ela and Sadek derived similar results for the problem

$$x^{(5)} + f_1(\ddot{x})x^{(4)} + f_2(\ddot{x}) + f_3(\ddot{x}) + f_4(\dot{x}) + f_5(x) = 0.$$

Yuanhong [9] and Tunç [7, 8] investigated the differential equations

$$x^{(5)} + \varphi(x, \dot{x}, \ddot{x}, \dot{x}, x^{(4)})x^{(4)} + b\ddot{x} + h(\ddot{x}) + g(\dot{x}) + f(x) = 0,$$

$$x^{(5)} + \varphi(x, \dot{x}, \ddot{x}, \dot{x}, x^{(4)})x^{(4)} + b\ddot{x} + h(\ddot{x}) + g(x, \dot{x}) + f(x) = 0$$

and

$$x^{(5)} + \varphi(x, \dot{x}, \ddot{x}, \ddot{x}, x^{(4)})x^{(4)} + \psi(\ddot{x}, \ddot{x}) + h(\ddot{x}) + g(\dot{x}) + f(x) = 0,$$

respectively and proved stability in the large under certain conditions.

Recently, Abou-El-Ela and Sadek [3] and Sadek [6] also presented sufficient conditions for the asymptotic stability in the large of zero solution of the equations

$$X^{(5)} + AX^{(4)} + \Phi(\ddot{X}) + G(\ddot{X}) + H(\dot{X}) + BX = 0$$

and

$$X^{(5)} + F(\ddot{X})X^{(4)} + \Phi(\ddot{X}) + G(\ddot{X}) + H(\dot{X}) + \Psi(X) = 0,$$

respective

This p and Chul and Sade

Using will be to

The purp

Theo: $and \Psi, u$ $a_4, a_5 a_6$ such that

(i) 1

C

(ii) *I*

(iii) d

_

 $egin{allet} & ext{nval-} \ & ext{pair} \ & ext{to} \ & X \parallel^2. \end{aligned}$

 $\cdot (Y),$

(,n).

(Z),ed to

bility

suffi-

on of

val- respectively.

This paper for n=1 includes the results of Abou-El-Ela and Sadek [2] and Chukwu [4] and also extends the correspondent results of Abou-El-Ela and Sadek [3] and Sadek [6].

Using $Y = \dot{X}$, $Z = \dot{Y}$, $W = \dot{Z}$ and $U = \dot{W}$ the differential equation (1.1) will be transformed to the equivalent system

$$\dot{X} = Y, \ \dot{Y} = Z, \ \dot{Z} = W, \ \dot{W} = U,$$

 $\dot{U} = -F(Z, W)U - \Phi(Z, W) - G(Z) - H(Y) - \Psi(X).$ (1.3)

The purpose of the paper is to prove the following

Theorem. In addition to the fundamental assumptions on F, Φ , G, H and Ψ , we suppose the existence of arbitrary positive constants a_1 , a_2 , a_3 , a_4 , a_5 and of sufficiently small positive constants ε_0 , ε , ε_1 , ε_2 , ε_3 , ε_4 , ε_5 such that

(i) There is

$$a_1 a_2 - a_3 > 0, \ (a_1 a_2 - a_3) a_3 - (a_1 a_4 - a_5) a_1 > 0,$$

 $\delta_0 = (a_3 a_4 - a_2 a_5) (a_1 a_2 - a_3) - (a_1 a_4 - a_5)^2 > 0$ (1.4)

and for all $Y \in \mathbb{R}^n$,

$$\Delta_{1} = \frac{(a_{3}a_{4} - a_{2}a_{5})(a_{1}a_{2} - a_{3})}{a_{1}a_{4} - a_{5}} - [a_{1}||J_{H}(Y)|| - a_{5}] > 2\varepsilon a_{2}, \tag{1.5}$$

$$-\left[a_{1}\|J_{H}(Y)\|-a_{5}\right] > 2\varepsilon a_{2}, \tag{1.5}$$

$$\Delta_{2} = \frac{a_{3}a_{4}-a_{2}a_{5}}{a_{1}a_{4}-a_{5}} - \frac{a_{1}a_{4}-a_{5}}{a_{4}(a_{1}a_{2}-a_{3})}\Gamma(Y) - \frac{\varepsilon}{a_{1}} > 0, \tag{1.6}$$

where

$$\Gamma(Y) = \int_0^1 J_H(\sigma Y) d\sigma; \qquad (1.7)$$

(ii) F(Z,W) is symmetric and for all $Z, W \in \mathbb{R}^n$,

$$\varepsilon_0 \leq \lambda_i (F(Z, W) - a_1 I) \leq \varepsilon_1 \quad (i = 1, 2, ..., n);$$

(iii) $\Phi(Z,0) = 0$, $J(\Phi(Z,W)|Z)$ is negative-definite, $J(\Phi(Z,W)|W)$ is symmetric and for all $Z, W \in \mathbb{R}^n$,

$$0 \le \lambda_i \left(\int_0^1 \left[J(\Phi(Z, \sigma W) | \sigma W) - a_2 I \right] d\sigma \right) \le \varepsilon_2 \quad (i = 1, 2, \dots, n);$$

(iv) G(0) = 0, $J_G(Z)$ is symmetric and for all $Z \in \mathbb{R}^n$,

$$0 \le \lambda_i \left(\int_0^1 \left[J_G(\sigma Z) - a_3 I \right] d\sigma \right) \le \varepsilon_3 \quad (i = 1, 2, \dots, n);$$

(v) H(0) = 0, $J_H(Y)$ is symmetric and for all $Y \in \mathbb{R}^n$ and $1 \le i \le n$,

$$\lambda_i \left(\int_0^1 J_H(\sigma Y) d\sigma \right) \ge a_4, \ \|a_4 I - J_H(Y)\| \le \varepsilon_4,$$
$$\lambda_i \left(J_H(Y) - \int_0^1 J_H(\sigma Y) d\sigma \right) \le \frac{a_5 \delta_0}{a_4^2 (a_1 a_2 - a_3)};$$

(vi) $\Psi(0) = 0$, $J_{\Psi}(X)$ is symmetric and for all $X \in \mathbb{R}^n$,

$$0 \leq \lambda_i (a_5 I - J_{\Psi}(X)) \leq \varepsilon_5 \quad (i = 1, 2, \dots, n);$$

(vii) $J_{\Psi}(X)$ commutes with $J_{\Psi}(X')$ for all $X, X' \in \mathbb{R}^n$ and

$$\lambda_i \left(\int_0^1 J_{\Psi}(\sigma X) d\sigma \right) \ge a_5' > 0 \quad (i = 1, 2, \dots, n)$$

for all $X \in \mathbb{R}^n$.

Then every solution X(t) of (1.1) satisfies

$$||X(t)|| \to 0, \ ||\dot{X}(t)|| \to 0, \ ||\ddot{X}(t)|| \to 0, \ ||\ddot{X}(t)|| \to 0, \ ||X^{(4)}(t)|| \to 0$$
 as $t \to \infty$.

In the subsequent discussion we require the following lemmas.

Lemma 1.1[6]. Let M be a real symmetric $n \times n$ matrix and

$$a' \ge \lambda_i(M) \ge a > 0 \quad (i = 1, 2, \dots, n).$$

Then

$$a'||X||^2 \ge \langle MX, X \rangle \ge a||X||^2,$$

 $a'^2||X||^2 \ge \langle MX, MX \rangle \ge a^2||X||^2.$

Lei

(I

(II

(III)

(IV

Pr

Since

Then

 $\frac{d}{dt}$

since St Lemma 1.2. The following statements hold:

(I)
$$\frac{d}{dt} \int_0^1 \langle \Phi(Z, \sigma W), W \rangle d\sigma \leq \langle \Phi(Z, W), U \rangle;$$

(II)
$$\frac{d}{dt} \int_0^1 \langle G(\sigma Z), Z \rangle d\sigma = \langle G(Z), W \rangle;$$

(III)
$$\frac{d}{dt} \int_0^1 \langle H(\sigma Y), Y \rangle d\sigma = \langle H(Y), Z \rangle;$$

(IV)
$$\frac{d}{dt} \int_0^1 \langle \Psi(\sigma X), X \rangle d\sigma = \langle \Psi(X), Y \rangle.$$

Proof. (I). We have

$$\frac{d}{dt} \int_{0}^{1} \langle \Phi(Z, \sigma W), W \rangle d\sigma = \int_{0}^{1} \langle \Phi(Z, \sigma W), U \rangle d\sigma
+ \int_{0}^{1} \langle J(\Phi(Z, \sigma W)|Z)W, W \rangle d\sigma
+ \int_{0}^{1} \sigma \langle J(\Phi(Z, \sigma W)|\sigma W)U, W \rangle d\sigma.$$
(1.8)

Since $J(\Phi|W)$ is symmetric from condition (iii) we have

$$\int_{0}^{1} \sigma \langle J(\Phi(Z, \sigma W) | \sigma W) U, W \rangle d\sigma = \int_{0}^{1} \sigma \langle J(\Phi(Z, \sigma W) | \sigma W) W, U \rangle d\sigma$$

$$= \int_{0}^{1} \sigma \frac{\partial}{\partial \sigma} \langle \Phi(Z, \sigma W), U \rangle d\sigma$$

$$= \langle \Phi(Z, W), U \rangle - \int_{0}^{1} \langle \Phi(Z, \sigma W), U \rangle d\sigma. \tag{1.9}$$

Then we get

$$\frac{d}{dt} \int_0^1 \langle \Phi(Z, \sigma W), W \rangle d\sigma = \langle \Phi(Z, W), U \rangle + \int_0^1 \langle J(\Phi(Z, \sigma W) | Z) W, W \rangle d\sigma$$
$$\leq \langle \Phi(Z, W), U \rangle,$$

since $J(\Phi|Z)$ is negative-definite from assumption (iii). Statements (II), (III) and (IV) can be proved similarly as (I).

 $\rightarrow 0$

 $i \leq n$,

2. The Lyapunov function V(X,Y,Z,W,U)

The main tool in the proof of Theorem is the function V(X,Y,Z,W,U) defined for arbitrary X, Y, Z, W and U in \mathbb{R}^n by

$$2V = \langle U, U \rangle + 2a_{1} \langle U, W \rangle + \frac{2a_{4}(a_{1}a_{2} - a_{3})}{a_{1}a_{4} - a_{5}} \langle U, Z \rangle + 2\delta \langle Y, U \rangle$$

$$+ 2 \int_{0}^{1} \langle \Phi(Z, \sigma W), W \rangle d\sigma + \left[a_{1}^{2} - \frac{a_{4}(a_{1}a_{2} - a_{3})}{a_{1}a_{4} - a_{5}} \right] \langle W, W \rangle$$

$$+ 2 \left[a_{3} + \frac{a_{1}a_{4}(a_{1}a_{2} - a_{3})}{a_{1}a_{4} - a_{4}} - \delta \right] \langle W, Z \rangle + 2\delta a_{1} \langle W, Y \rangle$$

$$+ 2 \langle \Psi(X), W \rangle + 2 \langle W, H(Y) \rangle + 2a_{1} \int_{0}^{1} \langle G(\sigma Z), Z \rangle d\sigma$$

$$+ \left[\frac{a_{2}a_{4}(a_{1}a_{2} - a_{3})}{a_{1}a_{4} - a_{5}} - a_{4} - a_{1}\delta \right] \langle Z, Z \rangle + 2a_{2}\delta \langle Y, Z \rangle$$

$$+ 2a_{1} \langle Z, H(Y) \rangle - 2a_{5} \langle Y, Z \rangle + 2a_{1} \langle \Psi(X), Z \rangle$$

$$+ (\delta a_{3} - a_{1}a_{5}) \langle Y, Y \rangle + \frac{2a_{4}(a_{1}a_{2} - a_{3})}{a_{1}a_{4} - a_{5}} \int_{0}^{1} \langle H(\sigma Y), Y \rangle d\sigma$$

$$+ \frac{2a_{4}(a_{1}a_{2} - a_{3})}{a_{1}a_{4} - a_{5}} \langle \Psi(X), Y \rangle + 2\delta \int_{0}^{1} \langle \Psi(\sigma X), X \rangle d\sigma, \qquad (2.1)$$

where

$$\delta = \frac{a_5(a_1a_2 - a_3)}{a_1a_4 - a_4} + \varepsilon. \tag{2.2}$$

The following two lemmas are essential for the actual proof of the Theorem.

Lemma 2.1. Suppose that the conditions of the Theorem hold. Then the function V satisfies

$$V(X,Y,Z,W,U) = 0, \quad at ||X||^2 + ||Y||^2 + ||Z||^2 + ||W||^2 + ||U||^2 = 0,$$

$$(2.3)$$

$$V(X,Y,Z,W,U) > 0, \quad if ||X||^2 + ||Y||^2 + ||Z||^2 + ||W||^2 + ||U||^2 > 0,$$

$$(2.4)$$

$$V(X,Y,Z,W,U) \to \infty, \quad as ||X||^2 + ||Y||^2 + ||Z||^2 + ||W||^2 + ||U||^2 \to \infty.$$

Proof. V(0,0,0,0,0)=0, since $\Phi(Z,0)=H(0)=G(0)=\Psi(0)=0$. By virtue of (1.7) the matrices Γ are symmetric, because $J_H(Y)$ is symmetric. The eigenvalues of Γ are positive because of (v). Consequently the square

root $\Gamma^{1/}$ Therefore

$$2V =$$

where

The func

Since

then

Therefor $V_3 = \frac{\varepsilon}{a_1}$ $= \frac{\varepsilon}{a_1}$ ε

Y, Z, W, U)

 $\langle T \rangle$

V,W
angle

 $Y\rangle d\sigma$

(2.1)

(2.2)

f the Theo-

d. Then the

$$\|^2=0, \ (2.3)$$

 $|^2 > 0,$ (2.4)

$$|I||^2 \to \infty.$$

$$(2.5)$$

0) = 0. By symmetric. the square

root $\Gamma^{1/2}$ exists, and this is again symmetric and nonsingular for all $Y \in \mathbb{R}^n$. Therefore the function V(X,Y,Z,W,U) can be rearrangered as follows:

$$2V = \left\| U + a_1 W + \frac{a_4 (a_1 a_2 - a_3)}{a_1 a_4 - a_5} Z + \delta Y \right\|^2 + \frac{a_4 \delta_0}{(a_1 a_4 - a_5)^2} \left\| Z + \frac{a_5}{a_4} Y \right\|^2 + \frac{a_4 (a_1 a_4 - a_5)}{a_1 a_2 - a_3} \left\| \frac{a_1 a_2 - a_3}{a_1 a_4 - a_5} \Gamma^{-1/2} \Psi(X) + \frac{a_1 a_2 - a_3}{a_1 a_4 - a_5} \Gamma^{1/2} Y \right\|^2 + \frac{a_1}{a_4} \Gamma^{1/2} Z + \frac{1}{a_4} \Gamma^{1/2} W \right\|^2 + \Delta_2 \|W + a_1 Z\|^2 + \sum_{i=1}^5 V_i$$
 (2.6)

where

$$\begin{split} V_1 &= 2\delta \int_0^1 \langle \Psi(\sigma X), X \rangle d\sigma - \frac{a_4(a_1 a_2 - a_3)}{a_1 a_4 - a_5} \big\| \varGamma^{-1/2} \Psi(X) \big\|^2, \\ V_2 &= \frac{a_4(a_1 a_2 - a_3)}{a_1 a_4 - a_5} \left[2 \int_0^1 \langle H(\sigma Y), Y \rangle d\sigma - \langle H(Y), Y \rangle \right] \\ &+ \left[\delta a_3 - a_1 a_5 - \frac{a_5^2 \delta_0}{a_4(a_1 a_4 - a_5)} - \delta^2 \right] \|Y\|^2, \\ V_3 &= \frac{\varepsilon}{a_1} \|W\|^2 + 2 \int_0^1 \langle \Phi(Z, \sigma W), W \rangle d\sigma - a_2 \|W\|^2, \\ V_4 &= 2a_1 \int_0^1 \langle G(\sigma Z), Z \rangle d\sigma - a_1 a_2 \|Z\|^2, \\ V_5 &= \frac{2\varepsilon (a_3 a_4 - a_2 a_5)}{a_1 a_4 - a_5} \langle Y, Z \rangle. \end{split}$$

The functions V_1 , V_2 and V_4 can be estimated as in [6]. In fact the estimates there show that

$$V_1 \ge \varepsilon a_5' \|X\|^2, \quad V_2 \ge \frac{a_5 \delta_0}{4a_4 (a_1 a_4 - a_5)} \|Y\|^2, V_4 \ge 0.$$
 (2.7)

Since

 $\frac{\partial}{\partial \sigma} \Phi(Z, \sigma W) = J(\Phi(Z, \sigma W) | \sigma W) W,$

then

$$\Phi(Z,W) = \int_0^1 J(\Phi(Z,\sigma W)|\sigma W)Wd\sigma.$$

Therefore

$$V_{3} = \frac{\varepsilon}{a_{1}} ||W||^{2} + 2 \int_{0}^{1} \langle \Phi(Z, \sigma W), W \rangle d\sigma - a_{2} ||W||^{2}$$

$$= \frac{\varepsilon}{a_{1}} ||W||^{2} + 2 \int_{0}^{1} \int_{0}^{1} \langle \{J \left[\Phi(Z, \sigma_{1} \sigma_{2} W) || \sigma_{1} \sigma_{2} W \right] - a_{2} I \} \sigma_{2} W, W \rangle d\sigma_{1} d\sigma_{2}$$

$$\geq \frac{\varepsilon}{a_{1}} ||W||^{2}$$

$$(2.8)$$

by (iii) and Lemma 1.1.

Combining inequalities (2.7) and (2.8) in (2.6) we obtain

$$2V \ge \left\| U + a_1 W + \frac{a_4 (a_1 a_2 - a_3)}{a_1 a_4 - a_5} Z + \delta Y \right\|^2 + \frac{a_4 \delta_0}{(a_1 a_4 - a_5)^2} \left\| Z + \frac{a_5}{a_4} Y \right\|^2 + \Delta_2 \|W + a_1 Z\|^2 + \varepsilon a_5' \|X\|^2 + \frac{a_5 \delta_0}{4a_4 (a_1 a_4 - a_5)} \|Y\|^2 + \frac{\varepsilon}{a_1} \|W\|^2 + \frac{2\varepsilon (a_3 a_4 - a_2 a_5)}{a_1 a_4 - a_5} \langle Y, Z \rangle.$$

$$(2.9)$$

Then it follows that

$$2V \ge D_1 ||X||^2 + 2D_2 ||Y||^2 + 2D_3 ||Z||^2 + D_4 ||W||^2 + D_5 ||U||^2 + \frac{2\varepsilon (a_3 a_4 - a_2 a_5)}{a_1 a_4 - a_5} \langle Y, Z \rangle,$$
(2.10)

for some sufficiently small positive constants D_i (i = 1, 2, 3, 4, 5). Let

$$V_6 = D_2 ||Y||^2 + \frac{2\varepsilon (a_3 a_4 - a_2 a_5)}{a_1 a_4 - a_5} \langle Y, Z \rangle + D_3 ||Z||^2.$$

Since by Schwarz's inequality

$$|\langle Y, Z \rangle| \le ||Y|| ||Z|| \le (||Y||^2 + ||Z||^2)/2,$$

then we get

$$V_6 \ge D_2 ||Y||^2 - \frac{\varepsilon(a_3 a_4 - a_2 a_5)}{a_1 a_4 - a_5} (||Y||^2 + ||Z||^2) + D_3 ||Z||^2$$

$$\ge D_6 (||Y||^2 + ||Z||^2),$$

for some $D_6 > 0$, $D_6 = (1/2) \min\{D_2, D_3\}$, if

$$arepsilon \leq rac{a_1 a_4 - a_5}{2(a_3 a_4 - a_2 a_5)} \min\{D_2, \ D_3\}.$$

Consequently

$$2V \ge D_1 ||X||^2 + (D_2 + D_6) ||Y||^2 + (D_3 + D_6) ||Z||^2 + D_4 ||W||^2 + D_5 ||U||^2,$$

which proves the lemma.

Lemm We define

In particu

$$\frac{d}{dt}\vartheta(t)$$
 <

Proof.

$$\frac{d}{dt}\vartheta(t)\leq$$

By using

Lemma 2.2. Let (X(t), Y(t), Z(t), W(t), U(t)) be any solution of (1.3). We define $\vartheta(t) = V(X(t), Y(t), Z(t), W(t), U(t))$. Then

$$\dot{\vartheta}(t) \le 0 \quad \text{for all } t \le 0.$$
 (2.11)

In particular

$$\frac{d}{dt}\vartheta(t) < 0, \quad whenever ||X||^2 + ||Y||^2 + ||Z||^2 + ||W||^2 + ||U||^2 > 0. \quad (2.12)$$

Proof. Starting from (2.1) we obtain by applying Lemma 1.2

$$\frac{d}{dt}\vartheta(t) \leq -\left[\langle F(Z,W)U,U\rangle - a_1\langle U,U\rangle\right]$$

$$-a_1\langle \Phi(Z,W),W\rangle - \left[a_3 + \frac{a_1a_4(a_1a_2 - a_3)}{a_1a_4 - a_5} - \delta\right]\langle W,W\rangle$$

$$-\frac{a_4(a_1a_2 - a_3)}{a_1a_4 - a_5}\langle G(Z),Z\rangle$$

$$+\left[a_2\delta\langle Z,Z\rangle + a_1\langle J_H(Y)Z,Z\rangle - a_5\langle Z,Z\rangle\right]$$

$$-\left[\delta\langle Y,H(Y)\rangle - \frac{a_4(a_1a_2 - a_3)}{a_1a_4 - a_5}\langle J_\Psi(X)Y,Y\rangle\right] - a_1\langle F(Z,W)U,W\rangle$$

$$+a_1^2\langle U,W\rangle - \left[\langle G(Z),U\rangle - a_3\langle Z,U\rangle\right]$$

$$-\frac{a_4(a_1a_2 - a_3)}{a_1a_4 - a_5}\langle F(Z,W)U,Z\rangle$$

$$+\frac{a_1a_4(a_1a_2 - a_3)}{a_1a_4 - a_5}\langle U,Z\rangle - \delta\langle F(Z,W)Y,U\rangle + \delta a_1\langle Y,U\rangle$$

$$-\frac{a_4(a_1a_2 - a_3)}{a_1a_4 - a_5}\left[\langle \Phi(Z,W),Z\rangle - a_2\langle W,Z\rangle\right]$$

$$-\left[a_4\langle W,Z\rangle - \langle W,J_H(Y)Z\rangle\right]$$

$$-\left[a_4\langle W,Z\rangle - \langle W,J_H(Y)Z\rangle\right]$$

$$-\left[a_5\langle Y,W\rangle + \langle J_\Psi(X)Y,W\rangle - \delta\left[\langle G(Z),Y\rangle - a_3\langle Y,Z\rangle\right]$$

$$-\left[\delta\left[\Phi(Z,W),Y\rangle - a_2\langle W,Y\rangle\right]$$

$$-\left[a_1a_5\langle Y,Z\rangle + a_1\langle J_\Psi(X)Y,Z\rangle.$$
(2.13)

By using (ii) and Lemma 1.1 we find

$$\langle F(Z,W)U,U\rangle - a_1\langle U,U\rangle \ge \varepsilon_0 ||U||^2.$$
 (2.14)

(2.9)

(2.10)

et

 $||U||^2$

We get also from (2.2), (iii) and Lemma 1.1

$$a_{1}\langle \Phi(Z,W),W\rangle - \left[a_{3} + \frac{a_{1}a_{4}(a_{1}a_{2} - a_{3})}{a_{1}a_{4} - a_{5}} - \delta\right]\langle W,W\rangle$$

$$= a_{1} \int_{0}^{1} \langle [J(\Phi(Z,\sigma W)|\sigma W) - a_{2}I]W,W\rangle d\sigma$$

$$+ \left[a_{1}a_{2} - a_{3} + \delta - \frac{a_{1}a_{4}(a_{1}a_{2} - a_{3})}{a_{1}a_{4} - a_{5}}\right]\langle W,W\rangle$$

$$\geq \varepsilon ||W||^{2}. \tag{2.15}$$

By using techniques similar to those used by Sadek [6] and (2.13)– (2.15) it can be seen that $\dot{\vartheta}(t) \leq 0$ for all $t \geq 0$ and in particular

$$\frac{d}{dt}\vartheta(t)<0 \ \ \text{whenever} \ \|X\|^2+\|Y\|^2+\|Z\|^2+\|W\|^2+\|U\|^2>0$$

which proves the lemma.

3. Completion of the proof

The usual Barabashin-type arguments, Theorem 1.5 in [4], applied to (2.3)–(2.5), (2.11) and (2.12) would then show that for any solution (X(t),Y(t),Z(t),W(t),U(t)) of (1.3) we have

$$||X(t)|| \to 0, \ ||Y(t)|| \to 0, \ ||Z(t)|| \to 0, \ ||W(t)|| \to 0, \ ||U(t)|| \to 0$$

as $t \to \infty$, which are equivalent to

$$||X(t)|| \to 0, \ ||\dot{X}(t)|| \to 0, \ ||\ddot{X}(t)|| \to 0, \ ||\ddot{X}(t)|| \to 0, \ ||X^{(4)}(t)|| \to 0$$

as $t \to \infty$. This completes the proof of the Theorem.

Acknowledgment

The author thanks the referee for correcting errors in the original manuscript and for helpful suggestions.

- 1. A. M. A. A. system of 131-141.
- 2. A. M. A. differentio
- 3. A. M. A. A of fifth ord
- 4. E. N. Chu equations
- 5. R. Reissig Noordhoff
- 6. A. I. Sade fifth order
- 7. C. Tunç, order diffe
- 8. C. Tung, a order different of Mathem
- 9. Y. Yuanho tions of th **24**(3) (198

DEPARTME

References

- A. M. A. Abou-El-Ela and A. I. Sadek, A stability result for the solutions of a certain system of fourth order differential equations, Ann. Differential Equations 6(2) (1990), 131-141.
- A. M. A. Abou-El-Ela and A. I. Sadek, Stability of the solutions of certain fifth order differential equations, Proc. of Assiut First Intern. Conf. Part V, 1990, pp. 15-25.
- 3. A. M. A. Abou-El-Ela and A. I. Sadek, On the asymptotic stability of a certain system of fifth order differential equations, Ann. Differential Equations 8(4) (1992), 391-400.
- 4. E. N. Chukwu, On the boundedness and stability of solutions of some differential equations of the fifth order, SIAM J. Math. Anal. 7(2) (1976), 176-194.
- R. Reissig, G. Sansone and R. Conti, Nonlinear differential equations of higher order, Noordhoff International Publishing, 1974.
- 6. A. I. Sadek, On global stability of the solutions of system differential equations of the fifth order, Ann. Differential Equations 9(2) (1993), 131-140.
- 7. C. Tunç, On the boundedness and the stability results for the solution of certain fifth order differential equations, Ann. Differential Equations 12(3) (1996), 259-266.
- 8. C. Tunç, On the boundedness and the stability results for the solutions of certain fifth order differential equations, University of Istanbul, Faculty of Science, The Journal of Mathematics Vol. 54 (in press).
- 9. Y. Yuanhong, On the stability and boundedness of solutions of some differential equations of the fifth order, Journal of Central China Normal University (Natural Sciences) 24(3) (1990), 267-273 (in Chinese).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF YÜZÜNCÜ YIL, 65080, TURKEY

(2.13) – (2.15)

 $||^2 > 0$

applied to

 $\parallel \rightarrow 0$

 $t)|| \rightarrow 0$

inal manu-