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A unified approach to some Tauberian
theorems of Hardy and Littlewood

HUBERT TIETZ AND KARL ZELLER

1. Introduction

Let a; +ay + ... be a series with real terms and the partial sums s,, :=
a ++0,n If

a(z) := Zanazn =(1-2z) anx” =:(1-2)s(z) (0<z<1)

converges and a(z) = (1 — z)s(z) = o(1) as ¢ — 1—, then we write A-
Y an=0o0r Alim s, = 0. If 51+ ...+ 8, = o0(n) as n — oo, then we write
Cy-lim s, = 0. The following two Tauberian theorems for (the Abel method)
A are due to Hardy and Littlewood [2, Theorems 11 and 9], their shortest
proofs were found by Wielazidt 7] respective Karamata [3).

Theorem HL1. A-Ya, =0A na, <1l=>"a, =0.
Theorem HL2. A-lim Sn=0As, <1= Cy-lim s, = 0.

As to the extensive literature on these results see [1], [4], [8] and [6]. In
Section 3 of this paper we modify Wielandt’s proof of Theorem HL1, and
in Section 4 we prove Theorem HL2 in a very similar way. We also use the
Weierstrass Approximation Theorem, but we avoid integrals, so our proofs
are a little more direct.
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n=1

ramps ry,r2 € C[0,1] with

linear on [a, a +¢)

We have ry < ¢ < ro.

!

= on [0,0)U[a+e,1]

-1
b) D _n7lg(a™) < D n~tan(1-a")
n=k

If 3 =0, then we obtain the same inequalities with k as above and [ := co.

2. Preliminaries

lim and limsup.

z~+1-— 31—

1

-1

n=k

16 HUBERT TIETZ AND KARL ZELLER

Let o :=1/2. We write Y, lim and limsup instead of

Let F be the set of all functions f : [0,1] — R. Members of F which
are most important for us are the identity j, the step ¢ with ¢(z) := 0 for
0<z < aand p(z) :=1for @ < z <1, and, with a fixed ¢ € (0, ), the

:=¢pon [0,a—¢€)U[a,1]

linear on [a — ¢, @).

Lemma 2.1. Let 0<f<y<land 0<g€F.
a) If g<jon [B,7) and g:=0 otherwise, then

(l—m)Zg(w") <y—-fz (0<z<1).
b) Ifg <j(l—7) on [B,7) and g := 0 otherwise, then

Zn_lg(x”) <y-pfz (0<z<1).

Proof. Let z € (0,1) be fixed. If 8 > 0, then we define k,l € N by
o* <y <zF1and 2! < B < z'1. It follows

a) (1-— x)Zg(z") <(1- a:)z:v” =z* -zl <y - Bz,

-1

< (l—w)Zz" < 7y - Be.

n=k

3. Proof of Theorem HL1

Assume A->" a, = 0 and na, < 1, and let W be the set of all functions
f € F such that 3 a, f(z™) converges for 0 < z < 1 and lim ) a, f(z™) = 0.
To prove Theorem HL1 it suffices to show ¢ € W. Since A-)_ a, = 0, it
follows jp € W for each polynomial p. Next we show that

heCl0,1] = f:=j(1—j)h e W.

From this
and so f €
have

90*7”1{

and thus,

Zan(‘ro“

“; From this
pEW.

Let ¢ € (I
p2—p1 <
- 2.1.a) witl
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 Let € € (0,a) and choose polynomials p;,p; such that p; < h < p, and
p-pr e Then 0 < f~j(1-j)p1 <ej(l—7)and 0 < j(1-4)ps— f <
€j(1 = j). Using Lemma 2.1.b) with 8 =0 and y = 1, we see that

Y an(f = i(1-5)p1)(s™) < > - i1 - Hp) (") < e

D an(i(l=5)p =~ ™) < Y n7 (i1~ )p2 - ) < e
_ From this and J(1=3)p1, 5(1 = j)p, € W we get limsup | 3 a, f(z") | < e,

and so f € W. For example ry —j, ro —j € W, hence r1,ry € W. We further
have

§4j(1~j)on[a/,oz+5) §4j(1—-j)on[a—s,a),
p—"n - . ;y T2— @ _ .
= 0 otherwise = 0 otherwise

~and thus, again by Lemma 2.1.b), we get

' Zan(<p—— ri)(z") < 4(a+¢ — az), Zan(rg - @)(z") < 4(a— (a —€)z).

~ From this and ri,Ty € W we obtain limsup | 3" anp(z™) | < 4¢, and so
peW.

4. Proof of Theorem HL2

Assume A-lims, = 0 and s, < 1, and let K be the set of all functions
f € F such that } s, f(z") converges for 0 < z < 1 and lim(1 — z) -
2. 5nf(2™) = 0. To prove Theorem HL2 it suffices to show @ € K because
lim(1 - z)/(=Inz) = 1. Since A-lims, = 0, it follows jp € K for each
polynomial p. Next we show that

heCl0,1]= f:=jheKk.

Let ¢ € (0,) and choose polynomials p;,p; such that p1 < h < py and
pr—p1 <€ Then 0< f—jp; <ejand 0< Jp2 — f < €j. Using Lemma
2.1.a) with 8 =0 and v = 1, we see that

(1=2) ) sa(f—ip)(=") < (1-2) D (F-dp)(™) < e
(1=2) > sulips— ™) < (1-2) 3 (ip2 - f(a") < e

From this and jp;, jp; € K we get limsup(1 — )| " s, f(z") |< €, and so
f € K. For example ry,r, € K. We further have

{ <2jon[a,a+e) <2jonfa—e¢,a)
p—-ry . 3 Ty — @ .
= 0 otherwise = 0 otherwise
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and thus, again by Lemma 2.1.a), we get

(1-2) S salp—r1)(a™) < 2a+e - as),

1—2)) sn(r2—¢)(=")

IN

IN

2(a — (a — €)x).

From this and rq,7s € K we obtain limsup(l — z) | 3 snep(z™)] < 2¢, and
so @ € K.

5. Concluding Remarks

The following theorems of Littlewood [5] for series with complex terms

are easy consequences of Theorems HL1 and HL2.

Theorem L1. A-Y a, =0Anla,| <1=3 a,=0.
Theorem L2. A-llims, =0A |s,] <1= Ci-lims, =0.

These theorems can be proved along the same lines as Theorems HL1 and
HL2, but their proofs are shorter because one needs only one of the ramps

L)

Ta.
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