A unified approach to some Tauberian theorems of Hardy and Littlewood

HUBERT TIETZ AND KARL ZELLER

1. Introduction

Let $a_1 + a_2 + \ldots$ be a series with real terms and the partial sums $s_n := a_1 + \ldots + a_n$. If

$$a(x) := \sum a_n x^n = (1-x) \sum s_n x^n =: (1-x)s(x) \quad (0 \le x < 1)$$

converges and a(x) = (1-x)s(x) = o(1) as $x \to 1-$, then we write $A - \sum a_n = 0$ or A-lim $s_n = 0$. If $s_1 + \ldots + s_n = o(n)$ as $n \to \infty$, then we write C_1 -lim $s_n = 0$. The following two Tauberian theorems for (the *Abel method*) A are due to Hardy and Littlewood [2, Theorems 11 and 9], their shortest proofs were found by Wielandt [7] respective Karamata [3].

Theorem HL1. $A-\sum a_n=0 \land na_n \leq 1 \Longrightarrow \sum a_n=0$.

Theorem HL2. A-lim $s_n = 0 \land s_n \le 1 \Longrightarrow C_1$ -lim $s_n = 0$.

As to the extensive literature on these results see [1], [4], [8] and [6]. In Section 3 of this paper we modify Wielandt's proof of Theorem HL1, and in Section 4 we prove Theorem HL2 in a very similar way. We also use the Weierstrass Approximation Theorem, but we avoid integrals, so our proofs are a little more direct.

Received January 22, 1998.

¹⁹⁹¹ Mathematics Subject Classification. 40E10, 40G10.

Key words and phrases. Tauberian theorems, Abel method.

2. Preliminaries

Let $\alpha := 1/2$. We write \sum , \lim and \limsup instead of

$$\sum\nolimits_{n=1}^{\infty}\,,\,\,\lim_{x\to 1-}\,\,\text{and}\,\,\limsup_{x\to 1-}\,.$$

Let \mathcal{F} be the set of all functions $f:[0,1]\to\mathbb{R}$. Members of \mathcal{F} which are most important for us are the *identity* j, the $step\ \varphi$ with $\varphi(x):=0$ for $0\leq x<\alpha$ and $\varphi(x):=1$ for $\alpha\leq x\leq 1$, and, with a fixed $\varepsilon\in(0,\alpha)$, the ramps $r_1,r_2\in C[0,1]$ with

$$r_1\left\{\begin{array}{l} :=\varphi \text{ on } [0,\alpha)\cup[\alpha+\varepsilon,1]\\ \text{ linear on } [\alpha,\alpha+\varepsilon) \end{array}, \quad r_2\left\{\begin{array}{l} :=\varphi \text{ on } [0,\alpha-\varepsilon)\cup[\alpha,1]\\ \text{ linear on } [\alpha-\varepsilon,\alpha). \end{array}\right.$$

We have $r_1 \leq \varphi \leq r_2$.

Lemma 2.1. Let $0 \le \beta < \gamma \le 1$ and $0 \le g \in \mathcal{F}$.

a) If $g \leq j$ on $[\beta, \gamma)$ and g := 0 otherwise, then

$$(1-x)\sum g(x^n) \le \gamma - \beta x \quad (0 < x < 1).$$

b) If $g \le j(1-j)$ on $[\beta, \gamma)$ and g := 0 otherwise, then

$$\sum n^{-1}g(x^n) \le \gamma - \beta x \quad (0 < x < 1).$$

Proof. Let $x \in (0,1)$ be fixed. If $\beta > 0$, then we define $k,l \in \mathbb{N}$ by $x^k < \gamma \le x^{k-1}$ and $x^l < \beta \le x^{l-1}$. It follows

a)
$$(1-x)\sum_{n=k} g(x^n) \le (1-x)\sum_{n=k}^{l-1} x^n = x^k - x^l < \gamma - \beta x$$
,

b)
$$\sum n^{-1}g(x^n) \leq \sum_{n=k}^{l-1} n^{-1}x^n(1-x^n) \leq (1-x)\sum_{n=k}^{l-1} x^n < \gamma - \beta x.$$

If $\beta = 0$, then we obtain the same inequalities with k as above and $l := \infty$.

3. Proof of Theorem HL1

Assume $A-\sum a_n=0$ and $na_n\leq 1$, and let $\mathcal W$ be the set of all functions $f\in \mathcal F$ such that $\sum a_n f(x^n)$ converges for $0\leq x<1$ and $\lim \sum a_n f(x^n)=0$. To prove Theorem HL1 it suffices to show $\varphi\in \mathcal W$. Since $A-\sum a_n=0$, it follows $jp\in \mathcal W$ for each polynomial p. Next we show that

$$h \in C[0,1] \Longrightarrow f := j(1-j)h \in \mathcal{W}.$$

Let $\varepsilon \in (1, p_2 - p_1 \leq \varepsilon j(1-j))$.

 $\sum_{a} a$

From this and so $f \in$ have

$$\varphi-r_1$$

and thus,

$$\sum a_n (arphi$$
 –

From this $\varphi \in \mathcal{W}$.

Assume $f \in \mathcal{F}$ su $\sum s_n f(x)$ $\lim (1-x)$ polynomia

Let $\varepsilon \in (p_2 - p_1 \le 2.1.a)$ with

(1 -

(1 -

From this $f \in \mathcal{K}$. Fo

Let $\varepsilon \in (0, \alpha)$ and choose polynomials p_1, p_2 such that $p_1 \leq h \leq p_2$ and $p_2 - p_1 \leq \varepsilon$. Then $0 \leq f - j(1-j)p_1 \leq \varepsilon j(1-j)$ and $0 \leq j(1-j)p_2 - f \leq \varepsilon j(1-j)$. Using Lemma 2.1.b) with $\beta = 0$ and $\gamma = 1$, we see that

$$\sum a_n (f - j(1 - j)p_1)(x^n) \leq \sum n^{-1} (f - j(1 - j)p_1)(x^n) \leq \varepsilon,$$

$$\sum a_n (j(1 - j)p_2 - f)(x^n) \leq \sum n^{-1} (j(1 - j)p_2 - f)(x^n) \leq \varepsilon.$$

From this and $j(1-j)p_1$, $j(1-j)p_2 \in \mathcal{W}$ we get $\limsup |\sum a_n f(x^n)| \leq \varepsilon$, and so $f \in \mathcal{W}$. For example $r_1 - j$, $r_2 - j \in \mathcal{W}$, hence $r_1, r_2 \in \mathcal{W}$. We further have

$$\varphi - r_1 \left\{ \begin{array}{l} \leq 4j(1-j) \text{ on } [\alpha, \alpha + \varepsilon) \\ = 0 \text{ otherwise} \end{array} \right., \quad r_2 - \varphi \left\{ \begin{array}{l} \leq 4j(1-j) \text{ on } [\alpha - \varepsilon, \alpha), \\ = 0 \text{ otherwise} \end{array} \right.$$

and thus, again by Lemma 2.1.b), we get

$$\sum a_n(\varphi - r_1)(x^n) \le 4(\alpha + \varepsilon - \alpha x), \quad \sum a_n(r_2 - \varphi)(x^n) \le 4(\alpha - (\alpha - \varepsilon)x).$$

From this and $r_1, r_2 \in \mathcal{W}$ we obtain $\limsup |\sum a_n \varphi(x^n)| \leq 4\varepsilon$, and so $\varphi \in \mathcal{W}$.

4. Proof of Theorem HL2

Assume A-lim $s_n=0$ and $s_n\leq 1$, and let $\mathcal K$ be the set of all functions $f\in \mathcal F$ such that $\sum s_n f(x^n)$ converges for $0\leq x<1$ and $\lim(1-x)\cdot\sum s_n f(x^n)=0$. To prove Theorem HL2 it suffices to show $\varphi\in \mathcal K$ because $\lim(1-x)/(-\ln x)=1$. Since A-lim $s_n=0$, it follows $jp\in \mathcal K$ for each polynomial p. Next we show that

$$h \in C[0,1] \Longrightarrow f := jh \in \mathcal{K}.$$

Let $\varepsilon \in (0, \alpha)$ and choose polynomials p_1, p_2 such that $p_1 \leq h \leq p_2$ and $p_2 - p_1 \leq \varepsilon$. Then $0 \leq f - jp_1 \leq \varepsilon j$ and $0 \leq jp_2 - f \leq \varepsilon j$. Using Lemma 2.1.a) with $\beta = 0$ and $\gamma = 1$, we see that

$$(1-x)\sum s_n(f-jp_1)(x^n) \leq (1-x)\sum (f-jp_1)(x^n) \leq \varepsilon, (1-x)\sum s_n(jp_2-f)(x^n) \leq (1-x)\sum (jp_2-f)(x^n) \leq \varepsilon.$$

From this and $jp_1, jp_2 \in \mathcal{K}$ we get $\limsup_{n \to \infty} (1-x) |\sum_{n \to \infty} s_n f(x^n)| \leq \varepsilon$, and so $f \in \mathcal{K}$. For example $r_1, r_2 \in \mathcal{K}$. We further have

$$\varphi - r_1 \begin{cases}
\leq 2j \text{ on } [\alpha, \alpha + \varepsilon) \\
= 0 \text{ otherwise}
\end{cases}, \quad r_2 - \varphi \begin{cases}
\leq 2j \text{ on } [\alpha - \varepsilon, \alpha) \\
= 0 \text{ otherwise}
\end{cases}$$

∈ N by

which = 0 for

 α), the

 $:=\infty$.

nctions $\binom{n}{2} = 0$.

and thus, again by Lemma 2.1.a), we get

$$(1-x)\sum s_n(\varphi-r_1)(x^n) \leq 2(\alpha+\varepsilon-\alpha x),$$

$$(1-x)\sum s_n(r_2-\varphi)(x^n) \leq 2(\alpha-(\alpha-\varepsilon)x).$$

From this and $r_1, r_2 \in \mathcal{K}$ we obtain $\limsup (1-x) |\sum s_n \varphi(x^n)| \leq 2\varepsilon$, and so $\varphi \in \mathcal{K}$.

5. Concluding Remarks

The following theorems of Littlewood [5] for series with complex terms are easy consequences of Theorems HL1 and HL2.

Theorem L1.
$$A-\sum a_n=0 \land n|a_n|\leq 1 \Longrightarrow \sum a_n=0$$
.

Theorem L2. A-lim
$$s_n = 0 \land |s_n| \le 1 \Longrightarrow C_1$$
- lim $s_n = 0$.

These theorems can be proved along the same lines as Theorems HL1 and HL2, but their proofs are shorter because one needs only one of the ramps r_1, r_2 .

References

- 1. G. H. Hardy, Divergent series, Clarendon Press, Oxford, 1949.
- 2. G. H. Hardy and J. E. Littlewood, Tauberian theorems concerning power series and Dirichlet's series whose coefficients are positive, Proc. London Math. Soc. 13 (1914), no. 2, 174-191.
- 3. J.Karamata, Über die Hardy-Littlewoodsche Umkehrung des Abelschen Stetigkeitssatzes, Math. Z. 32 (1930), 319-320.
- 4. E. Landau und D. Gaier, Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie, Springer, Berlin, 1986.
- 5. J. E. Littlewood, The converse of Abel's theorem on power series, Proc. London Math. Soc. 9 (1911), no. 2, 434-448.
- H. Tietz and K. Zeller, An elementary proof for the O_R-Theorem of Hardy and Littlewood, J. Math. Anal. Appl. 218 (1998), 632-635.
- 7. H. Wielandt, Zur Umkehrung des Abelschen Stetigkeitssatzes, Math.Z. 56 (1952), 206-207.
- 8. K. Zeller und W. Beekmann, Theorie der Limitierungsverfahren, Springer, Berlin, 1970.

Mathematisches Institut A, Universität Stuttgart, D-70569 Stuttgart, Germany

E-mail address: tietz@mathematik.uni-stuttgart.de

Sonnenstrasse 11, D-72076 Tübingen, Germany

ACTA E' Volume 2

By ℓ number was int c, f, are convergence Recarrents

d€

It

and x (

Rece 1991 *Key* null con

(TBAG-

This