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Factors for absolute Riesz summability methods

HuUsevYIN Bor

ABSTRACT. In this paper we prove a theorem on [N,pn;6|x summability
factors, which extends a theorem of Bor [3] on |N, p, |x summability factors.

1. Introduction

Let }° a, be a given infinite series with the partial sums (5n) and let (p,)
be a sequence of positive numbers such that

n
Pn:va-—-)OO a8 N —r o0 (P_i:p__i:O,iZI).
v=0
The sequence-to-sequence transformation

1
Up = 1_3;‘ vasu

v=0

defines the sequences (u,) of the Riesz means or simply the (N, p,) means,
of the sequence (s,,) generated by the sequence of coefficients (p,) (see [4]).
The series 3" a, is said to be summable |N, Pulk, k> 1, if (see [1])

oo
P,
Z(p*n)k_llun — up-1]* < o0

n=1
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and it is said to be summable |N, p,;8]x, k¥ > 1 and & > 0, if (see [2])
2. P,
Z(“—E)Sk-*-k_llu'n _ un—llk < oo.
n=1 Pn

In this special case when & = 0 (respectively, k = 1 and § = 0) [N, pn; |«
summability is the same as |V, p,|; (respectively |N, p,|) summability. Also
if we take p, = 1 for all values of n, |N,p,;d|; summability reduces to
|C, 1; 8], summability.

If we write

Y.
Xn:;:_;ﬁa

then X, = o0 as n — oo.
Quite recently Bor [3] proved the following theorem.

Theorem A. Let (p,) be a sequence of positive numbers such that P, =
O(np,). Lett, =1/(n+1) Y »_ va,. If Ay — 0 as n — oo,

Zan|A2/\n|:O(1) as m — oo (1.1)

n=1

Z?—"|tn|k:O(Xm) as m — 0o, (1.2)
n=1""

then the series Y an\, is summable |N, pu|x, k > 1, where A2\, = AX, —
A/\n+1 and A)\n = /\n - An+1.

2. The main result

The aim of this paper is to generalize Theorem A for |N, p,;d|x summa-
bility in the form of the following theorem.

Theorem. Let k > 1 and 0 < § < 1/k. Let the sequences (p,) and
(An) such that conditions of Theorem A are satisfied with the condition (1.2)
replaced by

(%)‘”“I]Mk = O(X.) as n — oo. (2.1)
1 v

=

)
Puspiy 1 Pyosi 1 ,
D I o— =04 ()%= (2:2)
n=pt1 £7 Pn_y Pu P,




FACTORS FOR ABSOLUTE RIESZ SUMMABILITY METHODS

then the series ) an )y, is summable |N, p,; 0l
If we take § = 0 in this theorem then we obtain Theorem A.

Remark. It should be noted that if we take § = 0 in our theorem,
then condition (2.2) is superfluous. Because in this case the condition (2. 2)

reduces to
o0

_ P _ =)
n=uv+1 PnPn~l Pv ’

which always holds.
We need the following lemma for the proof of our theorem.

Lemma ([3]). If the condition (1.1) is satisfied, then
nX,|AN] = O0(1) as n — o,

D XalAX| < oo, (2.3)

n=1

XalAn] =0(1) as n — . (2.4)

3. Proof of the Theorem

Let (T,) be the (N, p,) means of the series Y. anA,. Then by definition,
we have

n P ;pu;ar r—'P ;P - P, )av/\v-
Hence, for n > 1, we get

N Py,
Tn—Tn-l = Pz;n ) Z—UTI’—'UG,,,.
n —_

Applying Abel’s transformation, we have

v—1Ay n\n =
Tn’“Tn—lzpnPn IZ:IAP - )Z ar+1;; Zvav

r=1 nou=1

n v+1
- v)\'u
PnPn—l u:lp v +PPnl

= (n+ DpaAnty

+PP_ Z:IP /\‘u-{-l""t + P,

=15 + Tn,Z + Tn,3 + Tn,4-

v=1




26 HUSEYIN BOR

Since
Tt + Tz + Tos + Tral® < 45(1Ton|® + [ Tu2l® + |Tul* + | Tnal®),

to complete the proof of the Theorem, it is sufficient to show that

=P
Z(J)6k+k—1‘Tn1rlk < 00, fOI‘ r= 15 25 35 4.
n=1 n

We shall prove this only for r = 1, the proof for r = 2, 3, 4 is similar.
Using Holder’s inequality we have that

m-+1 41 k
P Sk+k—1 k k8 Sk i~ A i

> GE) Tt <Z Zpul S e
n=2 n n——

m41 P n-—1 k—1
—o0) 3 et e {5 5o

n=g2 7 Tt u=1

- e A
:O(l)ZPvI/\thv‘ Z ('—-) '13—‘

v=1 n=v+41 Pn n-1

Ly
=0(1) Z(f)ék_lltvlklAul

v=1 £V

=0(1) ZAI/\ IZ ) F + O 1)|/\mIZ i Ml

=0(1) i A Xy + O () Am) Xom
v=1

—0(1)
as m — oo, by (2.1) - (2.4).

If we take p, = 1 for all values of n in Theorem, then we get a result
related to |C, 1; 6|, summability factors.
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