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On sequence spaces defined by a sequence of
moduli and an extension of Kuttner’s theorem

VIRGE SOOMER

ABSTRACT. Let A = (a,k) be an infinite matrix with lj};n}:ank # 0, and
E

let p = (pg) be a sequence of positive real numbers. If 1 < p, < H < oo,
then the strong A-summability field (with the exponent p) is included in the
summability field of A. But the result known as Kuttner’s theorem asserts
that if 0 < pp =5 < 1 and A is regular, then there is a sequence which
is strongly (C,1)-summable but which is not A-summable. This result was
extended by Thorpe (cf. Theorem 6) and Maddox (cf. [8] and [9]). The
purpose of the present paper is to extend the results of Thorpe and Maddox
to a lacunary strong summability with respect to a sequence of modulus
functions.

1. Introduction

A function f: [0,00) — [0, 00) is called a modulus if

() ft)=0st=0,

() F(t+u) < f()+ f(u) for all £ > 0,0 > 0,

(157)  f is increasing,

(v) f is continuous from the right of 0.

For a sequence space X and for a modulus f, Ruckle [12] and Maddox [9]
considered a new sequence space:

X()=A{z = (z)] (F(lax])) € X}.

An extension of this definition was given by Kolk [3]. For a sequence of
moduli F' = (f;), he defined:

X(F) = {z = (21)| F(z) = (fa(lz4])) € X}.
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A sequence space X is called solid (or normal) if from (yx) € X and
lzk| < |k, it follows that (zx) € X.

A real function g on the linear space X is called an F-norm if

(i) g(0)=0,

(#) lof <1 (a€K)= g(az) < g(2),

(1) g(z+y) < g(x)+g(y) forall 2,y € X,

(iv) lim atp = 0 (an €K), z€ X = lim g(anz) = 0.

An F-space is defined as a complete F-normed space. If a sequence space
X is an F-space on which the coordinate functionals mx(z) = z are contin-
uous, then X is called an FK-space. An FK-space with normable topology
is called a BK-space.

Let ¢ be the space of all finite sequences. An F-space X containing ¢ is
called an AK-spaceiflim, Y p_, zxer = zforallz € X, where e; = (8ki)ien-

An F-norm ¢ in a sequence space X is called absolutely monotone if
lzx| < |yx| implies g(z) < g(y) for all & = (zx), y = (yx) in X.

A topologization of X (F) is given by Kolk:

Theorem 1 (cf. [4]). If X is a solid AK-FK -space with an absolutely
monotone F-norm g, then F(X) is a solid AK -F K -space with the absolutely
monotone F-norm gp, where

gr(z) = g(F(z)).
Define for p = (pi), px > 0,

n

wo(p) = {2 = (2] lim =5 D laul™ =0},

k=0

i.e. wo(p) is the space of strongly (C,1)-summable (with exponent p) to zero
sequences. If pr = 1, k € N, we denote wg(p) = wo.
For a sequence of moduli ¥ = (fi), define:

N G
wo(F) = {z = (zy)] lim ——— ;fk“zk' = 0}.

In the special case where fi(z) = 2%, 0 < pj < 1, we have that wo(F) =
wo(p). In [2], it was shown that the strong (C,1)-summability is equivalent
to a summability determined by some lacunary sequence.

An increasing sequence © = (k,) of non-negative integers is called a la-
cunary sequence if kg = 0 and liln(kr.;_l — k,) = co. We denote

f krp1—1

hr:(kr-i-l"kr)a qr = ]:;+1’ Zz Z .
G

k=k,
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For any lacunary sequence ©, the space N3 is defined as follows (cf. [2]):
o1
N ={z= (zk)] 111Irn W ; |zx| = 0}.

It is routine to show that the next statement is valid.

Theorem 2 (cf. [2]). The space N§ is a solid AK-FK-space with the

norm
|2 llo=sup A7 " " |al.
" (r)

In the special case © = (27), we have that NG = wp and that the norm
| 2 lle is equivalent to the usual norm || z ||= sup,(n + 1)~ Y7_, |zx| in
Wo.

For a sequence of moduli F = (f;) and for a lacunary sequence O, define:

N§(F) = {a = (el lim 2= 3" fullas)) = 03,
" ()

hence N(F) = X(F) for X = NQ. In particular, for © = (27), fi(z) =
zP¥, 0 < pr < 1, we obtain that N3 (F) = wo(p).
By Theorems 1 and 2, we can formulate

Theorem 3. The space NY(F) is a solid AK-FK-space with the
F-norm

gr(@) =sup 7MY fi(|el).
" (r)

2. The Kothe-Toeplitz duals of N3 (F).

For a sequence space X, we denote by X* and X? the Kothe-Toeplitz
duals of X, i.e.

X = {a=(a1)] Zlakmk| < oo for all (zx) € X}
k

XA = {o = (ap)] Zakzk converges for all (z) € X},
k

and for a F-normed space X, we denote by X’ the continuous dual of X,
and in the case ¢ C X, we denote

X¥ ={(pler))lp € X'}.
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Remark 1. Since for every solid AK-FK-space X,
X*=XP=X¢,

then, by Theorem 3, it holds for X = N§(F).

By some restrictions for F = (fi), we will describe the K&the-Toeplitz
duals of N3 (F).

Let f; be strictly increasing modulus functions and let f, 1 be the inverse
functions of modulus f.

For a sequence of moduli F = (f;) and for a lacunary sequence © = (k,),
we define
Iakl < o0

for some integer B > 1,

M@(F): o = ozk IZ

where max(,) = maXy, <k<k,p;—1-
Further, we will use the following characteristics for a sequence of moduli

= (fi):
(F1) there exists C > 0 such that

fe@® fe(1/t) < C

forallke Nandt >0,
(F2) there exists a continuous function ® : [0, 00) — [0, 00) such that

> B/ < @ ZB/h Fellzxl))
(r)

for all (zx) € N3(F) and for some B € N.
Theorem 4. If condition (F1) is fulfilled, then

(NS (F))* C Mo (F).

Proof. If & = (o) is not in Mg(F), then the series in (1) is divergent
for each integer B > 1, and therefore, there exists a sequence B, — oo such
that

o0

> max il
max-T———~_

=0 (r) fk: (Br/hr)

Let

|k |

App = —
* T 5UB )

XY
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and A ; = n’(lanA,-k. Define & = (zx) by
r

1 -
—— fork=k,,
§r=19 fi'(Br/h)
0 for k # ky.

Then, by condition (F1), we have

1 1 1 C

- Fel)= —F [ —— | < 2

I ;)fk(lwkl) s (f;:l(Br/hr)> <5
and, therefore, Z € NJ(F).

But
Z larZs] = _____IO‘LJ = max ——————Iakl
o f (B /hy) fe (Br/hy)
and hence 372 |axd| = co. This completes the proof.
Theorem 5. If condition (F2) is fulfilled, then
Mo (F) C (Ng(F))".

Proof. Let z = (z4) € N3(F) and @ = () € Mg (F). Then, by condition
(F2), we have

Z logzy| = ZArkf/:l(B/hr)lwkl <
(r) (r)

< A, ~(B/h, <

< max k%):fk (B/hr)|zx| <

< max Ark®(B/he Y fullzkl)) =
(r)

= n(lra;xArkq)(ng( ))-

Hence we have Yoo lorz,] < 0o and the proof is completed.

Remark 2. If we use the same technique as in [6], Theorem 4, we may
estimate that the inclusion Mg (F) C (NS(F))* holds for the sequence of
moduli F'= (f}), where

(F3) fil(uw) > K fk"l(u)f,:l(v) for some K > 0 (k € N; u,v > 0),

(F4) there exists M > 0 such that

St (w) < Mu  for all 0<u<l.
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In the case fi(t) = tP*,0 < px < 1, and © = (27), conditions (F1) and
(F2) (and also (F3)) hold and we have a result of the same kind as Theorem
4 in [6].

Condition (F2) follows from conditions (F3) and (F4).

Indeed, for each z = (Jzx|) € N3(F), we may state that there exists an
integer R > 0 such that
Bh fr(lek]) < 1

for some B > 1 and r > R. Then, by conditions (F3) and (F4), we have

S 5 (BR okl < % 37 57 (BRT fulan) <
(r) (r)

<

==

Bhi' Y fillzil)
(r)

and, therefore, condition (F2) holds.

3. Some extensions of Kuttner’s theorem

Let [, denote the space of bounded sequences. We formulate:

Theorem 6 (cf. [14]). Let X be a locally convexr FK-space, and let p =
(pk), where 0 < pr = p < 1 for each k € N. Then X D wo(p) implies
X D lw.

In 1946, Kuttner [5] proved the statement of Theorem 6 for X = cg4,
where ¢4 is a summability field of any regular matrix A. In 1968, Maddox
[7] extended this result to coregular A4, and in 1981, Thorpe [14] proved
Theorem 6.

A generalization of Theorem 6 for non-constant p = (pi) is given by
Maddox [8].

Further, we will use the following two propositions.

Proposition 1. Let
Bo(F) = [ {z = (zx)llim Y _ ;' (B/h,)|zs| = 0}.
BCN (r)

Then
(i) Be(F) is a locally conver AK-FK-space with the norms

| @ lls=sup > _ fi'(B/he)lzkl, B €N,
G

(i) (N3(F))¥ C (Be(F))¥ for each F = (fi) which satisfies condition
(F1).

wl

Co
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Proof. (i.) The space Bg(F) is a countable intersection of strong null
summability fields of positive matrices without zero columns. By [1], we
have that every such summability field is a solid AK-BK-space with respect
to the norm || z |[p . Then Bg(F) is an locally convex FK-space by the
well-known result of Zeller [14], and it is routine to show that Be(F) is an
AK-space.

(i). By Remark 1 (let X = Bg(F)) and by Theorem 4, it is sufficient to
show that Me (F) C (Be(F))*. Let @ = (o) € Mg (F). Then there exists
an integer B > 1 such that

oG
Zmax Iakl < 0.
" f7Y(B/hy)

r=0

Now, for each = = () € B (F), we have

Y lorar = 35 leuril =

-Z§: s e (B <

r=0 (
<H|z IIB,

which implies that () € (Be (F))®
The FK-space X is called an AD-space if ¢ = X.

Proposition 2 (cf. [13]). Let E be an AD-space, and let X be an locally
convex F'K -space such that X D ¢. Then X¥ C E¢ implies X D E.

The next two theorems are certain generalizations of Theorem 6 for some
restrictions for the sequence of moduli.
We denote e = (1,1, ...).

Theorem 7. Let X be a locally convex FK- -space, and let the sequence
of moduli F = (fi) satisfy condition (F1). Then the condition e € Bg (F) s
sufficient for the implication

XD NG(F)= X >l

Proof. Suppose that X D NJ(F). Then we have that X C (NS(F))®,
and it follows, by Proposition 1, that X% ¢ (Be(F))¥. Since Bg(F) is
an AK-space, then it is also an AD -space and, by Proposition 2, we have
that X D Bg(F). It is routine to show that e ¢ Be (F) is equivalent to
lew C Bo(F). Therefore, we have that X o lo, and the proof is completed.
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Theorem 8. Let X be a locally convexr FK-space, and let the sequence
of moduli F = (fi) satisfy condition (F2). Then the condition e € Be (F) is
necessary for the implication

X O NS(F)= X D lw.
Proof. Suppose that e & Bo(F). Then there exists an integer B > 1such

that )
3 £ B/ he) A 07— 0. 2)
{(r)
Define now a matrix method A = (a,«) by
_{fl;:—l(B/hr)a for krSk(kr+1
o 0, otherwise,

and let [calo be a strong null summability field of the matrix method A.
Then condition (2) implies that lo, ¢ [c4)o. But by condition (F2), we have

S anklerl = 3 S (B/R) ] <
(r) {r)

=]
< ‘I’(Bﬁ:;fk(uki))-
Therefore, by the continuity of ®, we have that [c4)o D N3 (F). Hence,[calo
is a locally convex FK-space (more exactly, it is a BK-space, cf. [1]) such
that [ca]o D N3(F) but [calo 7 leo. This completes the proof.

Example1. Let0 < p < 1 and fi(t) =tP,0 < p< 1, forallt > 0,k € N.
Then it is evident that condition (F1) holds, and from the inequality

O larl)? < 3 jalP, 0<p <,
k k

it follows that (F2) holds.

Example 2. In the case, where fi(t) = |MetlP*, Ax # 0,
0 < pi < 1, we may show that (F1) holds if |A\x|P* = 0(1), and (F2) holds if
1/Ax = 0(1).

Example 3. In general, condition (F1) is fullfilled if fe(tu) >

C1fi(t) fr(u) and fi(1) < Cy for some C1,Cy > 0.
We note that f(t) = tP, 0 < p < 1, is not the unique modulus function

such that f(tu) > C1f(t)f(u) (see [9]).

Let now F = (f;) be a sequence of moduli such that the next conditions
hold:

(F5) supy fi(t) < oo for each t > 0,

(F6) lim;—o4 supy fi(t) = 0.
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Kolk [3] proved that the function

fit)= sup fe(?)

which satisfies (F5) is a modulus if and only if condition (F6) holds.

Theorem 9. Let X be a locally conver FK-space. If the sequence of
moduli F = (fy) satisfies conditions (F5), (F6), and the lacunary sequence
© = (k,) satisfies the condition lim inf qr > 1, then the condition

lim 1)

t—oo

=0 (3)

is sufficient for the implication

XDONS(F)= XDl

Proof. 1t is easy to show that, for all solid sequence spaces £ and F, with
Ey C E3, the inclusion E1(f) C E5(F) is valid. The condition lim inf gr > 1
guarantees that wy C NJ (see [2], Lemma 2.1). Therefore, in the case
E1 = wo, By = N§, we have that wo(f) C N§(F). Maddox (see [10],
Theorem 6) proved that X o wo(f) implies X D I, if and only if condition
(3) holds (for an arbitrary modulus f). This completes the proof.
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