paces,

1981),

53

TONIA

Inclusion relations
between the statistical convergence
and strong summability

ENNO KOLK

ABSTRACT. For a sequential method of summability \mathcal{B} we define \mathcal{B} -density and \mathcal{B} -statistical convergence in a Banach space X, and investigate inclusion relations between the space of \mathcal{B} -statistically convergent sequences and the space of strongly \mathcal{B} -summable sequences with respect to a sequence of modulus functions $\mathcal{F}=(f_k)$. As an application, two theorems of Pehlivan and Fisher [27] are corrected.

1. Introduction

The notion of statistical convergence was introduced by Fast [7] and Schoenberg [31]. A real or complex sequence $x = (x_k) = (x_k)_{k=1}^{\infty}$ is called statistically convergent to a number l if for each $\varepsilon > 0$,

$$\lim_{n} \frac{1}{n} |\{k \le n : |x_k - l| \ge \varepsilon\}| = 0,$$

where |S| denotes the cardinality of the set S. By st we denote the space of all statistically convergent sequences.

A subadditive and increasing function $f:[0,\infty)\to [0,\infty)$ is called a modulus function if f is continuous from the right at 0 and f(t)=0. Maddox [21] introduced a generalization of the classical notion of strong summability

Received September 9, 1997; revised October 15, 1998.

¹⁹⁹¹ Mathematics Subject Classification. 40D25, 40F05, 40G99, 40J05.

Key words and phrases. Statistical convergence, modulus function, strong summability with respect to a sequence of modulus functions.

This research was supported by Estonian Science Foundation Grant 2416.

[12, 11] in the following way. A sequence $x = (x_k)$ is called strongly Cesàro summable to l with respect to a modulus function f if

$$\lim_{n} \frac{1}{n} \sum_{k=1}^{n} f(|x_{k} - l|) = 0.$$

if

In [22] Maddox proved that $w(f) \subset st$ for every modulus function f and $st \subset w(f)$ if and only if f is bounded, where w(f) denotes the space of sequences which are strongly Cesàro summable with respect to f. Some generalizations of Maddox's theorems may be found in [5, 13, 25, 26, 3, 27]. We extend these results to more general spaces of X-valued sequences $st(\mathcal{B},X)$ and $w^p(\mathcal{B},\mathcal{F},X)$, where X is a Banach space, $\mathcal{B}=(B_i)$ is a regular sequential matrix method of summability and $\mathcal{F} = (f_k)$ is a sequence of modulus functions f_k . As an application, two theorems of Pehlivan and Fisher [27] are corrected.

2. Definitions and preliminary results

In the classical theory of summability the matrix methods play an essential role. Let $A = (a_{nk})$ be an infinite matrix of real or complex numbers. A number sequence $x = (x_k)$ is called A-summable to a number l if the series

$$A_n x = \sum_k a_{nk} x_k = \sum_{k=1}^{\infty} a_{nk} x_k$$

converge for all $n \in \mathbb{N} = \{1, 2, ...\}$ and $\lim_{n} A_{n}x = l$. A matrix method A (or a matrix A) is called regular if all convergent sequences $x = (x_k)$ are A-summable and $\lim_n A_n x = \lim_k x_k$. It is known that A is regular if and only if (see, for example, [34], Theorem 1.3.9)

- $(T1) \quad \lim_{n} a_{nk} = 0$
- (T2) $\lim_{n} \sum_{k} a_{nk} = 1$, (T3) $\sup_{n} \sum_{k} |a_{nk}| < \infty$.

The set of all regular matrices $A = (a_{nk})$ with $a_{nk} \geq 0$ we denote by \mathcal{T}^+ .

For example, Cesàro method $C_1 = (c_{nk})$, where

$$c_{nk} = \begin{cases} 1/n & \text{if } k \le n \\ 0 & \text{otherwise,} \end{cases}$$

is non-negative and regular, i.e. $C_1 \in \mathcal{T}^+$. A similar summability method is given in

Example 2.1. Lacunary convergence [9]. An increasing sequence of positive integers $\theta = (k_r)$ with $k_0 = 0$ is called a lacunary sequence if $h_r = k_r - k_{r-1} \to \infty$ as $r \to \infty$. The sequence θ determines the intervals $I_r = (k_{r-1}, k_r]$. A sequence $x = (x_k)$ is called lacunary convergent to l if

$$\lim_{r} \frac{1}{h_r} \sum_{i \in I_r} x_i = l.$$

So, if $A_{\theta} = (a_{ri}^{\theta})$ is the matrix, where

$$a_{ri}^{\theta} = \left\{ egin{array}{ll} 1/h_r & ext{if } i \in I_r \\ 0 & ext{otherwise,} \end{array}
ight.$$

the A_{θ} -summability is precisely the lacunary convergence. It is clear that $A_{\theta} \in \mathcal{T}^+$.

A well-known example of non-matrix method of summability is almost convergence, originally defined by Banach limits. Lorentz [17] proved that a sequence $x = (x_k)$ is almost convergent to l if and only if

$$\lim_{n} \frac{1}{n} \sum_{k=1}^{n} x_{k+i} = l \quad \text{uniformly in } i.$$
 (2.1)

Introducing the matrices $B_i^1 = (b_{nk}^1(i))$ by

$$b_{nk}^{1}(i) = \begin{cases} 1/n & \text{if } 1+i \le k \le n+i \\ 0 & \text{otherwise,} \end{cases}$$

we may write (2.1) in the form

$$\lim_n \sum_k b_{nk}^1(i) x_k = l \quad \text{uniformly in } i.$$

In general, for an arbitrary sequence of infinite matrices $\mathcal{B}=(B_i)$, $B_i=(b_{nk}(i))$, a sequence $x=(x_k)$ is called \mathcal{B} -summable to l, briefly \mathcal{B} - $\lim x=l$, if [32]

$$\lim_n \sum_k b_{nk}(i) x_k = l \quad \text{uniformly in } i.$$

Such a method \mathcal{B} is sometimes called a sequential method of summability. In our notations, the almost convergence coincides with the \mathcal{B}_1 -summability, where $\mathcal{B}_1 = (B_i^1)$.

The almost convergence may be generalized using invariant means [30]. Let $\sigma: \mathbb{N} \to \mathbb{N}$ an one-to-one mapping such that $\sigma^k(n) \neq n$ for all $n, k \in \mathbb{N}$, where $\sigma^k(n)$ denotes the iterate of order k of the mapping σ at n. For a given matrix $A = (a_{nk})$ let $A_i^{\sigma} = (a_{nk}^{\sigma}(i))$, where for every $i \in \mathbb{N}$,

 \mathcal{B}

fo

 \mathcal{B}

 \mathcal{B}

a

C

la

cı B

if

is

 \boldsymbol{c}

$$a_{nk}^{\sigma}(i) = \left\{ egin{array}{ll} a_{nj} & ext{if } k = \sigma^{j}(i) \\ 0 & ext{otherwise.} \end{array}
ight.$$

The sequential method $\mathcal{B}_A^{\sigma}=(A_i^{\sigma})$ defines so-called A-invariant convergence. An interesting special case here is determined by $\sigma=\tau$, where $\tau(n)=n+1$. It is clear that $\mathcal{B}_A^{\tau}=\mathcal{B}_1$ if $A=C_1$.

Analogously to the matrix methods of summability, a sequential method of summability \mathcal{B} is called regular if every convergent sequence $x=(x_k)$ is \mathcal{B} -summable and \mathcal{B} -lim $x=\lim_k x_k$. Method $\mathcal{B}=(B_i)$ with $B_i=(b_{nk}(i))$ is regular if and only if [32, 2]

- (R1) $\lim_{n} b_{nk}(i) = 0$ for all $k \in \mathbb{N}$, uniformly in i,
- (R2) $\lim_{n} \sum_{k} b_{nk}(i) = 1$ uniformly in i,
- (R3) $\sum_{k} |\widetilde{b_{nk}}(i)| < \infty$ $(n, i \in \mathbb{N}), \exists N \sup_{i \in \mathbb{N}, n > N} \sum_{k} |b_{nk}(i)| < \infty.$

The set of all regular sequential methods \mathcal{B} with $b_{nk}(i) \geq 0$ we denote by the symbol \mathcal{R}^+ . Since for a constant sequence $\mathcal{B} = (A)$ the method \mathcal{B} reduces to the method A, we may write $\mathcal{T}^+ \subset \mathcal{R}^+$.

By an index set we mean a set $K = \{k_i\} \subset \mathbb{N}$, where $k_i < k_{i+1}$ for all i. For a sequential method $\mathcal{B} \in \mathcal{R}^+$ we define a density function $\delta_{\mathcal{B}}$ as follows.

Definition 2.2. An index set K is said to have \mathcal{B} -density $\delta_{\mathcal{B}(K)}$ equal to d, if the characteristic sequence of K is \mathcal{B} -summable to d, i.e.

$$\lim_n \sum_{k \in K} b_{nk}(i) = d \quad \text{uniformly in } i.$$

In particular case $\mathcal{B} = (C_1)$ the density $\delta_{\mathcal{B}}$ is called the asymptotic density. For $\mathcal{B} = \mathcal{B}_1$ the density $\delta_{\mathcal{B}}$ reduces to the uniform density [8]. In the case $\mathcal{B} = (A), A \in \mathcal{T}^+$, the \mathcal{B} -density is the A-density δ_A , where [8, 5, 13]

$$\delta_A(K) = \lim_n \sum_{k \in K} a_{nk}.$$

Every density determines the corresponding statistical convergence [6]. So, using \mathcal{B} -density, we can introduce \mathcal{B} -statistical convergence in a Banach space X over the field \mathbb{K} of real numbers \mathbb{R} or complex numbers \mathbb{C} and with the norm $\|\cdot\|$.

Definition 2.3. Let $\mathcal{B} \in \mathcal{R}^+$. A X-valued sequence $x = (x_k)$ is called \mathcal{B} -statistically convergent to an element $l \in X$, briefly $st(\mathcal{B}, X)$ - $\lim x = l$, if for each $\varepsilon > 0$,

$$\delta_{\mathcal{B}}(\{k: ||x_k - l|| \ge \varepsilon\}) = 0.$$

By the symbol $st(\mathcal{B},X)$ we denote also the space of all \mathcal{B} -statistically convergent X-valued sequences. The space of sequences which converge \mathcal{B} -statistically to zero in X will be denoted by $st_0(\mathcal{B},X)$. In the case $\mathcal{B}=(A)$ (with $A\in\mathcal{T}^+$) we write st(A,X) and $st_0(A,X)$ instead of $st(\mathcal{B},X)$ and $st_0(\mathcal{B},X)$, respectively.

It is not difficult to see that Definition 2.3 gives the usual statistical convergence [7, 22] if $\mathcal{B}=(C_1)$, A-statistical convergence [5, 13] for $\mathcal{B}=(A)$, lacunary statistical convergence [10, 27] for $\mathcal{B}=(A_{\theta})$, uniform statistical convergence [26] for $\mathcal{B}=\mathcal{B}_1$, A-invariant statistical convergence [25, 29] for $\mathcal{B}=\mathcal{B}_A^{\sigma}$ and lacunary σ -statistical convergence [29] if $\mathcal{B}=\mathcal{B}_{A_{\theta}}^{\sigma}$.

Since in view of (R1) any finite index set has \mathcal{B} -density 0, every convergent sequence in X is \mathcal{B} -statistically convergent (to the same limit), i.e.

$$c(X) \subset st(\mathcal{B}, X)$$
,

where c(X) denotes the space of all X-valued convergent sequences. It is necessary to know when this inclusion is strict. We can show that

$$c(X) \subsetneq st(A, X) \tag{2.2}$$

if A is so-called uniformly regular non-negative matrix, i.e. $A \in \mathcal{T}^+$ and (T4) $\lim_n \sup_k |a_{nk}| = 0$.

The set of all such matrices we denote by \mathcal{UT}^+ .

Lemma 2.4. Let $A \in \mathcal{UT}^+$. Every infinite index set K contains an infinite subset K' with $\delta_A(K') = 0$. In addition, (2.2) holds for an arbitrary Banach space X.

Proof. Agnew [1] has proved the following theorem: If $A=(a_{nk})$ satisfies (T4) and $\sum_k |a_{nk}| < \infty$ for all $n \in \mathbb{N}$, then there exists a divergent sequence of 0's and 1's which is A-summable to 0. If $A \in \mathcal{UT}^+$ and $K=\{k_i\}$ is an infinite index set, then the submatrix (a_{n,k_i}) obviously satisfies the assumptions of Agnew's theorem. Hence there is a divergent sequence (α_i) , $\alpha_i=0$ or $\alpha_i=1$, such that

$$\lim_{n}\sum_{i}a_{n,k_{i}}\alpha_{i}=0.$$

Thus the set $K' = \{k_i : \alpha_i = 1\}$ is the infinite subset of K with $\delta_A(K') = 0$. Further, for a fixed element $z_0 \in X$ with $||z_0|| = 1$ the sequence $z = (\alpha_i z_0)$ diverges in X, but if $K_{\varepsilon} = \{i : ||\alpha_i z_0|| \ge \varepsilon\}$, then by $K_{\varepsilon} = K'$ if $0 < \varepsilon \le 1$ and $K_{\varepsilon} = \emptyset$ otherwise we have st(A, X)- $\lim z = 0$. Consequently, (2.2) holds.

We recall that a function $f:[0,\infty) \to (0,\infty)$ is called a modulus function if

- (a) f(t) = 0 if and only if t = 0,
- (b) $f(t+u) \le f(t) + f(u)$ for all $t \ge 0, u \ge 0$,
- (c) f is increasing,
- (d) f is continuous from the right at 0.

It immediately follows from (b) and (d) that f is continuous everywhere on $[0,\infty)$. A modulus function may be unbounded or bounded. For example, $f(t) = t^p$ (0 is unbounded but <math>f(t) = t/(1+t) is bounded.

Ruckle [28], Maddox [21] and other authors used modulus function to construct new sequence spaces. In [13, 14, 15, 27] some new sequence spaces are defined by means of a sequence of modulus functions $\mathcal{F} = (f_k)$. In this connection are important the following properties of \mathcal{F} :

- (M1) $\inf_{k} f_k(t) > 0$ (t > 0);
- (M2) $\lim_{t\to 0+} \sup_k f_k(t) = 0$;
- (M3) $\sup_{t} \sup_{k} f_k(t) = M < \infty$.

For a Banach space X let $\omega(X)$ be the space of all X-valued sequences, $c_0(X)$ the space of all convergent to zero sequences in X and

$$c_0(\mathcal{F}, X) = \{x = (x_k) \in \omega(X) : \lim_k f_k(||x_k||) = 0\}.$$

In the case $X = \mathbb{K}$ we write c_0 and $c_0(\mathcal{F})$ instead of $c_0(X)$ and $c_0(\mathcal{F}, X)$, respectively. In [14] it was proved that the inclusion $c_0(X) \subset c_0(\mathcal{F}, X)$ holds if and only if (M2) is satisfied. The next lemma gives a necessary and sufficient condition for the inverse inclusion.

Lemma 2.5. The inclusion $c_0(\mathcal{F}, X) \subset c_0(X)$ is true if and only if (M1) holds.

Proof. Since $(x_k) \in c_0(\mathcal{F}, X)$ and $(x_k) \in c_0(X)$ are equivalent to $(\|x_k\|) \in c_0(\mathcal{F})$ and $(\|x_k\|) \in c_0$, respectively, our statement immediately follows from Theorem 5 [15].

As a generalization of the classical notion of strong summability [12, 11, 18] and strong almost convergence [24, 33, 19], Maddox [20] and Mursaleen

 $lpha_i z_0$) $z \le 1$ (2.2)

= 0.

ction

e on nple,

n to aces this

ices,

(X),

 \mathbf{and}

M1)

to tely

11, een [23] introduced strong \mathcal{B} -summability. A number sequence $x=(x_k)$ is called strongly \mathcal{B} -summable to a number l if

$$\lim_n \sum_k b_{nk}(i)|x_k - l| = 0 \quad \text{uniformly in } i.$$

In [16] it was given following generalization of strong \mathcal{B} -summability by means of a sequence of modulus functions $\mathcal{F} = (f_k)$.

Definition 2.6. Let p > 0, X be a Banach space, $\mathcal{F} = (f_k)$ be a sequence of modulus functions and \mathcal{B} be a sequential method of summability with $b_{nk}(i) \geq 0$. A sequence $x = (x_k) \in \omega(X)$ is called *strongly* $(\mathcal{B}, p, \mathcal{F})$ -summable to $l \in X$, briefly $w^p(\mathcal{B}, \mathcal{F}, X)$ -lim x = l, if

$$\lim_n \sum_k b_{nk}(i) [f_k(||x_k - l||)]^p = 0 \quad \text{uniformly in } i.$$

By the symbol $w^p(\mathcal{B}, \mathcal{F}, X)$ we denote also the space of all strongly $(\mathcal{B}, p, \mathcal{F})$ -summable sequences.

A remarkable special case of Definition 2.6 is contained in the following example.

Example 2.7. The space $w^{\mathbf{p}}(\mathcal{B}, f, X)$. Let X be a Banach space, \mathcal{B} be a sequential method of summability and $\mathbf{p} = (p_k)$ be a positive sequence with $\sup_k p_k = H < \infty$. For a modulus function f by $w^{\mathbf{p}}(\mathcal{B}, f, X)$ we denote the space of sequences $x = (x_k) \in \omega(X)$ such that for some $l \in X$,

$$\lim_{n} \sum_{k} b_{nk}(i) [f(||x_k - l||)]^{p_k} = 0 \quad \text{uniformly in } i.$$

In this case we write $w^{\mathbf{p}}(\mathcal{B}, f, X)$ - $\lim x = l$.

If $q = \max\{1, H\}$ then $p_k/q \le 1$ and the equality

$$f_k^{\mathbf{p}}(t) = [f(t)]^{p_k/q}$$

clearly defines a modulus function for each $k \in \mathbb{N}$. So for $\mathcal{F}^{\mathbf{p}} = (f_k^{\mathbf{p}})$,

$$w^{\mathbf{p}}(\mathcal{B}, f, X) = w^{q}(\mathcal{B}, \mathcal{F}^{\mathbf{p}}, X). \tag{2.3}$$

Bilgin [4] considered the space $w^{\mathbf{p}}(\mathcal{B}, f, X)$ for $X = \mathbb{K}$.

3. The inclusion $w^p(\mathcal{B}, \mathcal{F}, X) \subset st(\mathcal{B}, X)$

Let X be a Banach space. For a X-valued sequence $y = (y_k)$ and a scalar sequence $a = (a_k)$ let $a \cdot y = (a_k y_k)$. If K is an index set, then by $y^{[K]}$ we denote the sequence $\chi(K) \cdot y$, where $\chi(K)$ is the characteristic sequence of K. Thus $y^{[K]} = (y_k^{[K]})$ with

$$y_k^{[K]} = \begin{cases} y_k & \text{if } k \in K \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 3.1. Let $\mathcal{B} \in \mathcal{R}^+$ and let $\mathcal{F} = (f_k)$ be a sequence of modulus functions. If for an infinite index set K,

$$\inf_{k \in K} f_k(t) > 0 \qquad (t > 0), \tag{3.1}$$

then $w^p(\mathcal{B}, \mathcal{F}, X)$ - $\lim y^{[K]} = 0$ implies $st(\mathcal{B}, X)$ - $\lim y^{[K]} = 0$.

Proof. Let $\varepsilon > 0$. By (3.1) there exists a number s > 0 such that $f_k(\varepsilon) > s$ $(k \in K)$. Denoting

$$L_{\varepsilon} = \{k: \|y_k^{[K]}\| \geq \varepsilon\} = \{k \in K: \|y_k\| \geq \epsilon\},$$

for all $i \in \mathbb{N}$ we have

$$\sigma_n(i) = \sum_k b_{nk}(i) [f_k(||y_k^{[K]}||)]^p \ge s^p \sum_{k \in L_{\epsilon}} b_{nk}(i),$$

which gives

$$\sum_{k \in L_r} b_{nk}(i) \le s^{-p} \sigma_n(i) \qquad (i, n \in \mathbb{N}).$$

Therefore, if $w^p(\mathcal{B}, \mathcal{F}, X)$ - $\lim y^{[K]} = 0$, i.e. $\lim_n \sigma_n(i) = 0$ uniformly in i, then

$$\delta_A(L_{\varepsilon}) = \lim_n \sup_i \sum_{k \in L_{\varepsilon}} b_{nk}(i) = 0.$$

Hence $st(\mathcal{B}, X)$ - $\lim y^{[K]} = 0$.

For $K = \mathbb{N}$ the condition (3.1) is equivalent to (M1). Thus, taking $y = (x_k - l)$ in Theorem 3.1, we can formulate

Theorem 3.2. If $\mathcal{B} \in \mathcal{R}^+$ and $\mathcal{F} = (f_k)$ satisfies (M1) then

$$w^p(\mathcal{B}, \mathcal{F}, X)$$
- $\lim x = l \implies st(\mathcal{B}, X)$ - $\lim x = l.$ (3.2)

We have various special cases by concrete definitions of sequences \mathcal{B} and \mathcal{F} . If f is a modulus function and $\mathbf{p} = (p_k)$ is a bounded sequence of positive numbers, then the sequence of modulus functions $\mathcal{F}^{\mathbf{p}}$ (Example 2.7) obviously satisfies (M1). So by (2.3) we get the following generalization of Theorem 1 of Bilgin [3].

Corollary 3.3. Let $\mathcal{B} \in \mathcal{R}^+$ and $0 < p_k \le \sup_k p_k = H < \infty$. For any modulus function f,

$$w^{\mathbf{p}}(\mathcal{B}, f, X)$$
- $\lim x = l \implies st(\mathcal{B}, X)$ - $\lim x = l$.

In the case $p_k = 1$ Corollary 3.3 was earlier proved by Nuray and Savas [25] $(\mathcal{B} = \mathcal{B}_A^{\sigma})$, Pehlivan [26] $(\mathcal{B} = \mathcal{B}_1)$, Connor [5] $(\mathcal{B} = (A))$ and Maddox [22] $(\mathcal{B} = (C_1))$.

Taking $\mathcal{B} = (A)$ with $A \in \mathcal{T}^+$ in Theorem 3.2, we get a known result ([13], sufficiency in Theorem 3.1).

Corollary 3.4. Let $A \in \mathcal{T}^+$. If \mathcal{F} satisfies (M1) then

lar we

of

lus

.1)

at

.2) nd

of

ple on

$$w^p(A, \mathcal{F}, X)$$
- $\lim x = l \implies st(A, X)$ - $\lim x = l.$ (3.3)

For $A = A_{\theta}$ (Example 2.1) Corollary 3.4 generalizes a result of Pehlivan and Fisher ([27], sufficiency in Theorem 3.3).

From (3.3) it follows that $w_0^p(A, \mathcal{F}, X) \subset st_0(A, X)$. If A is the unit matrix I, this inclusion reduces to $c_0(\mathcal{F}, X) \subset c_0(X)$ and so (M1) holds because of Lemma 2.5. Thus by $I \in \mathcal{T}^+$ we have reproved a known result about the matrix class \mathcal{T}^+ ([13], Theorem 3.1).

Corollary 3.5. The implication (3.3) holds for all $A \in \mathcal{T}^+$ if and only if (M1) is satisfied.

Corollaries 3.4 and 3.5 induce the natural question: Is the condition (M1) necessary in order that (3.3) holds for an individual matrix $A \in \mathcal{T}^+$? We prove that the answer is negative if A is uniformly regular.

Theorem 3.6. Let $A \in \mathcal{UT}^+$. There exists a sequence of modulus functions $\mathcal{F} = (f_k)$ with $\inf_k f_k(t) = 0$ (t > 0) such that (3.3) is true.

Proof. By Lemma 2.4 there is an infinite index set $K = \{k_i\}$ with $\delta_A(K) = 0$. Defining, for example, $f_{k_i}(t) = i^{-1}t$ if $i \in K$ and $f_k(t) = t$ if $k \in \mathbb{N} \setminus K$, we have

$$\inf_{k} f_k(t) = \lim_{i} f_{k_i}(t) = \lim_{i} i^{-1}t = 0.$$

If $w^p(A, \mathcal{F}, X)$ -lim x = l then $y = (x_k - l) \in w_0^p(A, \mathcal{F}, X)$. By $\delta_A(K) = 0$ we have st(A, X)-lim $y^{[K]} = 0$. Since

$$\inf_{k \in \mathbb{N} \setminus K} f_k(t) > 0 \qquad (t > 0)$$

and $y^{[\mathbb{N}\backslash K]}$ clearly belongs to $w_0^p(A, \mathcal{F}, X)$, from Theorem 3.1 it follows that st(A, X)- $\lim y^{[\mathbb{N}\backslash K]} = 0$. Thus

$$y = y^{[K]} + y^{[\mathbb{N} \setminus K]} \in st_0(A, X)$$

which implies st(A, X)- $\lim x = l$.

Remark 3.7. Theorem 3.3 of Pehlivan and Fisher [27] asserts that (M1) is necessary and sufficient for the implication (3.3) in the case $A = A_{\theta}$, p = 1. Since $A_{\theta} \in \mathcal{UT}^+$, Theorem 3.6 shows that this theorem is not true in part. The condition (M1) is not necessary for (3.3) if $A = A_{\theta}$.

A necessary and sufficient condition for the implication (3.3) is contained in the following theorem.

Theorem 3.8. Let $A \in \mathcal{UT}^+$ and suppose that $\mathcal{F} = (f_k)$ is pointwise convergent. The implication (3.3) is true if and only if

$$\lim_{k} f_k(t) > 0 \qquad (t > 0). \tag{3.4}$$

Proof. Let $\varepsilon > 0$. If (3.4) is valid, then we can find numbers s > 0 and $r \in \mathbb{N}$ such that $f_k(\varepsilon) \geq s$ $(k \geq r)$. As in the proof of Theorem 3.1, we get

$$\sum_{k \in L_{\varepsilon}, k \ge r} a_{nk} \le s^{-p} \sum_{k \ge r} a_{nk} [f_k(||x_k - l||)]^p, \tag{3.5}$$

where $L_{\varepsilon} = \{k : ||x_k - l|| \ge \varepsilon\}$. If $w^p(A, \mathcal{F}, X)$ - $\lim x = l$, then by (T1) the inequality (3.5) implies for $n \to \infty$ that $\delta_A(L_{\varepsilon}) = 0$, i.e. st(A, X)- $\lim x = l$.

Conversely, if (3.4) is not true, we have $\lim_k f_k(t_0) = 0$ for some $t_0 > 0$. Since $A \in \mathcal{UT}^+$, by Lemma 2.4 there exists an infinite index set $K = (k_i)$ with $\delta_A(K) = 0$. We define the sequence $x = (x_k)$ by

$$x_k = \begin{cases} 0 & \text{if } k \in K \\ t_0 z & \text{otherwise,} \end{cases}$$

where $z \in X$ with ||z|| = 1. Then $\lim_k [f_k(||x_k||)]^p = 0$ and by regularity of A we have $w^p(A, \mathcal{F}, X)$ - $\lim_{x \to 0} x = 0$. But for $0 < \varepsilon \le t_0$,

$$\delta_A(\{k: ||x_k|| \ge \varepsilon\}) = \lim_n \sum_k a_{nk} - \delta_A(K) = 1$$

by (T2) and $\delta_A(K) = 0$. Thus $st(A, \mathcal{F}, X)$ - $\lim x \neq 0$ contrary to (3.3). \square

4. The inclusion $st(\mathcal{B}, X) \subset w^p(\mathcal{B}, \mathcal{F}, X)$

First theorem gives sufficient conditions for mentioned inclusion.

Theorem 4.1. Let $\mathcal{B} \in \mathcal{R}^+$. If $\mathcal{F} = (f_k)$ satisfies (M2) and (M3) then

$$st(\mathcal{B}, X)$$
- $\lim x = l \implies w^p(\mathcal{B}, \mathcal{F}, X)$ - $\lim x = l.$ (4.1)

Proof. Let $st(\mathcal{B}, X)$ - $\lim x = l$, $h(t) = \sup_k f_k(t)$ and choose $\varepsilon > 0$. For every $i \in \mathbb{N}$ we split the sum

$$\sigma_n(i) = \sum_k b_{nk}(i) [f_k(||x_k - l||)]^p$$

into two sums \sum_{1} and \sum_{2} over $L_{\varepsilon} = \{k : ||x_{k} - l|| \ge \varepsilon\}$ and $\{k : ||x_{k} - l|| < \varepsilon\}$, respectively. Then by (M3),

$$\sum_{1} \le M^{p} \sup_{i} \sum_{k \in L_{\epsilon}} b_{nk}(i) \tag{4.2}$$

and by the increase of f_k ,

hat

И1)

 $A_{ heta},$

e in

ned

vise

1.4)

ind get

.5)

l.

0.

 $k_i)$

of

$$\sum_{2} \le h(\varepsilon) \sup_{i} \sum_{k} b_{nk}(i).$$

Thus, using also (R2), we have

$$\lim_{n} \sigma_{n}(i) \leq M^{p} \delta_{\mathcal{B}}(L_{\varepsilon}) + h(\varepsilon)$$

which by $\delta_{\mathcal{B}}(L_{\varepsilon}) = 0$ and (M2) gives $\lim_{n} \sigma_{n}(i) = 0$ uniformly in i, i.e. $w^{p}(\mathcal{B}, \mathcal{F}, X)$ - $\lim_{n \to \infty} x = l$.

If we examine (4.1) only for X-valued bounded sequences $x=(x_k)$ with $||x|| \leq N$, then

$$f_k(||x_k - l||) \le f_k(N + ||l||) \le h(N + ||l||).$$

Consequently, (4.2) holds (with h(N + ||l||) instead of M) without the assumption (M3). Hence we have proved

Theorem 4.2. Let $\mathcal{B} \in \mathcal{R}^+$ and let $x = (x_k)$ be a bounded sequence in X. The implication (4.1) is true if (M2) holds.

Let f be a modulus function and let $0 < p_k \le \sup_k p_k = H < \infty$. Then the sequence of modulus functions $\mathcal{F}^{\mathbf{p}}$ (Example 2.7) satisfies (M2) if and only if $\inf_k p_k > 0$, and $\mathcal{F}^{\mathbf{p}}$ satisfies (M3) if and only if f is bounded. Using also (2.3), from Theorems 4.1 and 4.2 we get

Corollary 4.3. Let f be a modulus function and let $\mathbf{p} = (p_k)$ be a positive sequence with $\sup_k p_k = H < \infty$.

- (i) If the modulus function f is bounded and $\inf_k p_k > 0$ then $st(\mathcal{B}, X)$ - $\lim x = l$ implies $w^p(\mathcal{B}, f, X)$ - $\lim x = l$.
- (ii) If $x = (x_k)$ is a bounded sequence in X and $st(\mathcal{B}, X)$ $\lim x = l$ then $w^{\mathbf{p}}(\mathcal{B}, f, X)$ $\lim x = l$.

Some special cases of Corollary 4.3 have been considered by Bilgin [3] $(\mathcal{B} = (C_1))$, Nuray and Savas [25] $(\mathcal{B} = \mathcal{B}_A^{\sigma}, p_k = 1)$, Pehlivan [26] $(\mathcal{B} = \mathcal{B}_1, p_k = 1)$ and Connor [5] $(\mathcal{B} = (A), p_k = 1)$.

Let $\ell_{\infty}(X)$ denote the space of all X-valued bounded sequences. By combining Theorems 3.2, 4.1 and 4.2 we have

Theorem 4.4. Let p > 0, $\mathcal{B} \in \mathcal{R}^+$ and $\mathcal{F} = (f_k)$ be a sequence of modulus functions. For any Banach space X

- (i) $st(\mathcal{B}, X) = w^p(\mathcal{B}, \mathcal{F}, X)$ if (M1), (M2) and (M3) are satisfied;
- (ii) $st(\mathcal{B}, X) \cap \ell_{\infty}(X) = w^p(\mathcal{B}, \mathcal{F}, X) \cap \ell_{\infty}(X)$ if (M1) and (M2) hold.

In the particular case $\mathcal{F} = \mathcal{F}^{\mathbf{p}}$, using Corollaries 3.3 and 4.3, we get

Corollary 4.5. Let f be a modulus function, $\mathcal{B} \in \mathcal{R}^+$ and $\mathbf{p} = (p_k)$ be a positive sequence with $\sup_k p_k = H < \infty$. Then for an arbitrary Banach space X

- (i) $st(\mathcal{B}, X) = w^{\mathbf{p}}(\mathcal{B}, f, X)$ if $\inf_k p_k > 0$ and f is bounded;
- (ii) $st(\mathcal{B}, X) \cap \ell_{\infty}(X) = w^{\mathbf{p}}(\mathcal{B}, f, X) \cap \ell_{\infty}(X)$.

Suppose that $A = (a_{nk}) \in \mathcal{UT}^+$ and the sequence of moduli $\mathcal{F} = (f_k)$ satisfies (M2). By Theorem 4.1 the condition (M3) is sufficient for the implication

$$st(A, X)$$
- $\lim x = l \implies w^p(A, \mathcal{F}, X)$ - $\lim x = l.$ (4.3)

It is not difficult to see that (M3) is not necessary for (4.3) in general. Indeed, a slightly modification of the proof of Theorem 4.1 shows that (4.3) (and also (4.1)) remains true, if instead of (M3) we have

$$\sup_{t} \sup_{k \ge r} f_k(t) < \infty$$

for some fixed index r. Thus, defining, for example, $f_1(t) = t$ and $f_k(t) = t/(1+t)$ for $k \geq 2$, we get that (4.3) holds but (M3) is not satisfied.

Remark 4.6. Pehlivan and Fisher ([27], Theorem 3.4) assert that (M3) is necessary and sufficient for the implication (4.3) when p = 1, $A = A_{\theta}$

and \mathcal{F} satisfies (M2). Our previous arguments show that (M3) may not be necessary. The proof of Pehlivan and Fisher is not correct. If $\theta=(k_r)$ is a lacunary sequence, then $\sup_t \sup_k f_k(t) = \infty$ does not follow $\sup_t \sup_r f_{k_r}(t) = \infty$ in general.

ve

en

en

By

lus

be

ich

he

.3)

In the following we give a more precise characterization of the implication (4.3) for uniformly regular row-finite matrices A (a matrix $A = (a_{nk})$ is called row-finite if for any n there exists an index k(n) such that $a_{nk} = 0$ if $k \geq k(n)$).

Theorem 4.7. Let $A \in \mathcal{UT}^+$ be a row-finite matrix and suppose that the sequence of moduli $\mathcal{F} = (f_k)$ satisfies (M2).

- (a) If \mathcal{F} is non-decreasing then (4.3) is true if and only if (M3) holds;
- (b) If F is pointwise convergent then (M3) implies (4.3) and (4.3) implies

$$\sup_{t} \lim_{k} f_k(t) < \infty. \tag{4.4}$$

Proof. By Theorem 4.1 the implication $(M3) \Longrightarrow (4.3)$ is true in both cases (a) and (b).

Suppose that (4.3) holds. For a row-finite and uniformly regular matrix A we clearly have

$$\lim_{n} a_{n,k_n} = 0,$$

where a_{n,k_n} is the last non-zero member in the n^{th} row of A (for sufficiently large n). Further, from (M2) it follows that $\sup_k f_k(t_0) < \infty$ for some $t_0 > 0$ and therefore (see [14], Lemma 2) $\sup_k f_k(t) < \infty$ for all t > 0. Thus, if $\mathcal{F} = (f_k)$ is non-decreasing, then \mathcal{F} is pointwise convergent and (M3) reduces to (4.4). Consequently, if \mathcal{F} is non-decreasing sequence failing (M3) or a pointwise convergent sequence failing (4.4), we have

$$\lim_{t\to\infty}\lim_k f_k(t)=\infty.$$

So, using also Lemma 2.4, in both cases we can find index sets $\{n(i)\}$, $K = \{k(i)\}$ (with $k(i) = k_{n(i)}$) and numbers $0 < t_1 < ... < t_i < t_{i+1} < ...$ such that $\delta_A(K) = 0$ and

$$f_{k(i)}(t_i) \ge (1/a_{n(i),k(i)})^{1/p} \qquad (i \in \mathbb{N}).$$
 (4.5)

Then the sequence $x = (x_k)$, where for fixed $z \in X$ with ||z|| = 1,

$$x_k = \begin{cases} t_i z & \text{if } k = k(i) \\ 0 & \text{otherwise,} \end{cases}$$

converges A-statistically to 0 in X. Hence by (4.3),

$$\lim_{n} \sum_{k} a_{nk} [f_k(||x_k||)]^p = 0. \tag{4.6}$$

But (4.5) implies

$$a_{n(i),k(i)}[f_{k(i)}(||x_k||)]^p \ge 1$$
 $(i \in \mathbb{N}),$

contrary to (4.6). Thus (4.4) must hold.

From Theorems 3.8 and 4.7 it follows

Corollary 4.8. Suppose that $A \in \mathcal{UT}^+$ is a row-finite matrix and $\mathcal{F} = (f_k)$ satisfies (M2).

(a) If \mathcal{F} is non-decreasing then

$$st(A, X) = w^{p}(A, \mathcal{F}, X) \tag{4.7}$$

if and only if the conditions (3.4) and (M3) hold;

(b) If \mathcal{F} is pointwise convergent then (3.4) and (M3) imply (4.7), and (4.7) implies (3.4) and (4.4).

For a constant sequence $\mathcal{F} = (f)$ the conditions (3.4) and (M2) clearly hold, but the condition (M3) is equivalent to the boundedness of f. Hence from Corollary 4.8 we get

Corollary 4.9. Let $A \in \mathcal{UT}^+$ be a row-finite matrix and let f be a modulus function. For any Banach space X we have

$$st(A, X) = w^{p}(A, f, X)$$

$$(4.8)$$

if and only if f is bounded.

In the case of p=1 Maddox ([21], Theorem 2) proved Corollary 4.9 if X is a locally convex space and $A=C_1$.

Since the matrix A_{θ} of the lacunary convergence (Example 2.1) is row-finite and $A_{\theta} \in \mathcal{UT}^+$, Corollaries 4.8 and 4.9 give the following corrected version of Corollary 3.5 [27].

Corollary 4.10. Let θ be a lacunary sequence and let $\mathcal{F} = (f_k)$ be a non-decreasing sequence of modulus functions such that (M2) holds. For any Banach space X and for $A = A_{\theta}$ the equality (4.7) holds if and only if

(3.4) and (M3) are satisfied. For $f_k = f$ and $A = A_{\theta}$ the equality (4.8) is true if and only if the modulus function f is bounded.

Remark 4.11. It should be noted that all our arguments remain valid if the norm in X is replaced by a seminorm in X. Thus all our propositions are true also for a locally convex space X if \mathcal{B} -statistical convergence and strong $(\mathcal{B}, p, \mathcal{F})$ -summability in X are defined as follows. Let X be a locally convex Hausdorff topological linear space whose topology is determined by a system G of continuous seminorms g. A sequence $x = (x_k) \in \omega(X)$ is called \mathcal{B} -statistically convergent to an element $l \in X$ if for each $\varepsilon > 0$ and for each $g \in G$ [22],

$$\delta_{\mathcal{B}}(\{k: g(x_k-l) \geq \varepsilon\}) = 0,$$

and strongly $(\mathcal{B}, p, \mathcal{F})$ -summable to l if

$$\lim_{n} \sum_{k} b_{nk}(i) [f_k(g(x_k - l))]^p = 0 \quad \text{uniformly in } i$$

for every $g \in G$.

.6)

 $\mathbf{n}\mathbf{d}$

rly

nce

 \boldsymbol{a}

.8)

or-

For

if

Acknowledgement

The author is grateful to the referee for some useful remarks.

References

- 1. R. P. Agnew, A simple sufficient condition that a method of summability be stronger than convergence, Bull. Amer. Math. Soc. 52 (1946), 128-132.
- H. T. Bell, Order summability and almost convergence, Proc. Amer. Math. Soc. 38 (1973), 548-552.
- 3. T. Bilgin, On the statistical convergence, An. Univ. Timisoara Ser. Mat.-Inform. 32 (1994), 3-7.
- 4. T. Bilgin, Spaces of strongly A-summable sequences, Acta et Comment. Univ. Tartuensis Math. 1 (1996), 75-80.
- 5. J. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32(2) (1989), 194-198.
- 6. J. Connor, Two valued measures and summability, Analysis 10 (1990), 373-385.
- 7. H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
- 8. A. R. Freedman and J. J. Sember, Densities and summability, Pacific J. Math. 95 (1981), 293-305.
- 9. A. R. Freedman, J. J. Sember and M. Raphael, Some Cesáro-type summability spaces, Proc. London Math. Soc. 37(3) (1978), 508-520.
- 10. J. A. Fridy and C. Orhan, Lacunary statistical convergence, Pacific J. Math. 160 (1993), 43-51.
- H. J. Hamilton and J. D. Hill, On strong summability, Amer. J. Math. 60 (1938), 588-594.
- 12. G. H. Hardy and J. E. Littlewood, Sur la serie de Fourier d'une function a carre sommable, C. R. Acad. Sci. Paris Ser.I Math. 156 (1913), 1307-1309.

- 13. E. Kolk, The statistical convergence in Banach spaces, Tartu Ül. Toimetised, No. 928 (1991), 41-52.
- 14. E. Kolk, On strong boundedness and summability with respect to a sequence of moduli, Tartu Ül. Toimetised, No. 960 (1993), 41-50.
- 15. E. Kolk, Inclusion theorems for some sequence spaces defined by a sequence of moduli, Tartu Ül. Toimetised, No. 970 (1994), 65-72.
- E. Kolk, F-seminormed sequence spaces defined by a sequence of modulus functions and strong summability, Indian J. Pure Appl. Math. 28 (1997), 1547-1566.
- 17. G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190.
- 18. I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford (2) 18 (1967), 345-355.
- 19. I. J. Maddox, A new type of convergence, Math. Proc. Cambridge Philos. Soc. 83 (1978), 61-64.
- 20. I. J. Maddox, On strong almost convergence, Math. Proc. Cambridge Philos. Soc. 85 (1979), 345-350.
- I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc. 100 (1986), 161-166.
- 22. I. J. Maddox, Statistical convergence in a locally convex space, Math. Proc. Cambridge Philos. Soc. 104 (1988), 141-145.
- Mursaleen, On strong F_B-summable sequences, Comm. Fac. Sci. Univ. Ankara Ser. A 28 (1979), 13-21.
- 24. S. Nanda, Some sequence spaces and almost convergence, J. Austral. Math. Soc. 22 (1976), 446-455.
- 25. F. Nuray and E. Savas, Invariant statistical convergence and A-invariant statistical convergence, Indian J. Pure Appl. Math. 25 (1994), 267-274.
- 26. S. Pehlivan, Strongly almost convergent sequences defined by a modulus and uniformly statistical convergence, Soochow J. Math. 20 (1994), 205-211.
- S. Pehlivan and B. Fisher, Lacunary strong convergence with respect to a sequence of modulus functions, Comment. Math. Univ. Carolinae 36 (1995), 69-76.
- 28. W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1973), 973-978.
- 29. E. Savas and F.Nuray, On σ-statistically convergence and lacunary σ-statistically convergence, Math. Slovaca 43 (1993), 309-315.
- 30. P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc. 36 (1972), 104-110.
- 31. I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361-375.
- 32. M. Stieglitz, Eine Verallgemeinerung des Begriffs der Fastkonvergenz, Math. Japon. 18 (1973), 53-70.
- 33. J. Swetits, Strongly almost convergent sequences, Publ. Inst. Math. 22 (1977), 259-265.
- A. Wilansky, Summability through functional analysis, North-Holland, Amsterdam / New York / Oxford, 1984.

Institute of Pure Mathematics, University of Tartu, 50090 Tartu, Estonia E-mail address: ekolk@math.ut.ee

AC Vol

> no m: an Ex If ho

> ho

S-

set

ide

(a)

an

of