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Inclusion relations
between the statistical convergence
and strong summability

Enno KoLk

ABSTRACT. For a sequential method of summability B we define B-density
and B-statistical convergence in a Banach space X, and investigate inclusion
relations between the space of B-statistically convergent sequences and the
space of strongly B-summable sequences with respect to a sequence of mod-
ulus functions F = (fi). As an application, two theorems of Pehlivan and
Fisher [27] are corrected.

1. Introduction

The notion of statistical convergence was introduced by Fast [7] and
Schoenberg [31]. A real or complex sequence z = (zx) = (zx)52, is called
statistically convergent to a number [ if for each £ > 0,

lim%l{kgnzlmk—HZe}[:O,

where |S| denotes the cardinality of the set S. By st we denote the space of
all statistically convergent sequences.

A subadditive and increasing function f:[0,00) — [0, 00) is called a mod-
ulus function if f is continuous from the right at 0 and f(¢) =0. Maddox
[21] introduced a generalization of the classical notion of strong summability
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[12, 11] in the following way. A sequence z = (xj) is called strongly Cesaro
summable to [ with respect to a modulus function f if

1\
117an ;;;lf(]mk =1l =0.

In [22] Maddox proved that w(f) C st for every modulus function f and
st C w(f) if and only if f is bounded, where w(f) denotes the space of
sequences which are strongly Cesaro summable with respect to f. Some
generalizations of Maddox’s theorems may be found in [5, 13, 25, 26, 3,
27]. We extend these results to more general spaces of X -valued sequences
st(B, X) and w?(B, F, X), where X is a Banach space, B = (B;) is a regular
sequential matrix method of summability and F = (fi) is a sequence of
modulus functions fx. As an application, two theorems of Pehlivan and
Fisher [27] are corrected.

2. Definitions and preliminary results

In the classical theory of summability the matrix methods play an essen-
tial role. Let A = (a,x) be an infinite matrix of real or complex numbers. A
number sequence z = (z;) is called A-summable to a number [ if the series

oC

Apz = E nk Tk = E AnkTk

k k=1

converge for all n € N = {1,2,...} and lim, A,z = I. A matrix method A
(or a matrix A) is called regular if all convergent sequences z = (z)) are
A-summable and lim,, A,z = limy z5. It is known that A is regular if and
only if (see, for example, [34], Theorem 1.3.9)

(T1) lim,ans=0 (k € N),

(T2) limn Ek Ank — 1,

(T3) sup, Yop lankl < 0.
The set of all regular matrices A = (a,x) with anx > 0 we denote by T*.

For example, Cesaro method C = (cni), where

{l/n ifk<n
Cnk =

0 otherwise,

is non-negative and regular, i.e. C; € 7. A similar summability method is
given in
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Example 2.1. Lacunary convergence [9]. An increasing sequence of
positive integers 6 = (k.) with kp = 0 is called a lacunary sequence if
hy = kr — k-1 — o0 as r — 0o0. The sequence § determines the inter-
vals I = (ky_1, k.]. A sequence z = (z}) is called lacunary convergent to [

if 1
li'{n 7; Z z; = 1.
i€l,

So, if Ag = (a?;) is the matrix, where

ap; =

. {1/hr ifiel,

0 otherwise,

the Ag-summability is precisely the lacunary convergence. It is clear that
Ay € T+,

A well-known example of non-matrix method of summability is almost
convergence, originally defined by Banach limits. Lorentz [17] proved that a
sequence ¢ = (zy) is almost convergent to [ if and only if

"

.1 . o
1,17r1n -~ I;mHi =1 uniformly in 1. (2.1)

Introducing the matrices B! = (b, (7)) by

B (z):{ I/n fl14+i<k<n+i
n 0 otherwise,

we may write (2.1) in the form

lim Z bhe()er =1 uniformly in i.
k

In general, for an arbitrary sequence of infinite matrices B = (Bi),

Bi = (buk(i)), a sequence ¢ = (z}) is called B-summable to I, briefly B-
limz =1, if [32]

liyrln Z bnk(i)rg =1 uniformly in i.
k

Such a method B is sometimes called a sequential method of summability.
In our notations, the almost convergence coincides with the Bi-summability,

where B; = (B}).

1
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The almost convergence may be generalized using invariant means [30].
Let o: N — N an one-to-one mapping such that c*(n) # n for all n,k € N,
where o*(n) denotes the iterate of order k of the mapping o at n. For a
given matrix A = (anx) let A7 = (a2, (7)), where for every 7 € N,

7.(3) { an; if k=07(i)
a? (i) =
nk 0 otherwise.

The sequential method B = (A¢) defines so-called A-invariant convergence.
An interesting special case here is determined by o = 7, where T(n) =n+1.
It is clear that B} = By if A =Cj.

Analogously to the matrix methods of summability, a sequential method
of summability B is called regular if every convergent sequence = = (zk) is
B-summable and B-lim z = limy zx. Method B = (B;) with B; = (bnk (7)) is
regular if and only if [32, 2]

(R1) lim, by (¢) =0 for all k € N, uniformly in z,

(R2) lim, Y, bak(é) =1 uniformly in 4,

(R3) ¥, lbnk(i)] < oo (n,i € N), AN supjenn>N 2ok |bnk (3)] < 0.
The set of all regular sequential methods B with b, (z) > 0 we denote by the
symbol R*. Since for a constant sequence B = (A) the method B reduces
to the method A, we may write 7+ C R™.

By an index set we mean a set K = {k;} C N, where k; < kit for all <.
For a sequential method B € Rt we define a density function &g as follows.

Definition 2.2. An index set K is said to have B-density dp(x) equal to
d, if the characteristic sequence of K is B-summable to d, i.e.

lim Z bni(i) =d uniformly in 1.
" ke

In particular case B = (C) the density dp is called the asymptotic density.
For B = B; the density g reduces to the uniform density [8]. In the case
B = (A),A € T, the B-density is the A-density 4, where [8, 5, 13]

04(K) =lim Z nk-
" keK

Every density determines the corresponding statistical convergence [6].
So, using B-density, we can introduce B-statistical convergence in a Banach
space X over the field K of real numbers R or complex numbers C and with
the norm || - ||.

fc

ct
la

(&)

S¢

[ T4
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Definition 2.3. Let B € R*. A X-valued sequence z = (z}) is called
B-statistically convergent to an element [ € X, briefly st(B, X)-limz = I, if
for each € > 0,

ds({k:|lzx — Ul 2 €}) = 0.

By the symbol st(B,X) we denote also the space of all B-statistically
convergent X-valued sequences. The space of sequences which converge
B-statistically to zero in X will be denoted by stg(8,X). In the case
B = (A) (with A € T*) we write st(A, X) and sto(A, X) instead of st(B, X)
and sty (B, X), respectively.

It is not difficult to see that Definition 2.3 gives the usual statistical
convergence [7, 22]if B = (C), A-statistical convergence [5, 13] for B = (A),
lacunary statistical convergence [10, 27] for B = (A4), uniform statistical
convergence [26] for B = B;, A-invariant statistical convergence [25, 29] for
B = B¢ and lacunary o-statistical convergence [29] if B = Bg,-

Since in view of (R1) any finite index set has B-density 0, every convergent
sequence in X is B-statistically convergent (to the same limit), i.e.

c(X) C st(B, X),

where ¢(X) denotes the space of all X-valued convergent sequences. It is
necessary to know when this inclusion is strict. We can show that

e(X) G st(A, X) (2.2)

if A is so-called uniformly regular non-negative matrix, i.e. A € 7+ and
(T4) lim, supy |ans] = 0.
The set of all such matrices we denote by U7 +.

Lemma 2.4. Let A € UT*. Every infinite index set K contains an
infinite subset K' with §4(K') = 0. In addition, (2.2) holds for an arbitrary
Banach space X .

Proof. Agnew [1] has proved the following theorem: If A = (a,) satisfies
(T4) and Y, |ank] < oo for all n € N, then there exists a divergent sequence
of 0’s and 1’s which is A-summable to 0. If A € UT" and K = {ki}
is an infinite index set, then the submatrix (a,4,) obviously satisfies the
assumptions of Agnew’s theorem. Hence there is a divergent sequence (as),
a; = 0 or a; = 1, such that

117xln E k0 = 0.
i
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Thus the set K' = {k; : a; = 1} is the infinite subset of K with §4(K') = 0.

Further, for a fixed element zy € X with ||z]| = 1 the sequence z = (a;z)
diverges in X, but if K. = {i : |laiz]| > €}, then by K, = K'if 0 <e <1
and K. = § otherwise we have st(A4,X)-limz = 0. Consequently, (2.2)
holds. O

We recall that a function f:[0,00) — (0,00) is called a modulus function
if

(a) f(t) =0if and only if t = 0,

(b) F(t+u) < F(t) + f(w) for all ¢ > 0,u> 0,

(c) f is increasing,

(d) f is continuous from the right at 0.
It immediately follows from (b) and (d) that f is continuous everywhere on
[0,00). A modulus function may be unbounded or bounded. For example,
f(t)=t* (0 < p<1)is unbounded but f(t) =t/(1+1) is bounded.

Ruckle [28], Maddox [21] and other authors used modulus function to
construct new sequence spaces. In [13, 14, 15, 27] some new sequence spaces
are defined by means of a sequence of modulus functions F = (f). In this
connection are important the following properties of F:

(Ml) inf fk(t) >0 (t > 0);
(M2) limy_y04 supy fe(t) = 0;
(M3) sup, supy fi(t) = M < oo.

For a Banach space X let w(X) be the space of all X-valued sequences,
co(X) the space of all convergent to zero sequences in X and

co(F,X)={z = (zs) € w(X): liin fr(llzk]]) = 0}

In the case X = K we write ¢y and ¢o(F) instead of ¢o(X) and co(F, X),
respectively. In [14] it was proved that the inclusion ¢o(X) C eo(F, X)
holds if and only if (M2) is satisfied. The next lemma gives a necessary and
sufficient condition for the inverse inclusion.

Lemma 2.5. The inclusion co(F, X) C co(X) is true if and only if (M1)
holds.

Proof. Since (z1) € co(F,X) and (zx) € co(X) are equivalent to
(lzk]l) € co(F) and (J|zk]|) € co, respectively, our statement immediately
follows from Theorem 5 [15]. a

As a generalization of the classical notion of strong summability [12, 11,
18] and strong almost convergence [24, 33, 19], Maddox [20] and Mursaleen

™m
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[23] introduced strong B-summability. A number sequence z = (z}) is called
strongly B-summable to a number [ if

liyrln ank(i)lzk —1|=0 uniformly in :.
k

In [16] it was given following generalization of strong B-summability by
means of a sequence of modulus functions F = (f).

Definition 2.6. Let p > 0, X be a Banach space, F = (f) be a se-
quence of modulus functions and B be a sequential method of summabi-
lity with b,.(7) > 0. A sequence z = (z;) € w(X) is called strongly
(B, p, F)-summable to | € X, briefly w?(B, F, X)-lim z = [, if

lim Y bk (8) [ fu(l|zx — ]))]P = 0 uniformly in .
k

By the symbol w?(B,F,X) we denote also the space of all strongly
(B, p, F)-summable sequences.

A remarkable special case of Definition 2.6 is contained in the following
example.

Example 2.7. The space wP(B, f, X). Let X be a Banach space, B be a
sequential method of summability and p = (p;) be a positive sequence with
supy px = H < oo. For a modulus function f by wP(B, f, X) we denote the
space of sequences & = () € w(X) such that for some [ € X,

li711n ank(i)[f(]]:rk — 1) =0 uniformly in i.
k

In this case we write wP(B, f, X)-limz = 1.

If ¢ = max{1, H} then p/q < 1 and the equality

) = [fm1/

clearly defines a modulus function for each k € N. So for FP = (2

wP(B, f, X) = w!(B, F®, X). (2.3)

Bilgin [4] considered the space wP (B, f, X) for X = K.

12
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3. The inclusion w?(B, F,X) C st(B, X)

Let X be a Banach space. For a X-valued sequence y = (yx) and a scalar
sequence a = (ax) let a-y = (axyx). If K is an index set, then by ylX1 we
denote the sequence x(K)-y, where x(K) is the characteristic sequence of

K. Thus y1%1 = () with
[K]_{yk .IkaI(

Yk 0 otherwise.

Theorem 3.1. Let B € Rt and let F = (fx) be a sequence of modulus
functions. If for an infinite index set K,

inf fit)>0  (t>0), (3.1)

then wP(B, F, X)-lim yl¥1 = 0 implies st(B, X)-lim YKl = 0.
Proof. Let ¢ > 0. By (3.1) there exists a number s > 0 such that
fe(e) > s (k € K). Denoting

Le={k: I 2 e} = {k € K« llusll 2 ¢},

for all ¢ € N we have

(i) = S bar (el NP > 87 ) bak(d),
k

keL.

which gives
3 bak(i) < 57Pon(i)  (mEN).
k€L,
Therefore, if w?(B,F,X)-lim yl =0, ie. limpon() =0 uniformly in z,

then
64(Le) = limsup Z bni(t) = 0.
" kel

Hence st(B, X)-lim yiX1 = 0. a

For K = N the condition (3.1) is equivalent to (M1). Thus, taking y =
(zx — ) in Theorem 3.1, we can formulate
Theorem 3.2. If B € RY and F = (fx) satisfies (M1) then
wP(B, F,X)-limz =1 = st(B, X)-limz = L. (3.2)

We have various special cases by concrete definitions of sequences B and
F. If fis a modulus function and p = (px) is a bounded sequence of
positive numbers, then the sequence of modulus functions FP (Example
2.7) obviously satisfies (M1). So by (2.3) we get the following generalization
of Theorem 1 of Bilgin [3].
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Corollary 3.3. Let B € Rt and 0 < py < sup,px = H < co. For any
modulus function f,

wP(B, f,X)-limz =1 = st(B,X)-limz = L.

In the case p; = 1 Corollary 3.3 was earlier proved by Nuray and Savas
[25] (B = B%), Pehlivan [26] (B = B;), Connor [5] (B = (A4)) and Maddox
[22] (B = (C1)).

Taking B = (A) with A € T+ in Theorem 3.2, we get a known result
([13], sufficiency in Theorem 3.1).

Corollary 3.4. Let A € T*. If F satisfies (M1) then
w?(A, F, X)-limz =1 = st(4, X)-limz =1. (3.3)

For A = A4 (Example 2.1) Corollary 3.4 generalizes a result of Pehlivan
and Fisher ([27], sufficiency in Theorem 3.3).

From (3.3) it follows that w§(A, F,X) C stg(A,X). If A is the unit
matrix [, this inclusion reduces to ¢o(F,X) C ¢p(X) and so (M1) holds
because of Lemma 2.5. Thus by I € 7+ we have reproved a known result
about the matrix class 7t ([13], Theorem 3.1).

Corollary 3.5. The implication (3.3) holds for all A € T+ if and only
if (M1) is satisfied.

Corollaries 3.4 and 3.5 induce the natural question: Is the condition (M1)
necessary in order that (3.3) holds for an individual matrix A € Tt? We
prove that the answer is negative if A4 is uniformly regular.

Theorem 3.6. Let A ¢ UT™. There exists a sequence of modulus func-
tions F = (fi) with infy fi(t) =0 (t > 0) such that (3.3) is true.

Proof. By Lemma 2.4 there is an infinite index set K = {k;} with
64(K) = 0. Defining, for example, fi, (t) = i~'t if i € K and firt) =t
if £ € N\K, we have

inf fi(t) =lim fi, (t) = limi~'¢ = 0.

If wP(A, 7, X)-lima = [ then y = (zx — 1) € wh(4, F, X). By da(K)=0
we have st(A4, X)-lim yX1 = 0. Since

kéQN\fK fe@®) >0  (t>0)
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and yt™M\X] clearly belongs to wf (A, F, X), from Theorem 3.1 it follows that
st(A, X)-lim y™MX] = 0. Thus

y =y 4 g € s1(4, X)

which implies st(A, X)-limz =I. O

Remark 3.7. Theorem 3.3 of Pehlivan and Fisher [27] asserts that (M1)
is necessary and sufficient for the implication (3.3) in the case A = Ay,
p=1. Since Ay € UT T, Theorem 3.6 shows that this theorem is not true in
part. The condition (M1) is not necessary for (3.3) if A = A,.

A necessary and sufficient condition for the implication (3.3) is contained

in the following theorem.

Theorem 3.8. Let A € UT ™' and suppose that F = (fi) is pointwise
convergent. The implication (3.3) is true if and only if

lim fi(t) >0 (t>0). (3.4)

Proof. Let £ > 0. If (3.4) is valid, then we can find numbers s > 0 and
r € Nsuch that fy(g) > s (k> r). Asin the proof of Theorem 3.1, we get

Z Qpk S 3—pzank[fk(”-rk - l”)]ps (35)

k€L k>r k>r

where L, = {k : ||zx — I]| > }. If wP(A,F,X)-limz = [, then by (T1) the
inequality (3.5) implies for » — oo that §4(L.) =0, i.e. st(A4, X)-limz = L.

Conversely, if (3.4) is not true, we have limy fx(to) = 0 for some £, > 0.
Since A € UT ™", by Lemma 2.4 there exists an infinite index set K = (k;)
with §4(K) = 0. We define the sequence z = (z) by

{ 0 ifkekK
Ty = .
toz otherwise,

where z € X with ||z]| = 1. Then limg[fx(||zx]|)]? = 0 and by regularity of
A we have wP(A, F, X)-limz = 0. But for 0 < € < to,

Sk : loxll > €}) =lim 3" ane — 4 (K) = 1
k

by (T2) and 64(K) = 0. Thus st(A4, F, X)-lim ¢ # 0 contrary to (3.3). O
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4. The inclusion st(B,X) C w?(B, F, X)
First theorem gives sufficient conditions for mentioned inclusion.

Theorem 4.1. Let B € R*. If F = (f}) satisfies (M2) and (M3) then
st(B,X)-limz =1 = w?(B,F,X)-limz =1 (4.1)

Proof. Let st(B, X)-limz = [, h(t) = supy, fr(t) and choose £ > 0. For
every 1 € N we split the sum

an(i) = bur (@) fe(llar — UDT

into twosums ), and 3., over L. = {k : ||zx—I|| > ¢} and {k : ||z, —{]| < £},
respectively. Then by (M3),

< MPsup bk (i (4.2)
1 p
Y okeL,

and by the increase of f,
Yo S h(e)sup Dy buk(d).
ok

Thus, using also (R2), we have
lim 0, (2) < MPép(L.) + h(e)

which by dg(Lc) = 0 and (M2) gives lim, 0,(¢) = 0 uniformly in 7, ie.
wP(B, F, X)-lima = [. O

If we examine (4.1) only for X-valued bounded sequences = = (z) with
llzll < N, then

Felllex =) < SN+ 1) < AN + 12D

Consequently, (4.2) holds (with hA(N + ||l||) instead of M) without the
assumption (M3). Hence we have proved

Theorem 4.2. Let B € Rt and let z = (x4) be a bounded sequence in
X. The implication (4.1) is true if (M2) holds.

Let f be a modulus function and let 0 < p;, < sup,px = H < oc. Then
the sequence of modulus functions FP (Example 2.7) satisfies (M2) if and
only if infy pr > 0, and FP satisfies (M3) if and only if f is bounded. Using
also (2.3), from Theorems 4.1 and 4.2 we get

13
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Corollary 4.3. Let f be a modulus function and let p = (px) be a positive
sequence with sup,, pr = H < oo.
(i) If the modulus function f is bounded and infypr > 0 then
st(B, X)-lim z = [ implies wP (B, f, X)-limz = [.
(ii) If = = (zx) is a bounded sequence in X and st(B, X)-limz = [ then
wP(B, f, X)-limz = L.

Some special cases of Corollary 4.3 have been considered by Bilgin [3]
(B = (C1)), Nuray and Savas [25] (B = B},pr = 1), Pehlivan [26] (B =
Bi,pr = 1) and Connor [5] (B = (A),px = 1).

Let £5(X) denote the space of all X-valued bounded sequences. By
combining Theorems 3.2, 4.1 and 4.2 we have

Theorem 4.4. Letp > 0,8 € Rt and F = (fi) be a sequence of modulus
functions. For any Banach space X
() st(B,X)=wP(B,F,X) if (M1), (M2) and (M3) are satisfied;
(i) st(B, X) N loo(X) = wP(B,F, X)Nleo(X) if (M1) and (M2) hold.

In the particular case F = FP, using Corollaries 3.3 and 4.3, we get

Corollary 4.5. Let f be a modulus function, B € R and p = (px) be
a positive sequence with sup, px = H < oo. Then for an arbitrary Banach
space X
(i) st(B,X)=wP(B, f,X) ifinfrpr > 0 and f is bounded;
(i) st(B,X)N{loo(X) = wP(B, f,X)N boc(X).

Suppose that A = (anx) € UTT and the sequence of moduli F = (fi)

satisfies (M2). By Theorem 4.1 the condition (M3) is sufficient for the
implication

st(A, X)-limz =1 = w’(A,F,X)-limz =1 (4.3)

Tt is not difficult to see that (M3) is not necessary for (4.3) in general. Indeed,
a slightly modification of the proof of Theorem 4.1 shows that (4.3) (and also
(4.1)) remains true, if instead of (M3) we have

supsup fr(t) < oo
kv

for some fixed index r. Thus, defining, for example, fi(t) =t and fi(t) =
t/(1+1) for k > 2, we get that (4.3) holds but (M3) is not satisfied.

Remark 4.6. Pehlivan and Fisher ([27], Theorem 3.4) assert that (M3)
is necessary and sufficient for the implication (4.3) when p =1, A = Ay
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and F satisfies (M2). Our previous arguments show that (M3) may not be
necessary. The proof of Pehlivan and Fisher is not correct. If 9 = (k,)
is a lacunary sequence, then sup,sup, fi(f) = oo does not follow
sup, sup, fr, (£) = oo in general.

In the following we give a more precise characterization of the implication
(4.3) for uniformly regular row-finite matrices A (a matrix A = (a,x) is
called row-finite if for any n there exists an index k(n) such that a,; = 0 if

k> k(n)).

Theorem 4.7. Let A € UT" be a row-finite matriz and suppose that the
sequence of moduli F = (f}) satisfies (M2).
(a) If F is non-decreasing then (4.3) is true if and only if (M3) holds;
(b) If F is pointwise convergent then (M3) implies (4.3) and (4.3)
implies
s%plilxcn fr(t) < oo (4.4)

Proof. By Theorem 4.1 the implication (M3)==-(4.3) is true in both cases
(a) and (b).
Suppose that (4.3) holds. For a row-finite and uniformly regular matrix
A we clearly have
liyrln an k, =0,

where a,, k, is the last non-zero member in the nth row of A (for sufficiently
large n). Further, from (M2) it follows that sup,, fx(to) < oo for some £y > 0
and therefore (see [14], Lemma 2) sup,, fx(t) < oo for all ¢ > 0. Thus,
if 7 = (fx) is non-decreasing, then F is pointwise convergent and (M3)
reduces to (4.4). Consequently, if F is non-decreasing sequence failing (M3)
or a pointwise convergent sequence failing (4.4), we have

tl_lP;Q]l}l;n Ji(t) = oo.

So, using also Lemma 2.4, in both cases we can find index sets {n(i)}, K =

{k(2)} (with k(7)) = k,(;)) and numbers 0 < t; < ... < ¢; < t;4; < ... such
that 64 (K) = 0 and

Fugiy (8) > (M aniy uiy)' ' (€ N). (4.5)
Then the sequence = = (z), where for fixed z € X with lIz]| = 1,

{tﬂ if k= k(i)
Ty =

0  otherwise,
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converges A-statistically to 0 in X. Hence by (4.3),

i 3 anife (el =0 (45)

But (4.5) implies
angiy ki) e (leeDP > 1 (E€N),
contrary to (4.6). Thus (4.4) must hold.

From Theorems 3.8 and 4.7 it follows

Corollary 4.8. Suppose that A € UTT is a row-finite matric and F =
(fi) satisfies (M2).

(a) If F is non-decreasing then

st(A, X) = wP (A, F, X) (4.7)

if and only if the conditions (3.4) and (M3) hold;
(b) If F is pointwise convergenl then (3.4) and (M3) imply (4.7), and
(4.7) implies (3.4) and (4.4).

For a constant sequence F = (f) the conditions (3.4) and (M2) clearly
hold, but the condition (M3) is equivalent to the boundedness of f. Hence

from Corollary 4.8 we get

Corollary 4.9. Let A € UTT be a row-finite matriz and let f be a
modulus function. For any Banach space X we have

st(A, X) = wP(A, f, X) (4.8)

if and only if f is bounded.

In the case of p = 1 Maddox ([21], Theorem 2) proved Corollary 4.9 if X
is a locally convex space and A = Cf.

Since the matrix Ag of the lacunary convergence (Example 2.1) is
row-finite and Ag € UT™, Corollaries 4.8 and 4.9 give the following cor-
rected version of Corollary 3.5 [27].

Corollary 4.10. Let 0 be a lacunary sequence and let F = (fx) be a
non-decreasing sequence of modulus functions such that (M2) holds. For
any Banach space X and for A = Ay the equality (4.7) holds if and only if
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(3.4) and (M3) are satisfied. For f, = f and A = Ay the equalily (4.8) is
true if and only if the modulus function f is bounded.

Remark 4.11. It should be noted that all our arguments remain valid

if the norm in X is replaced by a seminorm in X. Thus all our propositions
are true also for a locally convex space X if B-statistical convergence and
strong (B, p, F)-summability in X are defined as follows. Let X be a locally
convex Hausdorfl topological linear space whose topology is determined by a
system (& of continuous seminorms g. A sequence z = (z}) € w(X) is called
B-statistically convergent to an element { € X if for each £ > 0 and for each
g € G [22],

Ss({k: g(er—1) > €}) =0,

and strongly (B, p, F)-summable to { if

lim ank(i)[fk(g(mk ~ ¥ =0 uniformly in ¢
k

for every g € (4.

10.

1L

12.
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