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Constructive sets of real trigonometric series

JAAK SIKK

ABSTRACT. In the present paper we consider the abstract classes of trigono-
metric series with complementary characteristics to LP?. The concept used
will generalize the method of complementary spaces introduced by Goes [2]
and Ténnov [6] and the concept of T*-constructive spaces considered by the
present author {4,5].

1. Introduction

We have introduced a concept of T*-constructive spaces into theory of
trigonometric series [4] and [5]. Constructive spaces created a possibility to
use the A-summability method of Kangro [3] for the investigation of Fourier
series. In the present paper we will generalize the concept of constructive
spaces by introducing the conctructive-type classes of abstract trigonometric
series L7.,. The results will link the classes of Fourier series and the classes
L%, of trigonometric series with Fourier coefficients of L?.

Throughout the paper the integral is considered taken over any interval
of length 27. So, for any real number p > 1, we denote the set of equivalence
classes of real-valued measurable functions f by L?, where

| £ 1= 5z [ 156 P deftte

is finite and the integral being extended over any interval of length 27.

Lemma 1 (Hdélder inequality (see [1], Vol. 1, p. 28)). Let p,q > 1 for
pl4+g =1 and f € L?, g€ L9, then f-g€ L' and
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Lemma 2 (see [1], Vol. I, p. 190). Let1l < ¢ < o0 and let F be any

continuous linear functional on LY. Then there exists an essentially unique
function f € LP, where p~! +¢~' =1, such that

Flo)= 5- [ f@)a(e)ds

for all g € LY. For any such f one has

I/ L=l Fll=sup{l Flg) |+ g€ L% g lla< 1}

Let @ = (ag) and b = (by) be the real sequences and T = (T.k) be
triangular method in the series-to-sequence form. We determine a formal
trigonometric series f0(z) = ). (ax cos kx + bysinkz) = (ag, by) and use
notion

o (f(z)) = Z Tk (@g cos kz + by sin kx).
k=1

The set of all Fourier series of functions of L? will be denoted by LP. The
notion f°(z) = (ax, bx) will be also used for the Fourier series of function
feLr.

We call a positive sequence a rate. Thus, A= (An) is a rate, if A, >0 for
all n € N. Rates are denoted by A and p. The rate is called monotonic if
Ant1 > Ap for all n.

2. The constructive spaces LY, and £F,

Definition 1. Let A = (\,) be a rate and let p > 1. The set ofall f € LP
for which

An || 7af = fllp=0(1) (1)
is called the T*-constructive space L%, .

Definition 2. Let A be a rate and let p > 1. The set of all formal
trigonometric series (ax,by) for which

Al 7o f llp= O(1), (2)

is called the T*-constructive space Lf,.

The space L%, were introduced by the author in [4]. These spaces to-
gether with the A-summability method of Kangro [3] were the tools applied
for the investigation of the multipliers of classes (Lip(e, p), Lip(8,p)), (L?,
Lip(a, p)) etc. for o, B € (0,1) (see {4]).
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Theorem 1. Let p™' +¢™' =1 forp,¢> 1 and g € L? with the Fourier
series (cx,di) = 3, cn(ckcoskz + dy sinkz). Then (ak,by) € LE., if and
only if for every g € LY the condition

An | En: Tnk(arck + brdy) |= O(1) (3)
k=1

is satisfied.

Proof. Let {(ay, by) € L;,?\, then by the Parseval formula we have

n

1
ZTnk(akck + bkdk) - é’y:/Tnf(T)g(T)dr

k=1

for every n. By Lemma 1 (Holder inequality) now

5= [ s @atedsl <l af l -1 g @

and by (2) since f° € £?., . we have I 7 f llp=O(A;1). So for any fO € Lh
the condition (3) is fulfilled.

Let now (3) be fulfilled for every ¢° = (ckydi) € L. Then by the Parseval
formula the condition

An
9 | /Tnf(m)g(z)d:c l=0(1) (5)
is satisfied. By Lemma 2 we have
1
177) = a5 [t @a(z)dal,

and by (5) the f° € £E.,, which completes the proof.

Theorem 2. Let A = (\,) be a monotonic rate and pl+q¢ =1 for

P>1 LetT = (1) be series-to-sequence matriz which for all f € LP
satisfies

lim || 7. f = £ [|,=0. (6)

Then f° = (ax, by) € fi% if and only if for every ¢° = (cy, dy) € L9 the

hrl;.n ;1 Tnk (akck + bkdk) =8 (7)
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exists, and
n

An ‘ Z’rnk(akck -+ bkdk) — 8 I: 0(1) (8)

k=1

Proof. We will show that for f € L%, and for arbitrary g € L7 the
conditions (7) and (8) are satisfied. If f € L%, then also f € L? and by

Lemma 1 we have

é};ffnf(w)g(x)d‘“” %./f(x)g(x)dm! g llalraf = Fllp- ()

Since f € Lk, and (1) is satisfied,

o .1
h;n ; Tak(arck + brdy) = 111131 7 / . f(z)g(z)dz = s

exists, and from (9) it follows that (7) and (8) are satisfied.
Let the conditions (7) and (8) be fulfilled for every g € L9. For every

fixed n we form a polynomial

n
Tn(z) == Zrnk(ak cos kx + by sin kz) (10)
k=1

and calculate

n

or [ r@o(eyis =3 rue(ancs + bed): an

k=1

By Lemma 2 we have

1

1 70(0) = 7ni@) = sup 5 [ (rale) = Tusile))g(a)dal
llsllp<1 27 -

By (7) and (11) from the last inequality it follows that 7, is a Cauchy

sequence in L?. Since LP is complete so by lim To(z) = f(z) in LP exists.

Therefore, from (11) it follows that

1
I 7uf = Fllg= sup 5| [ (raf@) = F(Dg(e)dal.
Holla <1 .
Now from (7), (8) and from last equality we conclude that f € L%.,. This
completes the proof.
The condition (6) was used only in the second part of the proof. Therefore
we have the following
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Corollary 1. Let f € LY,,, then the conditions (7) and (8) are satisfied
for every g € L.

Let E be identity method, A = (n%) and

n

+ Zcos kx = %Dn(m) ,

k=1

DN [

then || Dy(2) |l,= O(Mn) and Dy(z) € L5, (see [1], Vol. I, p. 115). Let
g%(z) = (cx,0) € L9. By Theorem 1 we have the following

Corollary 2. For series Y ,_, ¢ coska € L? the condition

1> exl = O(n¥)
k=1

is satisfied.

Last corollary gives a simple asymptotic condition for Fourier coefficients,
complementing so the Paley’s L? Fourier coefficients theorem ( [7], Chap.12).
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