c. By

flat if nent, ı (O)

1992),

34(4) ons,

ctive,

987),

[971),

ONIA

ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA Volume 2, 1998

Constructive sets of real trigonometric series

Jaak Sikk

ABSTRACT. In the present paper we consider the abstract classes of trigonometric series with complementary characteristics to L^p . The concept used will generalize the method of complementary spaces introduced by Goes [2] and Tonnov [6] and the concept of T^{λ} -constructive spaces considered by the present author [4,5].

1. Introduction

We have introduced a concept of T^{λ} -constructive spaces into theory of trigonometric series [4] and [5]. Constructive spaces created a possibility to use the λ -summability method of Kangro [3] for the investigation of Fourier series. In the present paper we will generalize the concept of constructive spaces by introducing the conctructive-type classes of abstract trigonometric series $\mathcal{L}^p_{T\lambda}$. The results will link the classes of Fourier series and the classes $\mathcal{L}^p_{T\lambda}$ of trigonometric series with Fourier coefficients of L^p .

Throughout the paper the integral is considered taken over any interval of length 2π . So, for any real number $p \geq 1$, we denote the set of equivalence classes of real-valued measurable functions f by L^p , where

$$|| f ||_p \equiv \left[\frac{1}{2\pi} \int |f(x)|^p dx \right]^{1/p}$$

is finite and the integral being extended over any interval of length 2π .

Lemma 1 (Hölder inequality (see [1], Vol. I, p. 28)). Let $p, q \geq 1$ for $p^{-1}+q^{-1}=1$ and $f\in L^p,\ g\in L^q,\ then\ f\cdot g\in L^1$ and

$$\parallel f \cdot g \parallel_1 \leq \parallel f \parallel_p \cdot \parallel g \parallel_q.$$

Received May 14, 1998; revised October 28, 1998. 1991 Mathematics Subject Classification. Primary 40A30, 42A24.

This work was supported by Estonian Science Foundation Grant 2416.

Lemma 2 (see [1], Vol. I, p. 190). Let $1 \leq q < \infty$ and let F be any continuous linear functional on L^q . Then there exists an essentially unique function $f \in L^p$, where $p^{-1} + q^{-1} = 1$, such that

$$F(g) = \frac{1}{2\pi} \int f(x)g(x)dx$$

for all $g \in L^q$. For any such f one has

$$|| f ||_p = || F || \equiv \sup\{ | F(g) | : g \in L^q, || g ||_q \le 1 \}.$$

Let $a=(a_k)$ and $b=(b_k)$ be the real sequences and $T=(\tau_{nk})$ be triangular method in the series-to-sequence form. We determine a formal trigonometric series $f^0(x)=\sum_k(a_k\cos kx+b_k\sin kx)=(a_k,b_k)$ and use notion

 $\tau_n(f(x)) := \sum_{k=1}^n \tau_{nk} (a_k \cos kx + b_k \sin kx).$

The set of all Fourier series of functions of L^p will be denoted by \hat{L}^p . The notion $f^0(x) = (a_k, b_k)$ will be also used for the Fourier series of function $f \in L^p$.

We call a positive sequence a *rate*. Thus, $\lambda = (\lambda_n)$ is a rate, if $\lambda_n > 0$ for all $n \in \mathbb{N}$. Rates are denoted by λ and μ . The rate is called *monotonic* if $\lambda_{n+1} \geq \lambda_n$ for all n.

2. The constructive spaces $L^p_{T\lambda}$ and $\mathcal{L}^p_{T\lambda}$

Definition 1. Let $\lambda = (\lambda_n)$ be a rate and let $p \geq 1$. The set of all $f \in L^p$ for which

 $\lambda_n \parallel \tau_n f - f \parallel_p = O(1) \tag{1}$

is called the T^{λ} -constructive space $L^p_{T_{\lambda}}$.

Definition 2. Let λ be a rate and let $p \geq 1$. The set of all formal trigonometric series (a_k, b_k) for which

$$\lambda_n \parallel \tau_n f \parallel_p = O(1), \tag{2}$$

is called the T^{λ} -constructive space $\mathcal{L}^{p}_{T\lambda}$.

The space $L^p_{T\lambda}$ were introduced by the author in [4]. These spaces together with the λ -summability method of Kangro [3] were the tools applied for the investigation of the multipliers—of classes $(\text{Lip}(\alpha, p), \text{Lip}(\beta, p)), (L^p, \text{Lip}(\alpha, p))$ etc. for $\alpha, \beta \in (0, 1)$ (see [4]).

Theorem 1. Let $p^{-1} + q^{-1} = 1$ for p, q > 1 and $g \in L^q$ with the Fourier series $(c_k, d_k) = \sum_{k \in \mathbb{N}} (c_k \cos kx + d_k \sin kx)$. Then $(a_k, b_k) \in \hat{\mathcal{L}}_{T\lambda}^p$ if and only if for every $g \in L^q$ the condition

$$\lambda_n \mid \sum_{k=1}^n \tau_{nk} (a_k c_k + b_k d_k) \mid = O(1)$$
 (3)

is satisfied.

ue

Proof. Let $(a_k, b_k) \in \hat{\mathcal{L}}^p_{T\lambda}$, then by the Parseval formula we have

$$\sum_{k=1}^{n} \tau_{nk}(a_k c_k + b_k d_k) = \frac{1}{2\pi} \int \tau_n f(x)g(x) dx$$

for every n. By Lemma 1 (Hölder inequality) now

$$\left| \frac{1}{2\pi} \int \tau_n f(x) g(x) dx \right| \leqslant \left\| \tau_n f \right\|_p \cdot \left\| g \right\|_q, \tag{4}$$

and by (2) since $f^0 \in \hat{\mathcal{L}}^p_{T\lambda}$, we have $||\tau_n f||_p = O(\lambda_n^{-1})$. So for any $f^0 \in \hat{\mathcal{L}}^p_{T\lambda}$ the condition (3) is fulfilled.

Let now (3) be fulfilled for every $g^0 = (c_k, d_k) \in \hat{L}^q$. Then by the Parseval formula the condition

$$\frac{\lambda_n}{2\pi} \mid \int \tau_n f(x) g(x) dx \mid = O(1)$$
 (5)

is satisfied. By Lemma 2 we have

$$\| \tau_n(f) \|_p = \sup_{\|g\|_p \le 1} \frac{1}{2\pi} | \int \tau_n f(x) g(x) dx |,$$

and by (5) the $f^0 \in \hat{\mathcal{L}}^p_{T\lambda}$, which completes the proof.

Theorem 2. Let $\lambda = (\lambda_n)$ be a monotonic rate and $p^{-1} + q^{-1} = 1$ for p > 1. Let $T = (\tau_{nk})$ be series-to-sequence matrix which for all $f \in L^p$ satisfies

$$\lim_{n} \| \tau_n f - f \|_p = 0.$$
 (6)

Then $f^0 = (a_k, b_k) \in \hat{L}^p_{T\lambda}$ if and only if for every $g^0 = (c_k, d_k) \in \hat{L}^q$ the

$$\lim_{n} \sum_{k=1}^{n} \tau_{nk} (a_k c_k + b_k d_k) = s \tag{7}$$

exists, and

$$\lambda_n \mid \sum_{k=1}^n \tau_{nk} (a_k c_k + b_k d_k) - s \mid = O(1).$$
 (8)

Proof. We will show that for $f \in L^p_{T\lambda}$ and for arbitrary $g \in L^q$ the conditions (7) and (8) are satisfied. If $f \in L^p_{T\lambda}$ then also $f \in L^p$ and by Lemma 1 we have

$$\left| \frac{1}{2\pi} \int \tau_n f(x) g(x) dx - \frac{1}{2\pi} \int f(x) g(x) dx \right| \le ||g||_q ||\tau_n f - f||_p. \tag{9}$$

Since $f \in L^p_{T\lambda}$ and (1) is satisfied,

$$\lim_{n} \sum_{k=1}^{n} \tau_{nk} (a_k c_k + b_k d_k) = \lim_{n} \frac{1}{2\pi} \int \tau_n f(x) g(x) dx = s$$

exists, and from (9) it follows that (7) and (8) are satisfied.

Let the conditions (7) and (8) be fulfilled for every $g \in L^q$. For every fixed n we form a polynomial

$$\tau_n(x) := \sum_{k=1}^n \tau_{nk} (a_k \cos kx + b_k \sin kx) \tag{10}$$

and calculate

$$\frac{1}{2\pi} \int \tau_n(x) g(x) dx = \sum_{k=1}^n \tau_{nk} (a_k c_k + b_k d_k). \tag{11}$$

By Lemma 2 we have

$$\| \tau_n(x) - \tau_{n+i}(x) \|_p = \sup_{\|g\|_p \le 1} \frac{1}{2\pi} |\int (\tau_n(x) - \tau_{n+i}(x)) g(x) dx|.$$

By (7) and (11) from the last inequality it follows that τ_n is a Cauchy sequence in L^p . Since L^p is complete so by $\lim \tau_n(x) = f(x)$ in L^p exists. Therefore, from (11) it follows that

$$\| \tau_n f - f \|_p = \sup_{\|g\|_q \le 1} \frac{1}{2\pi} |\int (\tau_n f(x) - f(x)) g(x) dx|.$$

Now from (7), (8) and from last equality we conclude that $f \in L^p_{T\lambda}$. This completes the proof.

The condition (6) was used only in the second part of the proof. Therefore we have the following

Corollary 1. Let $f \in L^p_{T\lambda}$, then the conditions (7) and (8) are satisfied for every $g \in L^q$.

Let E be identity method, $\lambda = (n^{\frac{1}{q}})$ and

$$\frac{1}{2} + \sum_{k=1}^{n} \cos kx = \frac{1}{2} D_n(x) ,$$

then $||D_n(x)||_p = O(\lambda_n)$ and $D_n(x) \in \mathcal{L}^p_{E_\lambda}$ (see [1], Vol. I, p. 115). Let $g^0(x) = (c_k, 0) \in \hat{L}^q$. By Theorem 1 we have the following

Corollary 2. For series $\sum_{k=1}^{n} c_k \cos kx \in L^q$ the condition

$$|\sum_{k=1}^{n} c_k| = O(n^{\frac{1}{q}})$$

is satisfied.

(8)

the by

(9)

very

(10)

(11)

chy

ists.

This

fore

Last corollary gives a simple asymptotic condition for Fourier coefficients, complementing so the Paley's L^p Fourier coefficients theorem ([7], Chap.12).

References

- R. E. Edwards, Fourier Series. A modern introduction, Vol. I and II, Holt, Reinhart and Winston, New York, 1967.
- 2. G. Goes, Komplementräre Fourierkoeffizientenräume und Multiplikatoren, Math. Ann. 137 (1959), 371-384.
- G. Kangro, Summability factors for the series λ-bounded by the methods of Riesz and Cesàro, Tartu Ül. Toimetised, No. 277 (1971), 136-154. (in Russian)
- 4. J. Sikk, Complementary spaces with rapidity of Fourier coefficients, Tartu Ül. Toimetised, No. 355 (1975), 222-235. (in Russian)
- 5. J. Sikk, The T^{λ} -constructive spaces and multiplies of class $(X_{T\lambda}, X_{U\mu})$, Tartu Ül. Toimetised, No. 374 (1975), 163–179. (in Russian)
- 6. M. Tonnov, The T-complementary spaces of Fourier coefficients, Tartu Ül. Toimetised, No. 192 (1966), 81-82. (in Russian)
- 7. A. Zygmund, Trigonometric series, Vol. II, Cambridge University Press, 1959.

Institute of Mathematics, Estonian Agricultural University, Tartu, Estonia

E-mail address: jaak@eau.ee