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Knopp’s core in topological vector spaces

AIN Iro AND LEIKI LOONE

ABSTRACT. The purpose of the present paper is to investigate the geometry
of Knopp’s core in locally convex topological vector spaces.

Let E be a Hausdorff locally convex topological vector space and let F'

be its topological dual. We denote sequences in K by z = (£,);i.e. £, € F
for all n € N.

Let Ey(z) = (€4, €041, -..) and let R, (z) be the closure of the convex hull
of £,(z) in E, ie.

Rn(z) = cl conv E, ().

Definition. The intersection

oo

K°(z) = (] Ru(z)

n=1

is called Knopp’s core of the sequence T = (&,) (see [1,2]).

It is known that sequences in R or C have fo
Knopp’s core (see [1], Ch. VI).

® A sequence is convergent if and only if its core is a singleton.

® A bounded sequence has nonempty core.

o For an arbitrary convex bounded and closed set K there exists a se-
quence x = (,) that has the set K for its core, i.e.

llowing properties concerning

K = K°(z).
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The goal of the paper is to show that these properties are not valid for

the sequence in an arbitrary space E.
Example 1. There exists an unbounded sequence that has a singleton

for its core. Let E =l and =z = (£,), where

ne,, ifn=2p+1, p=0,1,..

bn = 0, ifn=2p, p=1,2,..

n—1

,—M . .
Here e, = (0, ...,0,1,0,...), and 0 = (0,0, ...). This sequence z = (€,) is not
bounded in /. It is evident that

K°(z) = {0},
therefore  is a nonconvergent sequence in l; where its core is a singleton.

The following obvious equation

K°(z) = {£ € R: of < limsupaf,, Yo € R} (1)

is frequently given as a definition of Knopp’s core in R. This equation can
be treated as a special case (E = R) of the following result.

Theorem 2. If z = (&,) is a sequence in a real space E, then

K°(z)={¢ € E: f(§) <limsup f(&), Vf € E'}. (2)

Proof. We start with the observation that if B is a nonempty set in F,
then
cddeconvB={¢e E: f(§) <sup f(n) Vfe E"}
nE€B
(see [3], Ch. I, §6). Thus, we have

R.(z)={€€E: f(§) < igl;f(fk) VfeE'}. (3)

If £ € K°(x) then &€ € R,(z) for every m and consequently by (3)

F(€) <limsup f(&n) Vf € E'

and therefore (2) is valid. a

n
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Corollary 3. Ifz = (£,) is a sequence in a real space E, then

K°(w)= (({€€ E: f(€) € K°((f(€)))}-

feE’

Corollary 4. If a sequence = = (§n) C E is weakly convergeni, then its
Knopp’s core is a singleton.

We shall now take £ to be a normed space. Let m!(F) be the set of
all such sequences in £ which cores are bounded and nonempty. Let m{F)
denote the space of all bounded sequences in F, l.e.

m(k) ={z = (£) C E: sup || €, [|< o0}

For R we have that m*(R) = m(R) and by using Corollary 2, we get that if
£ is finite-dimensional, then

m'(E) = m(E).

In general case of E the last equality is not true (see Example 1).
Example 5. There exists a bounded sequence that has the empty core.

Let ' = ¢, and let &, = >i—1 €- The sequence z = (€,) is bounded, i.e.
t = (£,) € m(E). The core K°(z) is empty.

Proposition 6. Let E be a Banach space. If E is reflewive, then

m(E) C m*(E).

Proof. According to the definition of Kno
¢ = (£,) has a bounded core. If E is reflexi
compact and therefore this core

a

pp’s core a bounded sequence
ve, then every R,(z) is weakly
is not empty. This proves the proposition.

Proposition 7. For every convex and compact set K in a Banach space
E there exists a sequence x = (£n) C E such that

K°(z) = K.

Proof. Due to the compactness of K, for every n € N there exists a, finite
set {&,1,&no, vy &nk, } such that

k
. * 1
K C UB(Enn;)’

i=1
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where B(§,r) ={n€ E: || —nll<r}.
We will choose these finite sets so that for every &,; there exists n € K

such that )
[l €ni = mlI< - (4)

Let 2 be the sequence

= (511’ "'7§1k17£217 ""52102’ ---)-

It follows directly from the construction of z that
K C K°(z).

We show next that
K°(z) C K.
Let 1
K,= —).
o=d {J B D
neK
Since K is convex, K, is convex. A straightforward verification shows that
(o<
K={)Kn

=]

Let
Epni(2) = (&nis Enit1s s Enbnr Ent 1,15 -+ Entl kpgrs o)
and
R,i(z) = cl conv Ey;(z),
then

oo kn

On account of (4)
E.i(z) C K, Vi=1, .., kn

Since K, is closed and convex,
Rni(z) C K Vi=1,..kn,

and

bl
el

Rni(z) C Ky.

i==1

o0
K°(z)C [ Kn=K.
n=1

This gives

Fux

Thi

iss
is s

in .
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Theorem 8. A normed space E admits a sequence with ball-shape core
if and only if this space is separable.

Proof. Necessity. There is no loss of generality in assuming that there
exists a sequence z = (£,) such that

K°(z) =cl B(0,1).
If z is an arbitrary nonzero element in E, then

”—§~“~ €clB(0;1) C Ry(z) VYneN. (5)

Furthermore,

R, (z) = cl conv (&, €ntr, -..) C cl span (&g, Engt,y -on)-

The set
L =cl span (&,,&,41, -..)

is separable. It follows from (5) that z € L, i.e. E = L, and consequently E
is separable.

Sufficiency. Let y = (7,) be a sequence of elements from FE that is dense
in B(0,1). The sequence

T = (nls .12, Ty M2, N3, M1y eees Mh—1, Ty N2y cees Mey 1 T2 ey Te+1 M1y )

has ¢l B(0,1) for its core. ]
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