ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA
Volume 3, 1999

On the generalized Cesaro summability factors

HIKMET SEYHAN

ABSTRACT. In this paper, an extension of a result of Bor on | C, 1 |; summa-
bility is proved.

1. Definitions

Let Y a, = fo:o a, be an infinite series with partial sums (s,). We
denote by u& and t¢ the Cesaro means of order o, with & > —1, of the
sequences (s,) and (na,), respectively, i.e.
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Let (¢,) be a sequence of positive real numbers. The series ) a, is said
to be summable ¢-| C ;6 |k, k> 1, a > —1 and 6 > 0, if
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But since t2 = n(u% — u%_,) (see [4]), condition (1) can also be written as
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If we take § = 0 and ¥, = n (resp. § = 0, @ = 1 and ¥, = n), then
¥-| C, 056 | summability is the same as | C,a |, (resp. | C,1[;) summa-
bility (see [3])-
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2. Main result

The following theorem is known.

Theorem A ([1]). Let (X,) be a positive non-decreasing sequence and
let there be sequences (8,) and (\,) such that

B, —=0 as n— o0, (3)
ZHIA/'LL]X“(OO, (4)
n=1
| A ] X, =0(1) as n—cc. (5)
If
Z—— [ t, |"'=0(Xmn) as m-— o0,
n=17l

then the series Y an A\, is summable | C, 1|, k> 1.
The aim of this paper is to prove the following extension of Theorem A.

Theorem B. Letk>1,6>0,0< a<1andak+e>1. Let (X,) be a
positive non-decreasing sequence and the sequences (8,) and (Ay) such that
conditions (2)-(5) of Theorem A are satisfied. If there exists an & > 0 such
that the sequence (n®~*y3F+5=1} is non-increasing and the sequence (w?),
defined by

‘ tn !v a=1,
Yn=19 max |t*], 0<a<l,
1<vsn

satisfies the condition

n

Z 1/)2’“+’°“ln“‘('w,“)’° =0(X,) as m— 00,
n=1

then the series 3 a, Ay is summable -] C', ;6 |g.
If we take § = 0, £ = 1, @ = 1 and %, = n in Theorem B, then we get
Theorem A.

3. Proof of the main result

We need the following lemmas for the proof of our theorem.
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Lemma 1 ([2]). If 0<a<1and 1<v<n, then
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Lemma 2 ([5]). If conditions (2)-(5) on (X,.), (8.) and (\,) are satis-
fied, then 37 | BnX, < oo and nB,X,=0(1) as n— co.

Proof of Theorem B. Let 0 < o < 1 and let (T%) be (C, &) means of the
sequence (na,A,). Using Abel’s transformation, we get
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So by Lemma 1, we have
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and we will proceed further by using the inequality
' k a |k k
| Toa + Tp 1F< 25 (| TRy 1P + 1 T2 19).

Now, when & > 1, applying Holder’s inequality, we get
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by virtue of the hypotheses of Theorem B and Lemma 2.
Again, since | A, |= O(1/X,) = O(1), by (5), we have
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by virtue of the hypotheses of Theorem B and Lemma 2.
We note that for k& = 1 the proof of Theorem B is trivial.
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