On the generalized Cesàro summability factors

HIKMET SEYHAN

ABSTRACT. In this paper, an extension of a result of Bor on $|C, 1|_k$ summability is proved.

1. Definitions

Let $\sum a_n = \sum_{n=0}^{\infty} a_n$ be an infinite series with partial sums (s_n) . We denote by u_n^{α} and t_n^{α} the Cesàro means of order α , with $\alpha > -1$, of the sequences (s_n) and (na_n) , respectively, i.e.

$$u_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{v=0}^n A_{n-v}^{\alpha-1} s_v, \quad t_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{v=1}^n A_{n-v}^{\alpha-1} v a_v.$$

Let (ψ_n) be a sequence of positive real numbers. The series $\sum a_n$ is said to be summable ψ - $|C, \alpha; \delta|_k$, $k \ge 1$, $\alpha > -1$ and $\delta \ge 0$, if

$$\sum_{n=1}^{\infty} \psi_n^{\delta k + k - 1} \mid u_n^{\alpha} - u_{n-1}^{\alpha} \mid^k < \infty.$$
 (1)

But since $t_n^{\alpha} = n(u_n^{\alpha} - u_{n-1}^{\alpha})$ (see [4]), condition (1) can also be written as

$$\sum_{n=1}^{\infty} \psi_n^{\delta k + k - 1} n^{-k} \mid t_n^{\alpha} \mid^k < \infty.$$

If we take $\delta = 0$ and $\psi_n = n$ (resp. $\delta = 0$, $\alpha = 1$ and $\psi_n = n$), then ψ - $|C, \alpha; \delta|_k$ summability is the same as $|C, \alpha|_k$ (resp. $|C, 1|_k$) summability (see [3]).

Received June 21, 1996; revised December 2, 1997 and March 25, 1999.

¹⁹⁹¹ Mathematics Subject Classification. 40D15, 40F05, 40G05.

Key words and phrases. Absolute summability factors, Cesàro methods of summability.

2. Main result

The following theorem is known.

Theorem A ([1]). Let (X_n) be a positive non-decreasing sequence and let there be sequences (β_n) and (λ_n) such that

$$|\Delta\lambda_n| < \beta_n, \tag{2}$$

$$\beta_n \to 0 \quad as \quad n \to \infty,$$
 (3)

$$\sum_{n=1}^{\infty} n \mid \Delta \beta_n \mid X_n < \infty, \tag{4}$$

$$|\lambda_n| X_n = O(1) \quad as \quad n \to \infty.$$
 (5)

If

$$\sum_{n=1}^{m} \frac{1}{n} \mid t_n \mid^k = O(X_m) \quad as \quad m \to \infty,$$

then the series $\sum a_n \lambda_n$ is summable $|C, 1|_k$, $k \geq 1$.

The aim of this paper is to prove the following extension of Theorem A.

Theorem B. Let $k \geq 1$, $\delta \geq 0$, $0 < \alpha \leq 1$ and $\alpha k + \epsilon > 1$. Let (X_n) be a positive non-decreasing sequence and the sequences (β_n) and (λ_n) such that conditions (2)–(5) of Theorem A are satisfied. If there exists an $\varepsilon > 0$ such that the sequence $(n^{\varepsilon-k}\psi_n^{\delta k+k-1})$ is non-increasing and the sequence (w_n^{α}) , defined by

$$w_n^{\alpha} = \left\{ \begin{array}{ll} \mid t_n^{\alpha} \mid, & \alpha = 1, \\ \max_{1 \leq v \leq n} \mid t_v^{\alpha} \mid, & 0 < \alpha < 1, \end{array} \right.$$

satisfies the condition

$$\sum_{n=1}^{m} \psi_n^{\delta k + k - 1} n^{-k} (w_n^{\alpha})^k = O(X_m) \quad as \quad m \to \infty,$$

then the series $\sum a_n \lambda_n$ is summable ψ - $\mid C, \alpha; \delta \mid_k$.

If we take $\delta = 0$, $\varepsilon = 1$, $\alpha = 1$ and $\psi_n = n$ in Theorem B, then we get Theorem A.

3. Proof of the main result

We need the following lemmas for the proof of our theorem.

Lemma 1 ([2]). If $0 < \alpha \le 1$ and $1 \le v \le n$, then

$$\left|\sum_{p=0}^{v} A_{n-p}^{\alpha-1} a_{p}\right| \leq \max_{1 \leq m \leq v} \left|\sum_{p=0}^{m} A_{m-p}^{\alpha-1} a_{p}\right|.$$

Lemma 2 ([5]). If conditions (2)-(5) on (X_n) , (β_n) and (λ_n) are satisfied, then $\sum_{n=1}^{\infty} \beta_n X_n < \infty$ and $n\beta_n X_n = O(1)$ as $n \to \infty$.

Proof of Theorem B. Let $0 < \alpha \le 1$ and let (T_n^{α}) be (C, α) means of the sequence $(na_n\lambda_n)$. Using Abel's transformation, we get

$$T_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{v=1}^{n-1} \Delta \lambda_v \sum_{p=1}^{v} A_{n-p}^{\alpha-1} p a_p + \frac{\lambda_n}{A_n^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_v.$$

So by Lemma 1, we have

$$|T_{n}^{\alpha}| \leq \frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} |\Delta \lambda_{v}| |\sum_{p=1}^{v} A_{n-p}^{\alpha-1} p a_{p}| + \frac{|\lambda_{n}|}{A_{n}^{\alpha}} |\sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v}|$$

$$\leq \frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} A_{v}^{\alpha} w_{v}^{\alpha} |\Delta \lambda_{v}| + |\lambda_{n}| w_{n}^{\alpha} = T_{n,1}^{\alpha} + T_{n,2}^{\alpha}$$

and we will proceed further by using the inequality

$$|T_{n,1}^{\alpha} + T_{n,2}^{\alpha}|^{k} \le 2^{k} (|T_{n,1}^{\alpha}|^{k} + |T_{n,2}^{\alpha}|^{k}).$$

Now, when k > 1, applying Hölder's inequality, we get

$$\sum_{n=2}^{m+1} \psi_n^{\delta k + k - 1} n^{-k} | T_{n,1}^{\alpha} |^k = \sum_{n=2}^{m+1} \psi_n^{\delta k + k - 1} n^{-k} | \frac{1}{A_n^{\alpha}} \sum_{v=1}^{n-1} A_v^{\alpha} w_v^{\alpha} | \Delta \lambda_v ||^k$$

$$\leq \sum_{n=2}^{m+1} \psi_n^{\delta k + k - 1} n^{-k} (A_n^{\alpha})^{-k} \sum_{v=1}^{n-1} (A_v^{\alpha})^k (w_v^{\alpha})^k \beta_v \times \{\sum_{v=1}^{n-1} \beta_v\}^{k - 1}$$

$$= O(1) \sum_{v=1}^{m} v^{\alpha k} (w_v^{\alpha})^k \beta_v \sum_{n=v+1}^{m+1} \frac{\psi_n^{\delta k + k - 1} n^{\varepsilon - k}}{n^{\alpha k + \varepsilon}}$$

$$= O(1) \sum_{v=1}^{m} v^{\alpha k} (w_v^{\alpha})^k \beta_v v^{\varepsilon - k} \psi_v^{\delta k + k - 1} \int_v^{\infty} \frac{dx}{x^{\alpha k + \varepsilon}}$$

$$= O(1) \sum_{v=1}^{m-1} \Delta(v\beta_v) \sum_{r=1}^{v} r^{-k} (w_r^{\alpha})^k \psi_r^{\delta k + k - 1}$$

quence and

(2)

(3)

(4)

(5)

theorem A. $t(X_n) be a$ $t(X_n) be a$

) such that arepsilon>0 such wence $(w_n^{lpha}),$

th**e**n we get

$$+ O(1)m\beta_{m} \sum_{v=1}^{m} v^{-k} (w_{v}^{\alpha})^{k} \psi_{v}^{\delta k+k-1}$$

$$= O(1) \sum_{v=1}^{m-1} |\Delta(v\beta_{v})| X_{v} + O(1)m\beta_{m} X_{m}$$

$$= O(1) \sum_{v=1}^{m-1} v |\Delta\beta_{v}| X_{v} + O(1) \sum_{v=1}^{m-1} |\beta_{v+1}| X_{v} + O(1)m\beta_{m} X_{m}$$

$$= O(1),$$

by virtue of the hypotheses of Theorem B and Lemma 2. Again, since $|\lambda_n| = O(1/X_n) = O(1)$, by (5), we have

$$\begin{split} \sum_{n=1}^{m} \psi_{n}^{\delta k + k - 1} n^{-k} \mid T_{n,2}^{\alpha} \mid^{k} &= \sum_{n=1}^{m} \psi_{n}^{\delta k + k - 1} n^{-k} \mid\mid \lambda_{n} \mid w_{n}^{\alpha} \mid^{k} \\ &= O(1) \sum_{n=1}^{m-1} \Delta \mid \lambda_{n} \mid \sum_{v=1}^{n} \psi_{v}^{\delta k + k - 1} v^{-k} (w_{v}^{\alpha})^{k} \\ &+ O(1) \mid \lambda_{m} \mid \sum_{v=1}^{m} \psi_{v}^{\delta k + k - 1} v^{-k} (w_{v}^{\alpha})^{k} \\ &= O(1) \sum_{n=1}^{m-1} \mid \Delta \lambda_{n} \mid X_{n} + O(1) \mid \lambda_{m} \mid X_{m} \\ &= O(1) \sum_{n=1}^{m-1} \beta_{n} X_{n} + O(1) \mid \lambda_{m} \mid X_{m} = O(1), \end{split}$$

by virtue of the hypotheses of Theorem B and Lemma 2. We note that for k=1 the proof of Theorem B is trivial.

References

- H. Bor, On the absolute Cesàro summability factors, Anal. Numer. Theor. Approx., 20 (1991), 11-14.
- S. Bosanquet, A mean value theorem, J. London Math. Soc. 16 (1941), 146-148.
- 3. T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. 7 (1957), 113-141.
- 4. E. Kogbetliantz, Sur les séries absolument sommables par la méthode des moyannes arithmétiques, Bull. Sci. Math. 49 (1925), 234-256.
- 5. K. N. Mishra and R. S. L. Srivastava, On absolute Cesaro summability factors of infinite series, Portugal. Math. 42 (1983/1984), 53-61.

DEPARTMENT OF MATHEMATICS, ERCIYES UNIVERSITY, 38039 KAYSERI, TURKEY E-mail address: seyhan@zirve.ericiyes.edu.tr