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On equivalence of differential equations
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To Ulo Lumiste on his 70th birthday

ABSTRACT. In this paper we investigate the equivalence of nonlinear partial
differential equations. We consider PDEs as submanifolds of the jet bundles
and study the restriction of the Cartan and the metasymplectic structures
on the equation. They generate curvature-like invariants of the differential
equation. We formulate our equivalence theorems in terms of these invari-
ants.

0. Introduction

In this paper we propose some scheme to investigate the problem of equiv-
alence of nonlinear partial differential equations. We consider such equations
(PDEs) as a subbundles of the jet bundles 7 : J¥7 — M where 7 : E — M
is a smooth bundle.

Given two PDEs &£ and &' we call an (external) equivalence the prolonga-
tion ®) of any fiberwise diffeomorphism @: E — E', which maps £ to £'.
If dim7 = dim 7’ = 1 the equivalence mappings (*) are prolongations of
contact transformations ¢! : Jlzr — J 7/, which can be non-projectable to
the maps ¢ : E — E’. By an internal equivalence we mean a diffeomorphism
®: £ — &', which preserves the Cartan distribution.

Given such a concept two problems appear. The first one is the Lie-
Backlund problem of whether a given internal equivalence ® : £ — £’ comes
from a mapping of the bundles downstairs ¢ : E — E' or, in the case when
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dimr = 1, o : Jlr — Jin/, ie. ® = ¢®7? Upon the trivial equation
£ = J*r the corresponding fact is well known and is called Lie-Backlund
theorem, for the differential equations case see [4].

We will use this theorem in equaling metasymplectic and special meta-
symplectic transportations. The exceptional case (dim 7 = dim 7' = 1) can
be treated similarly to the general case, when all equivalences are lifted from
the zero-level jets ¢ : E — E'. We however do not study this case separately,
leaving the parallel theory aside.

Next problem is the question of prolongation existence. Actually with
every equation one associates its prolongations & (s) ¢ J¥+ts which in many
cases can be considered as equations themselves. Thus every equivalence ¢
or ¢! gives rise to a sequence of equation morphisms plkts) £ls) — £10),

To investigate this situation formally we introduce a notion of framed
k-jet of isomorphism, that is a k-jet of a bundle isomorphism together with
metasymplectic transformations of corresponding Cartan subspaces. In con-
trast to k-jets of bundle isomorphisms we can prolong framed ones. If such
isomorphisms in addition map & to &', then they establish a formal equiv-
alence of the differential equations. We apply this construction to formally
integrable equations and find first obstructions for formal classification.

For non integrable differential equations the picture is slightly different.
Namely, we introduce Weyl tensors of PDEs (see [11} for details) and show
that lifting of framed k-jet of isomorphism to the next prolongation is pos-
sible if and only if it preserves the Weyl tensors. This result shows that
equivalence of the Weyl tensors is a necessary condition to passing from
PDEs equivalency on level of k-jets to (k + 1)-jet level.

These results can be applied to both differential equations equivalence
problem [5, 6] and geometrical structures equivalence problem. The last are
operated via the approach proposed in [{10,11] and we will give a special
consideration to them elsewhere.

1. Cartan distributions, metasymplectic
structures and curvatures

In this section we recall basic facts concerning to the jet space geometry
(see [1], [4], [9] for details). They originate from the classical works of Lie
[8] and Cartan [2].

1.1. Curvatures of distributions. Let M be a smooth manifold and
let P:a € M+ P(a) C 7, be a distribution. We denote by C* (P) the
C* (M)-module of vector fields which are tangent to P and by P, C Q' (M)
the annihilator of P.

Let us fix a point @ € M. Then de Rham differential induces a map
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which satisfies the following property

£ (fw) = f(a)§ (W)
for all f € C* (M).
Taking the value of £ at the point we get the following linear map
Zq : By (@) — A* (P" (a))
or tensor
Eq € A? (P* (a)) ® v,
where
Vo =F§(a) =1, / P(a)
is the normal space to the subspace P (a) C 7,.

Definition 1. The tensor = € Q% (P*) ® v, where = : a — Z,, is called
curvature of distribution P. ‘

Remark 1. One could consider the curvature tensor as a 2-form on the
distribution which takes values in the normal bundle.

It is easy to see that this pointwise construction admits more invariant
form.

Proposition 1. De Rham differential induces the C*® (M)-linear map

dp : Py — QX (M) / Po AQY (M),
dp @ wr— dw modPO/\Ql(M).

Moreover, Q* (M) / Py A Q! (M) = Q* (P~) and dp coincides with =.

Let ¢ : M — N be a (local) diffeomorphism, and let P and Q be
distributions on M and N respectively, dim P = dim Q.

If ¢ maps one distribution to another: ¢. (P (a)) =Q (b), b= ¢ (a), then
the differential ¢, : 7, = 7 induces the normal (quotient) linear isomor-
phism @Y : vy — vy

We define the image ¢* (Z;) under this map from the following commu-
tative diagram

T A (P (a)

(¢“)‘T TA2(¢)*

Vg = AP (3).
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Definition 2. We say that a 1-jet of local diffeomorphism ¢ : M — N
is an isomorphism of the distributions at a € M if ¢, (P (a)) = Q (b) and
¢* (Zp) = Za.

1.2. Cartan distributions. Let 7 : E — M be a smooth bundle.

We denote by [s ] = jxs {a) the k-jet of a section s : M — E at the point
a € M, and by J¥r the space of all k-jets at the point.

The space of all k-jets at all points, as usual, will be denoted by JEn =
Usenr JEm and by w0 J5m — Jim, k > I, we shall denote the natural
projections.

Note that Jor = E.

For any point ay € J*m we denote by a; = my; (ar) € J'z the corre-
sponding projections and by F (ar—1) = W,;};__l (a—y) the fibre of mp 11
over ag_1, F (a) = 771 (a).

It is well known (see, for example, [3], [4] or [1]) that F (ax-1) has a
natural (with respect to automorphisms of the bundle) affine structure when
k > 1, and the corresponding vector space is S*77 @ vq, where 7, = T7 M
is the cotangent space and v,, = Ty, (rr“1 (a)) is the tangent space to the
fibre.

Any local section s : M — E of 7 produces the section jps : M — JEx

of the bundle 7, where jrs :a € M — [s] € Jkr. The tangent space
k+1
@

Ts. (Ges(M)) at the point ap = [b}}; depends on the element aj+; = [s]
only. Denote this space by L (ax41)-

The Cartan space C (ay) is the vector subspace of T,, (J*7) generated
by L (ags) for all aryy € F (ag).

The Cartan distribution C on J*7 is the dxstrlbutxon generated by the
Cartan spaces:

C:JFr 3 ap — C(ag) C Ty, (Jkﬂ').

It follows from the construction that (mpx—1), : C (ax) = L (ax), and it
can be shown [4] that C (ax) = (7pr-1)." (L (ar))-
In other words, any point axp1 € F (ay) produces the following splitting

C (@) = Ta, (F (ar-1)) ® L {as1) = S5 @ vay © L (@) (1.1)

By the very definition the graphs (jrs(M)) C J*r are integral manifolds
of the Cartan distribution. The significance of the distribution descends
from its following property: every integral manifold L of the distribution of
dimension m = dim M for which the projection my : L — M is a diffeomor-
phism has the form jizs(M).

Ti

fe

k8
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Let £ C J*r be a partial differential equation. We denote by C¢ the
restriction of the Cartan distribution on & :

Ce (ak) =C (ak) N Tak (5)

for all a;, € &.
In this case the above splitting takes the following form

Ce (ar) = g (a) & L (ary1),
where agy1 € £ is an element of the 1-st prolongation, and
g (ak) = Tak (F (ak—l)) n Tak (E)

is the symbol of £ at point ay.

1.3. Cartan forms and metasymplectic structures. Let QF (JFm)
be the C'* (Jkﬂ")—module of m;-horizontal forms on J*x.
Define the operator

d: Qk (ka) — QFt1 (Jk+17r)

by the following universal property:

Fins (@) = d (jis ()

for all s € C*° (7). Here w € Qf (J*n).
Then

d(anB)=d(@) Aty (B)+ (1) 7,0 (@) Ad(B)

and
4 = 0.

The Cartan 1-form U (f) corresponding to function f € C*® (JF=17) is
the following differential 1-form on the space J*x:

U (f) = wh s (df) = d(f) € Q' (J¥7).

To compute the value of the differential 1-form on a vector X € T,, (J*)
we use the decomposition

Top_, (J5717) = TY _ DL (ar);
X = X"+ X"
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where T2 =T, (JF1x).
Then
U (f) (X) = (df, (1) X))

Moreover, the Cartan forms U (f), f € C* (J¥~1x) determine the Cartan
distribution on J*m (cf. [4]).

Let us describe now the curvature tensor of the Cartan distribution.

In our case differentials of the Cartan forms determine a linear operator

Qq, : C (JF 1) = A% (C™ (ar))

where

Qak (f) = dU (f)lc(ak) :

Moreover, it is easy to see that (,, is a derivation, and therefore we can
look at €2,, as a linear operator

Qg 1 Ty (JFim) = A* (C™ (ar)) -

On the other hand, Q,, (f) = 0if f € m}_y 4o (C* (JF=2x)).
Consider the following exact sequence

0—T

k-2

(Jk_27r) =T | (J’“"lﬂ) = Sl @ vy, — 0.

Operator §,, vanishes on T __ (J*~2r) and therefore it can be considered
k Of—2

as a linear operator on the factor space. We also denote this operator by
Qg : S5 @k, — A (C™ (ag))

and will call metasymplectic structure on Cartan space C (ay) (cf. [9]).

By the definition both U,, (f) and 4, (A), A € Sk=1l7, ® v},, vanish
on tangent planes of integral manifolds of the Cartan distribution. Since
F(ak_1) is also integral then according to splitting (1.1) to compute the
metasymplectic structure g, (A) it is enough to determine the value {2, (A
on bivectors of the form 6 A X where 8 € S*77 @ v,, and X € L (k1) =
7.. This can be done according to [9] by means of the Spencer operator
§:5**Qugy = X ®SFITI @yt

(1.2)

Qak (A) (X7 0) = <A’ lXé()) .
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1.4. Cartan and Bott connections.

Definition 3. 1. An m-dimensional (m = dim M) subspace H(ax) C
C (ay) is called horizontal if (i)« (H (a)) = 7,.
2. A subdistribution of the Cartan distribution H : a; € JFr —

H (ay) C C'(ag) consisting of horizontal subspaces is called Cartan con-
nection on .

There is a éimple way to get a Cartan connection. Namely, let ¥ : J¥7 —
J¥*t1lx be a section of the bundle Try1,k- Then Hy (ap) = L (¥ (a)) is
obviously a Cartan connection.

Definition 4. A Cartan connection of the type Hy is called Bott con-
nection.

Let us fix a Bott connection Hg. Then any other Cartan connection H
can be viewed as a graph of smooth family o of operators o4, : L (¥ (ax)) —

T, (F (ak—l)):
H (ay) = graph (o, : L (¥ (ag)) = Ta, (F (ag-1)))-

Using isomorphisms L (¥ (ax41)) ~ 7, and Ty, (F (ax—1)) = S*¥r Q@ v,, we
can represent ¢ in the form

. k k
Oap 1Ta = 57Ty QUgy OF 0g, €Ty @S To & Vg

Proposition 2. Cartan connection H = H, is a Bott connection if and
only if do = 0 where § : 7} @ S*1F @ vy, — A} (1) @ S*~172 @ vy, is the
Spencer §-operator.

Proof. Cartan connection H is a Bott connection if and only if all spaces

H (ay) are isotropic with respect to the metasymplectic structure. In other
words, if and only if

(Aix, (0 (X1)) —ix, (0 (X2))) =0

forall X € S¥1r, @ v}, and X1, X, € 7,.
The last condition obviously means do = 0. O

Let £ C J*m be a differential equation and Cg¢ be the restriction of the
Cartan distribution on €.

Definition 5. A Cartan connection on PDE £ is a smooth field H of
horizontal spaces on & such that H (ax) C Cs (ax) for all a € £. A Cartan
connection on £ is called a Bott connection if all horizontal subspaces H (aj)
are isotropic with respect to the metasymplectic structure.

Remark 2. A Bott connection can be identified with a section ¥ : & —
N
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Definition 6. Let H be a Cartan connection on PDE £. The tensor
Qp (ar) = Qa,|gr(q,) is called a curvature of the Cartan connection.

As above we have the following description of the Bott connections in
terms of the curvature.

Proposition 3. A Cartan connection H on PDE £ is a Bott connection
if and only if Qg = 0.

Remark that the curvature Qg (ax) can also be considered as a linear
mapping

Qp (ar) : S57'ra @07, / Anng (ap-1) — A (77)

where g (ag-1) = Ta,_, (Ex—1 N F (ak—2)) and Ex—1 = Tgp—1 (£). In other
words,

Qg (ay) € A* (12) ® g (ak-1) -

1.5. Lie equations of symmetries. For a given differential equation
£ we associate the Lie algebra of its symmetries Sym & consisting of 7-
projectable vector fields X on E with prolongations X(¥) being tangent
to £. This Lie algebra is the space of solutions of the equation Lie £ for
vector fields X (cf. [7]). Lie pseudogroup corresponding to Lie £ consists of
autoequivalences of £.

For a pair of equations £ C J*7 and &' C J*r' we can also consider the
set of all equivalences, that is bundle isomorphisms ¢ : E — E’ such that
#F) (£) = &'. This set can be represented as the set of solutions of PDE
Lie(&, &') where Lie(€,€") € J* (x,n") consists of k-jets [(p]f € JE (z,7') of
bundle isomorphisms such that ¢(¥) (£,) = &.. Here &£, = €N (a).

We shall consider the prolongations Lie!” (£, €') ¢ J*¥*! (x,7') just as in
the usual theory of PDEs.

In this paper we are interested in the prolongation existence over some
point [¢]**" € Lie) (£, £'), and in the question of calculating

T e s 1, k-1 (Lie(l+5) (51 El)) - Lie(l) (Ev 51)

We will consider mostly s = 1 since then one can prolong inductively. In such
setting general results on formal integrability can be applied. We however
will treat the problem differently by detecting obstructions directly along
their construction.

2. Metasymplectic transformations

In this section we consider the problem of construction of formal equiva-
lences between PDEs. So many results have local or even pointwise nature.
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2.1. Prolongations of bundle isomorphisms. Let ¢ : E — E' be
an isomorphism of smooth bundles = and =/, i.e. ¢ is a diffeomorphism of
the manifolds and there exists a diffeomorphism & : M — M’ such that the
following diagram

E 2 g

1
M2 M

commutes.
We define the k-th prolongation ¢\¥) : Jkr — J*n! as follows

) (5) = [pos037]),

where @’ = ¢ (a).
Then ¢{*) is obviously an isomorphism of bundles 7 and 7} over diffeo-
morphism ¢ : M — M’ and it satisfies the following properties.

Theorem 1. 1. Diagrams

& ¢(k) .
JEkr ———y Jkg!

'”lc,lJ( W’k‘(l

l p! l
Jr —— J'n!

commute for all k> 1.
2. ¢\¥) preserves the Cartan forms U :

U ((#%) ) = (6) @ ()

forall f e C® (Jk_lﬂ").
3. %) preserves the metasymplectic structure Q, i.e. the following dia-
grams

S5 lry @ vs, —s A2 (C* (a}))
S""‘Bf.“w*l lAQ(rﬁ‘”)'
SElr, @ur, — A%(C*(ax))
commaute.

We begin the proof of the theorem with the following result.
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2.1. Prolongations of bundle isomorphisms. Let ¢ : E — E' be
an isomorphism of smooth bundles #n and =, i.e. ¢ is a diffeomorphism of

the manifolds and there exists a diffeomorphism & : M — M’ such that the
following diagram

E —, g

I

M 2 M
commutes.
We define the k-th prolongation ¢F) : Jkx — J¥7! as follows

Pk ([s]f) =[¢os 05—1]:’

where o’ = ¢ (a). ‘
Then ¢(*} is obviously an isomorphism of bundles 7, and 7}, over diffeo-
morphism ¢ : M — M’ and it satisfies the following properties.

Theorem 1. 1. Diagrams

& ¢(k)
JEr —— Jkg!

Wk,ll w'k,,l

{ p 1
Jr —— Jr

commaute for all k > 1.
2. &%) preserves the Cartan forms U :

U ((%79) 1) = (¢%) W ()

for all f € C> (Jk-17").
3. &) preserves the metasymplectic structure Q, i.e. the following dia-
grams

Q5
Sk_lra: ® u;6 —k 5 A2 (c (ajc))
Sk—la‘*—l@(ﬁ*l 1A2(¢(k))*

SElr @ g, e A2 (C ()

commute.

We begin the proof of the theorem with the following result.
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Lemma 1. We have

(49)" (ar) =2((6*) )
for all f € C*™ (Jk‘lﬂ").

Proof of the Lemma. At first, we note that differential 1-form (ptF))* (Af)
is mi-horizontal.

On the other hand, if s’qS =¢osog ! we get ¢ o ji (s) = jk (s > o ¢,
and

for all s € C*° (n).
Therefore ((ﬁ(k))* ((,i\f) = E((¢(k—1))x (f)> U

Proof of the Theorem. We have U (f) = nf ;_; (df) — df , and therefore
(69) @ (1) = (%) (7 (@) = (49) (dF)
et (a(9) ) -5 )
o) 5)
From this property of U we obtain the following commutative diagram

co (Jh-1r) —2 A% (C* (ar))

] [re(ez,)

oo (JE1at) Ty A2 (C7 (d))

for the metasymplectic structure £2.
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Commutativity of the following diagram

. atk) ’
Jhr L Jkg!

'
Wk'k—IJ, l”k,k—l

& ¢(k-‘ 1)
J -1 ) Jk—lﬂ./

gives commutativity of the differentials

0 —— T;"k_2 (Jk—zﬂ') — T;"k_l (Jk_lﬂ') —_— Sk“lv'a®1/;‘0 — 0

sy ] ey ] [ s

0 — T3 () — Ty, (') — S5l @), — 0

Ofe2 Br—1

and thus (1.2) together with the definition implies the claim. O

In the same way we get the following result on differential equations equi-
valences.

Theorem 2. Let ¢ : E — E’ be an equivalence of differential equations
£ C JEr and £ C Jhn!, e P () = &', and let Qs € A’ (C} (ar)) @
gk-1 (ak-1) and Qg € A2 (CE (a})) @ gr—1 (ah_1), 8 (ay) = al, be the
corresponding metasymplectic structures. Then (qb(k))* (Qg) = Qg, where
(4)(’“))* (Q2¢1) is given by the following commutative diagram

(ge-1(af_)”  —E A (Ch(ah)

lsk"@,r‘w* jAZ(W)‘

(k)Y * ,
(Ghor (ax-1)” 2L pa (o (0).

2.2. Metasymplectic transformations. Let ¥ : J¥7 — J*z' be a
smooth map. 1-jet of ¥ at a; € J*7 is determined by the image aj, €
J¥n! of the point and a linear map @ : To, (J¥7) — Ty, (J*7'). In the
case when ¥ = ¢(¥) is an equivalence ® maps the Cartan space to the
primed Cartan space. Moreover this map is 7 _;-vertical and preserves
the metasymplectic form.

Thus we are given the following object (ay, a}; ®) where the second term
stands for a linear isomorphism @ : C (a;) — C (a}).
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Definition 7. 1. A linear isomorphism @ : C(ax) — C (a}) is called
metasymplectic transformation if it maps isotropic subspaces to isotropic
ones.

2. A metasymplectic transformation @ : C (ay) — C (a},) is called special
if @ is a vertical isomorphism, that is, ® preserves the tangent spaces to
Tr k—1-fibres and induced the vertical part ®, : S} ® vy, — SErr @ Vat,
of the map.

Remark 3. When k£ = 1 and dim 7 = 1 metasymplectic transformations
are simply conformal symplectic transformations. If ¥ > 2 or dimnw > 2
there is no difference between metasymplectic and special metasymplectic
transformations.

We investigate now the structure of (special) metasymplectic transforma-
tions.

Let @ : C (a;) = C (a},) be a special metasymplectic transformation. We
define a horizontal part of ® as a linear isomorphisms ®; : 7, = 74 given
by the following commutative diagram

C(ax) —2— C (ah)
(m. | ().
Ta —_—r Tl
Lemma 2. @y is well defined.

Proof. It follows from the following commutative diagram

0 —— SkTgf@l/ao —_— C((lk) LN Ta > 0
q’ul (I)J. th
7
. 5 T
0 —— Skr5 Quy, — C(a}) LA > 0.

O

Theorem 3. Let ®: C (ay) — C (a},) be a special metasymplectic trans-
formation. Then there is a linear isomorphism ¢ : vy, — vy, such that

@, =5(3;1) @ ¢: S5 @vay = STL B vay,.

Proof. Let apy1 € F (ag). Denote by X € L(aj41) the image of vector
X € 7, under the isomorphism (1), : L (@k+1) = Ta-

Take the following isotropic and decomposable pair (X.0 = p* ® v €
SkT* ®@v,,) of vectors of C (ax) where p € 77 and (X,p) = 0. Then the
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pair (@ (Y) , @, (plc ® v)) = (<I>h (X),®, (p* @ 'u)) is isotropic too. (Here

we also denoted by Y € L (af41) the image of vector Y € 7, under the

isomorphism (), : L (a},) = 7o, where L (@) = @ (L (ak41)).)
Therefore, tensor @, (p* ® v) € S*7% @ v, degenerates along directions

k
@), (X) every time when (X, p) = 0. Hence, @, (p* ® v) = ((@;1)* (p)) ®

¢ (v) for some linear isomorphism ¢ : v,, — Vay,.

Corollary 1. Any special metasymplectic transformation preserves the
metasymplectic structure.

2.3. Metasymplectic structures over differential equations. In
this section we introduce and investigate metasymplectic transformations
over differential equations.

Let £ C J*x and &' € J*x' be differential equations, and a € £,a, €&
be fixed points.

We will assume here that 7, : £ — M and 7, : £ — M' are surjections.

Definition 8. 1. A linear isomorphism @ : Cr (ay) — Cer (a}) is called
metasymplectic transformation if it maps isotropic subspaces to isotropic
ones.

2. A metasymplectic transformation ® : Cr (ax) — Ce (a}) is called
spectal if @ is a vertical isomorphism, that is, ® maps the tangent space to
fibres of the projection 7y 4—; : € = J*~Ix to the primed one. The induced
map we call the vertical part ®, : g (ax) =+ g (a},) of the map.

As above we define the horizontal part of ® from the commutative diagram

Cs (ar) —2— Ce (al)

(. | |

Dy
a —— Tyl -

Remark 4. There is no difference between special and metasymplectic
transformations. if

dim g (ax) > n.

Denote by Char® (£, a;) the set of all complex characteristics of the dif-
ferential equation at the point, Char® (£,a) C T&\0.

For any p € Char® (€,ar) we denote by K, C V;CO the corresponding
kernel space:

Ky={vev|p"oveg®(a)}.

The proof of the following theorem is similar to the one of Theorem 3.
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Theorem 4. Let ® : Cs (a;) — Cei (a}) be a special metasymplectic
transformation and let £, &' be such differential equations that

1. The 1-st prolongation £Y) is not empty over point ay, € &.
2. Vector subspaces K, generates Vfo :

- C
Z K,=vg;,

p€Char®(£,az)

3. Tensors p*®v, where p € Char® (

£,a;) andv € K,, generate g (ay).
Then the vertical part of ® has the form

@, =S¥ (0;1) ®¢:g(ar) = g(a})

for some linear isomorphism ¢ : v,y — Vay, -

Remark 5. For formally integrable PDEs condition 3 of the theorem
above (after some number of prolongations) can be reformulated in terms
the projectivization char® (€, ax) of Char® (€£,ak). Namely, this projective
manifold should be non degenerated (= does not belong to hyperspaces).

2.4. One step lifting of metasymplectic transformations. In this
section we will be interested in the lifting of special metasymplectic trans-
formations ® : C'(a;) — C (a},) to the level (k+ 1), i.e. we will search for

: L& — )
a pair (ak+1,ak+1,@ where i1k (Akt1) = ar, Thyq g (“Ik+1) = a;, and

®:C (ag+1) = C (ajﬂ_l) is such a vertical isomorphism that it preserves the
metasymplectic structure, that is

Qg
Sk @y, —= AT(C*(
@] [
" Qg 2 (v (o
‘S Ta‘ @I/;é‘ “_—) 1\ (C* (ak+1))
and makes the natural diagram commutative:
3
C(art1) — C(apy)

(7rk+l,k).l l(ﬁ;c-i-l,k)*

Clar) —> C(al).

Moreover we shall investigate a relation between a4y and aj, given by .
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Note that every element a1, € F (a;) gives the splitting
Cla) =Ta, (F(a5-1)) @ L (a41)

and every other element Gy, € ﬂ'l:—:l,k (ak) represents L(@y4+1), which can
be considered as the graph of the map o : [ (akt1) = To, (F (ax—1)) or due
to the isomorphisms 7T,, (F(ax-1)) = S*rr ® Voo and L (ax1) = 7, as a
linear map

0 :7q = S* T ® vy, or tensor o € T @ S5 @ vy,

Since L(@x41) is isotropic, ¢ is d-closed. The above construction shows that
it is é-exact, i.e. o lies in the image of the inclusion § : SEI @ vy,
T2 @ SETI Q@ vy,

Now let us begin to construct a pair (akﬂ, LA 5) by the pair
(ag, al; D).

First, since ® preserves vertical subspaces it maps horizontal subspaces
to horizontal ones.

Second, ® preserves the metasymplectic structure. Therefore, it maps
isotropic planes to isotropic ones also. Thus, the image of subspace L (agt1)
being horizontal and isotropic has the form L (aﬁﬂ_l) for some a2~+1 S

-1 /
Tht1,k (a})-
In other words, ® determines an isomorphism

v 771:-&1,;; (ax) = ”;c;l],k (a},) .

Let us fix a pair (ak+1, Ay =T (ak+1)). The differential of ¥ at a1,
we shall denote it by @, will be the vertical part of @ :

B, =V, : Ty, (F(ap)) = Tu,, (F (a}).

To define ® on the whole C'(ar+1) we choose some horizontal planes
L (ary2) and L (a},) into C (aryy) and C (a}y,) correspondingly. We de-
fine the horizontal part 5}1 of @ by the diagram

L (arya) —2 L (a}y,)

7fk+1,kl lvr;“,k

L(aks1) —— L (@hsr) s
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and

=3, & By : C (ar1) = Top,, (F (a1)) & L (a42) —
Tay,,, (F(a}) ® L (ay2) - (2.1)
Remark 6. Any other prolongation of ®, say ®;, differs from (2.1) by

a linear map og : L (apy2) — Ta,, (F(a})), ie. due to the isomorphisms
above by

Op : Tg Sk"'l"r;, ® v,y or equivalently og € 7, ® 5k+17_;<, ® Vg,
Making the identification ®, : 7, ~ 7, we see that 51 preserves the meta-
symplectic structure if and only if dog = 0.

Proposition 4. The following diagram

1 %, i1
S @ vy, —_ ST @ vy

51 l&
* k - (5;’)_1@9@" * koox
Te @SSPy Qugy ———— 75 @S TS @y
commutes.

Proof. Indeed, from the constructions it follows that
@, (X |66) = @), (X)|6®, (6) (2:2)
for all X € 7, and 8 € S*H 72 @ vy, . O
Theorem 5. Mapping (2.1) preserves the metasymplectic structures.
Proof. Let X € L(axy2) =~ 7, and 8 € T, ,, (F (ax)) = S*177 @ vy,
be a horizontal and a vertical vectors. Their images are: &, (X) € 7, and
@, (0) € S¥*17x @ var . Since @ is a special metasymplectic transformation
(for the exceptional case the arguments are similar) it maps vertical sub-

spaces to the vertical ones: S*r* @ Vo, — Skr2 va,. Thus we get the
mapping
oy ]
Stra@ug, 33 1 N St
With this fixed we have:
Dy (B4 (X),8(6)) = (N, 8, (X)168" () ) = (', @” (X |69))

((@")" (N), X [66) = (X, X |36) = Qs (X, 0)..

il

O
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3. Framed jets and lifting of k-jets of bundle isomorphisms

3.1. Jets of bundle isomorphisms. Let ¢ : E — E’ be a local bundle
isomorphism. Then the k-jet [¢]§ of ¢ at the point a € M determines a map

k koo
[6]F - JE = JgT

by the rule
kg -1k
[8]g : [slg ¥ [pos0d7']5
and the following diagram is obviously commutative

Jrr ——-—)Mk JE
@ )"

’
Wk,knll l"k’k_l

Jhlgp 2y 61, J" L
e )"

Moreover [(/)]2 is an affine isomorphism when £ > 1, and its linear part is
. T o1
equal to S* (qﬁa*) ® 3,
These two properties completely characterize the k-jets.
Lemma 3. Let F: J5 7 — J5 ! be a map such that

1. The diagram
Jk—Hﬂ. 5 J/»+1

s | [

Jfﬂ- _[f]—") ]a’ﬂ-

commutes for some bundle isomorphism ¢. Here a' = ¢ (a).

F is an affine map and the linear part of the map at a point ay, € J*7
is equal to Sk+1 (A*)_1 Q@B : SMlrr@u,, — SElrx @ Vplao) fOT
some linear isomorphisms A : T, = Ty and B : v,, — Vay, -

Then there is a local bundle isomorphism v such that [¢]k+l = F and [gb] =
(41

Proof. Let us consider

a

-1
U= ([g{)]k“) oF : J,f“ﬂ -3 Jff"'lﬂ'

Then ¥ induces the trivial transformation on J¥r and an affine isomorphism
on the bundle 741 : J¥1r — JE7. Moreover linear part of this isomor-

N B - -
phism is equal to S§¥+1 (A*) ® B where A = (¢, ,) "oA:7, > 7, and
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B = ( Zo)‘l 0 B : Vg, = Vg,. Take any local bundle isomorphism A such

that [\’ = id and linear part of [A**" coincides with §¥+1 (K*) ® B.

o =1
Then ([z\]ﬁ“) o ¥ is a translation of the affine bundle and therefore can

be represented by a smooth map v : 77! (a) 3 ag — v(ag) € S*17r @ vy,.
Let us choose a 7-vertical vector field X, on E such that X, has (k+ 1)-
order zero on 7! (a) and (k+ 1)-jet of X, is equal to v. Let C be a
shift along X, on time ¢ = 1. Then (k + 1)-jet of C' produces the trans-

~1
lation in the affine bundle. In other words [CL’:H = ([/\]k+1) oW and

o

F=[g];" o D 0[O O

3.2. Framed jets.

Definition 9. A pair ([qﬁ]g,@), where [cb] J’"ﬂ‘ — Ja,7r is a k-jet of
local bundle isomorphism and @ : a; € J¥r — ®@,, is a smooth family
of special metasymplectic transformations ®,, : C (ax) — C(a}), a)
[qS]: (ar), is called framed k-jet.

Any framed k-jet ([dﬂ @) determines a map F : J¥*1x — J5t 7! which
is uniquely defined by the formula ®,, (L (ag+1)) = L (F (ak+1)). This map
satisfies the conditions of Lemma 3 due to Theorem 3.

Therefore, there is a local bundle isomorphism v such that [¢],

On the other hand, let us choose a section H : J¥t1x — J¥2x of the
projection myyo k1 : Jf“?f — J¥*1z. Then the construction of Section
2.4 shows that there is a family of metasymplectic transformations @

C (@xe) = C (W13 (@)

Summing up we get the following result.

k41 P‘v

Proposition 5. For any framed k-jet ([qﬁ]ﬁ , @) there exists a framed (k+
Vet (1", @) such that [y]s = [8lf , @ (L (ars1)) = L ([ (axe))

for all apyy € JE¥* . Moreover, ® and ¥ have the same horizontal parts
and vertical parts ®, and ¥, are conjugated via the isomorphisms v,, — Vg
and the projections m1 k, 7T;c+]'k.

Definition 10. We call the framed (k + 1)-jet ([¢]k+1 \II> 1-st prolon-
gation of the k-jet ([gb]’; , <I>).
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3.3. Prolongations of equivalences.

Definition 11. A framed k-jet ([q&]ﬁ,@) is called framed isomorphism

of differential equations £ C J*7 and €' C J*7' if a} = [qb]: (ax) € &', and
®,, (Ce (ar)) = Ce (a},) for all ay € &,.

Definition 12. We call differential equation £ C J*7 2-solvable if the
prolongations £(1) C J*+1x and £®) ¢ J¥+27 are smooth manifolds and
Ttz k1t € = £ apd Te41,k - ) — £ are smooth bundles.

Theorem 6. Let differeniial equations £ C J*7 and £'CJ*n' be 2-
solvable. Assume that ([gb]f , <I>> is a framed isomorphism of the differential

equations. Then there ezxists a 1-st prolongation ([zﬁ]ﬁ“ ,\Il) of ([qb]:,@)

which establishes a framed isomorphism of prolongations £ C J¥+1r and
£ JhA1pr

Proof. The fact that ¥, establishes the isomorphism of prolongations of
symbols follows from the naturality of the Spencer operator. The rest of the
proof goes along the constructions in Proposition 5. O

The next result is a straightforward corollary of the above theorem.

Theorem 7. Let differential equations £ C J*n and E'CJ ' be for-
mally integrable. Then any framed isomorphism ([(b]z,@) can be lifted to
framed isomorphisms of l-prolongations of the equations.

4. Weyl tensors and one step lifting
for non integrable PDEs

Now we consider the problem of formal equivalence for equations which
are not formally integrable.

4.1. Weyl tensors. Consider differential equations £ C J*¥r and & C
J*r'. In this case we have the following decomposition of the Cartan space:

Cg(ak) = C’(ak) M Takg o= g(ak) 5 H(ak),

where g(ax) = T,,E N T,, F(ax-1) is the symbol of the equation £ at the
point a; and H(ay) is some horizontal space.

Note that horizontal subspace can be chosen isotropic H(ax) = L(ak+1)
with ag4; lying in the first prolongation £(V) of the equation, of course in the
case of non empty prolongation £(Y) over a;. We will identify H(ag) =~ 7,.

Let Qp = Q| be a "curvature” of H = H (ay).
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Lemma 4. Let H' be another horizontal space and ¢ = og g € T, ®
g (ay) be the corresponding operator. Then

Q= Qg + do.

Proof. Let Qg = Dy = Q)| for all A € S¥~'7, @ v} . Then

Qpra (X1, Xo) = Q0 (X1 + 0 (X1), X2+ 0(X2))
= Qg (X1, X2) + Qo (X1, 0(X0)) + Q0 (0 (X1) , X
= Q. (X1, Xo) + O, X1[0(0 (X)) — X2]d(0 (X1))
= Qu (X1, X2) + (X, 60 (X1, X)) .

Since Qg € A? (1)RS* 11X ®v,, is §-closed (generalized Bianchi identity,
see [11]) we are led to

Definition 13. The Weyl tensor of differential equation £ C J¥m at
point aj. € £ is the §-cohomology class

Wi (ax) = Qg mod & (77 ® g (ar)) € H* 12 (€, ap).

Theorem 8. A4 Cartan connection at point aj, € £ can be chosen Bott if
and only if W (ai) = 0.

Remark 7. This result can be reformulated as a criterion for 1-solvability
of the equation at the point. Moreover the formal integrability criterion for
the equation & can be formulated in terms of Weyl tensors

Wi =0, Wiy =0,...
together with the regularity condition that symbols of prolongations
gV €5 ap e g (ar) C SMHT @ ve,

are vector bundles (see [11}).

4.2. Lifting. Let £ C J*r be a differential equation such that the 1-st
prolongation £ ¢ J*+1x exists but £(2) does not (one can take Riemannian
structure £; on J!(M,R™) as an example).

We assume that mppqx ¢ £1) 5 £ is a smooth bundle and a framed

k-jet ([gﬁ]’” @) is an isomorphism between & and &'. We shall denote by

a?
A : T, = Ty the horizontal and by B : v, — v the vertical parts of ®.
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Denote by [1,b]§+1 the prolongation of ¢ given by ®. We will try to define
metasymplectic transformations W : Cew (ars1) = Cery (a}c_,_l) by using a
connection H : ary1 — H (apy1) C Ce (ape1) on EX and H' on £,
In other words, we define

Uy g (k1) ® H (argn) = gV (ahy,) & H' (@hs1) (4.1)

as the direct sum of $¥+1(4*)™' @ B and A.
Note, that if ¥y is metasymplectic then it maps the Weyl tensor of £'(1)
to the corresponding one of £(1),

Remark 8. It is easy to see that the condition ¥ H preserves the Weyl
tensor” does not depend on a choice of the connection H. So this condition
depends on @ only.

Theorem 9. Let Uy preserve the Weyl tensors. Then there is a Cartan
connection H such that Uy is a metasymplectic transformation.

Proof. Let H and H be Cartan connections on £1) and let o be the
indeterminacy element, Oary, €T1 ® g (@g41). Denote by ¢, : C (ags1) =
C (ak+1) the following linear operator: g, (6) = @ for vertical vectors and

7 (X)=X+ X|o
for horizontal vectors X € H (aj41).
Then ¢, (H) = H and
Us=Vgogq;l.
We have
W () = () (U %).

Assume that ®p preserves the Weyl tensors. Then

UL (Qy) =Qy + 66

on CS) (@k+1) for some 6 € 77 ® g (ap).
Therefore, U~ (Qy) = Qg if and only if (¢,)* () = Q + 66 for some o.
The following lemma shows then we can take ¢ = . O

Lemma 5. (¢,)" (g) = Qg + éo.

Proof. Both forms coincide on pairs of vectors (X,Y) if at least one vector
is vertical. Take X,Y € H (ay+1). We get

(90)" Q) (X,Y) = QX + X[0,Y + Y o)
=Q(X,Y)+Q(X,Y]o) +Q(X]o,Y)
=Q(X,Y)+ X[5(Y]o)-Y]d(X]o)
=Qx (X,Y) + 60 (X,Y).
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4.3. Tangency and equivalence.

Theorem 10. Let £,&' C J*r be differential equations situated in the
same jet space. Assume that ay € £ENE' and
1. Projections are tangent: Ty, | (mg ;-1€) = Tar_, (i k-1E").
2. Fibres F (ax) N EQ) and F (ax) N E'D coincide.
Then the equations are tangent at ay, : Ty, (£) = Ty, ().

Proof. Cartan subspace Cy (ay) is completely determined by non vertical
vectors, which belong to L (ag+1) for agy; € € (1), Hence Cartan subspaces
are the same for both equations due to fibers coinciding. The complementary
parts are also tangent because of the following commutative diagram:

0 —— g(ak) _— Tak(g) (mi k1), Tak__1 (Trk,k_lé') —— )

ol !

0 —— g(ak) a2 Cg (ak) —(ff-f:i) L((Lk) — {).

Indeed, from the diagram we get

Tak (5) / Cg (ak) =~ Ta_k_1 (Wk,k—lg) / L (ak) =~ Tak (E') / Cgl (ak) .

In the same way we obtain the similar result.

Theorem 11. Let £,&' C J*r be differential equations situated in the
same jet space. Assume that ar € ENE' and
1. Projections are tangent: Ty, _, (75 5—-1E) = Tap_, (T k-1 E).
2. Cartan subspaces C¢ (ay) and Cg (ay) coincide.
Then the equations are tangent at ay, : Ty, (£) = Ta, (£').

Let us apply these results to the situation described in the previous sec-
tion.

Theorem 12. 1. Let a framed k-jet ([¢]§,<I>) be an isomorphism of £

and €' and let [Y]° be the Lifting of [(;S]Z determined by ®. Then differential
equations ¥F) () and &' are tangent at any point o}, € £'NJ5 7.

2. If the map Uy constructed by ® preserves the Weyl tensors then
Plk+1) (5(1)) and £'Y) are tangent at any point aj_, € &M n Jf,+171" for
k41

a

~ ~1 k+1
some bundle isomorphism 1 where [@b} = [¥]
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