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Complete proofs of the main theorems
on summability factors

S. BARON AND A. PEYERIMHOFF

ABSTRACT. In this article the shortest proofs up to the present of the main
-theorems on summability factors for Cesaro methods are given. The neces-
sity part of these theorems is proved for more general methods. Especially
comparatively short is the proof of the sufficiency part of the theorem for
summability factors of types (Cg, |C#]) and (C2,|CP)).

1. Introduction

Let € = (e,) be a sequence of complex numbers. The numbers ¢, are
called summability factors of type (A, B) (respectively (Ao, B) or (|A], B)),
if for each A-summable (respectively A-bounded or absolutely A-summable)

series
S, (1)

E Enlln

is B-summable. Briefly, we write ¢ € (A4, B) (respectively ¢ € (Ao, B)
or ¢ € (|A|, B)). Summability factors of the types (Ao,|Bl), (4,|B]|) and
(lA], | B]) are defined analogously.

Let C* be the Cesaro method of order @ > 0. The series (1.1) is called
C“-summable if

the series
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llTan ; AS_pup /AL

Received December 21, 1998; revised August 31, 1999.

1991 Mathematics Subject Classification. 40C05, 40D15, 40F05, 40GO5.

Key words and phrases. Normal matrix method, Cesaro method, summability factors,
absolute summability.

The authors acknowledge the support of the Minerva Foundation in Germany through
the Emmy Noether Institute at Bar-Ilan University. Unfortunately, Prof. A. Peyerimhoff
died untimely during the preparation of this paper.




32 S. BARON AND A. PEYERIMHOFF

exists and absolutely C*-summable, or |C'*|-summable, if
o0

3 (mA2) 7 3 ALk, | < oo.

n=1 k=1

AA,_ n+A
n n '

A — AN o— —~A~1 e Al - -~
Ale, = Aden = Y A2 e, Aen = Ale, =&, — nt1,

v=n

Denote

if the last series converges. Unless otherwise indicated, the summation at >
is likewise over 0,1,2,... and for the symbols O and o over 1,2,... .

In the present paper complete proofs of the following theorems are given,
where a, 8 > 0.

Theorem 1.1. In order that ¢ € (|C*|,CP) or £ € (|C*|,|CP)), it is

necessary and sufficient that

En = O( )1 (12)
e, = O(nF~9), (1.3)
A%, = O(n%) (1.4)

be satisfied.

Theorem 1.2. In order that ¢ € (C*,CP), it is necessary and sufficient
that (1.2), (1.3) and

D (n+1)%|aH e, | < oo (1.5)

be satisfied.

Theorem 1.3. In order that € € (C3,CP?), it is necessary and sufficient
that (1.5) and

Ep = 0(1), (16)
En = o(nﬁ"“) (1.7)

be satisfied.




THE MAIN THEOREMS ON SUMMABILITY FACTORS 33

Theorem 1.4. In order that ¢ € (C§,|CP|) or e € (C,|CH)), it is
necessary and sufficient that (1.5) and

> % < oo, (1.8)
Y (n+1)9Ple,| < 0 (1.9)

be satisfied.

It should be noted that these theorems are given in the above order since
the conditions of the previous theorem are also necessary for the summability
factors in the following theorem.

The theory of summability factors originated in the beginning of the 20th
century when the Theorem of Dedekind and Hadamard [20] (that is the case
f = a = 0 of Theorems 1.2 and 1.3) as well as first generalizations were
published. After the Dedekind~Hadamard Theorem, various authors dealt
with the case of series, summable by the Cesaro method of integer order.

The first important generalizations of the Dedekind-Hadamard Theorem
were obtained in 1907-1909 by Bohr [10, 11], Hardy [22, 23] (the case 8 = a
in Theorems 1.2 and 1.3) and Bromwich [16] (the case 8 = 0 of Theorem
1.2). Note that they as well as Chapman [17] and Andersen [2, 3] found only
sufficient conditions, replacing condition (1.3) by (1.7). A proof of the Bohr—
Hardy Theorem is also brought in the famous book of Hardy ([24], Theorem
71). The necessity of the conditions of the Bohr—Hardy Theorem were proved
in 1916 by Fekete [19], and of the Bromwich Theorem in 1917 by Kojima
[29]. For arbitrary real a > 0 the Bromwich Theorem was generalized by
Chapman [17] in 1910 and the Bohr-Hardy Theorem was generalized by
Andersen ([2], pp. 45-53). Another proof of the Bohr-Hardy Theorem for
any o > 0 was given by Andersen [3] in 1926 and Bosanquet [12] in 1942,
which also proves the necessity of the conditions. A recent, beautiful proof
of the Bohr—Hardy Theorem was given by Lorentz and Zeller [31].

For arbitrary real o, 8 > 0, Theorems 1.2 and 1.3 were formulated in 1918
by Schur [41]. Omitting their proof, Schur stated that it “requires enough
difficult calculations”, although the conditions are simple. The complete
proof of Theorems 1.2 and 1.3 for arbitrary o, 8 > 0 was given by Bosanquet
[14] in 1946. Independently, Knopp [27] proved this theorem, however, he
assumed a > 0 to be integer.

Theorem 1.1 for ¢ € (JC%|, |C?|), was proved by Fekete [19] in the case of
integer 3 = a, by Bosanquet [13] in 1944 for integer «, 3 > 0, by Andersen [4]
(only the sufficiency), and by Peyerimhoff [36] in 1953 for arbitrary o, 8 > 0.

Theorem 1.4 for the cases 8 = « and 8 = « + 1 with integer o > 0 was
given by Fekete [19] in 1916 and for any integer «, 8 > 0 by Bosanquet [13]in

9
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1944'for § < o+ 1 and by Tatchell [42] in 1953 for # > o+ 1. The complete
proof of Theorem 1.4 for any real o, 3 > 0 was given by Peyerimhoff [38] in
1956.

Chow [18] in 1952 also proved two theorems similar to Theorem 1.1 and
1.4 with other conditions. Bosanquet and Chow [15] in 1957 showed that
the Chow Theorems are equivalent to Theorems 1.1 and 1.4, although Chow
considers a type of summability factors different than those in Theorem 1.4.
We note that these Theorems are proved [8, 9] also for negative 8 > —1. In
case of integer @ > 0 Volkov [43, 44] extends Theorem 1.2 for complex [
with Re 8 = . Moore (see [32], p. 46, [6], p. 192) generalizes the Bromwich
Theorem for complex o with Re a > 0, and Volkov (see [43], p. 162)
considers also the case of imaginary o with Re o = 0. Abel [1] generalizes
Theorems 1.1 - 1.4 for complex 8 and Theorems 1.1 and 1.4 even for complex
a and B with Re @ > 0 and —1 < Re < 0. However in the present paper
the cases of negative or complex o and 8 are not dealt with.

We mention the methods employed by various authors for the proofs of
Theorems 1.1 — 1.4. We stress three methods: a) the direct method; b) the
method of inverse transformation; ¢) the method of functional analysis.

The direct method is the same as that used by Hardy [22, 23], Bohr [11],
Bromwich [16], Chapman [17], Fekete [19], Andersen [2, 3, 4], Bosanquet [12,
13, 14]. ;

The method of inverse transformation for the Cesiro method of summa-
bility was used by Knopp [27], Chow [18] and Peyerimhoff [36]. This method
was already indicated by Schur ([41], p. 106). The basic idea of it is that
by means of the inverse matrix, the problem of finding summability factors
reduces to the investigation of certain matrix transformation. By applying
to this transformation the corresponding theorem for £ — ¢, £ — £, ¢,
m — ¢, c¢—£orm — { we find necessary and sufficient conditions for
the corresponding summability factors ¢,. However, the derived conditions
are difficult to verify in practice, they are not effective. But effective nec-
essary conditions are deduced from them and from the latter, in turn, the
mentioned non-effective conditions are deduced.

The method of functional analysis in order to prove theorems on summa-
bility factors was developed by Peyerimhoff [34, 35]. In 1951 (see [34], p.
29, cf. [6], p. 213), he proved that for ¢ € (A, B) is necessary the existence
of a continuous linear functional f in the summability field of the method
A, satisfying the functional condition

Ae, = fe,, (1.10)

where e, = (é,1), provided A and B are regular methods. As Kangro
mentions ([26], p. 12), the problem arises which additional conditions should
be added to the necessity condition (1.10) in order to obtain sufficiency
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conditions for ¢ € (4, B). If Ais a reversible method with the sequence-to-
_sequence transformation matrix (a,x), then the functional condition (1.10)
is equivalent to (cf. [34], p. 31, [40], p. 39, [6], p. 215)

Agp = chank, Z len] < oc. (1.11)

n

Similar conditions for absolute summability were also found by Peyerimhoff
([35], p. 282). The method of functional analysis is especially suitable for
B=Aand B=F, where E = C° is the convergence method, as is obvious
from the results of Jurkat and Peyerimhoff [34, 35, 25] (cf. also [6], p. 215-
217).

We now return to the method of inverse transformation. It should be
pointed out that each author utilizes this method differently and at the same
time creates his own method of proof for summability factors theorems. The
simplest of these methods is that of Knopp [27], whereby he proves Theorems
1.2 and 1.3. However, Knopp has to restrict himself to integer o > 0, since
the formula for difference of product of sequences

A%(z,e,) = Z (a) A - Ale, (1.12)

£ 2
=0

applied by him is not valid for noninteger a.

In-1955 Peyerimhoff [37, 38] found a new method of proof for Theorems
1.1,1.2and 1.4. In [38] Peyerimhoff gave generalizations of the formula (1.12)
for nonintegers a > 0 by adding remainder terms to (1.12). The formulas of
Peyerimhoff are very important also for finding absolute summability factors
in a sequence [7], in particular, not only to prove the sufficiency but the
necessity as well. Peyerimhoff [37], applying the transpose of the matrix
(@nk), obtained theorems, equivalent to Theorems 1.1, 1.2 and 1.4, by means
of which he proves these Theorems.

Chow [18] in 1954 and Baron [5] in 1960 extended (1.12) by “cutting off”
the noninteger part of a. However, Baron [5] mainly proves the sufficiency
in Theorems 1.1 - 1.4 for 0 < 8 < « only.

In the present paper, complete proofs of Theorems 1.1 - 1.4 are given,
applying for the necessity part the arguments of both [37] and [34] for arbi-
trary normal matrix methods A and B, while the arguments of [5] for the
sufficiency part. The main aim of this work is to represent in one paper the
today shortest proofs of the necessity and sufficient parts of Theorems 1.1 —
1.4. The sufficiency in Theorem 1.4 is of special difficulty; its proof (cf. [9])
is considerably shorter than that in [5]. Also in the proof of the sufficiency
in Theorem 1.1 we supply in [5] some absent parts. Improved are also the
proofs of Theorems 1.2 and 1.3.
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2. Necessity conditions

We will consider matrix tranformations

n

Un =Y GnkTr, (2.1)

k=0

where Z,,y,, @nt are complex numbers, and A = (ani) is a normal matrix,
Le., triangular with a,, # 0. Then the transformation (2.1) possesses an
inverse transformation, denote it by

K3

Ty = Za;wyl,. (2.2)

v=0

Let B = (bni) be a triangular matrix with complex entries and let

n
Zn = E bprerts.
k=0

By substituting (2.2) in (2.3) we obtain

n
Zp = E Fnvlv,

v=0

where

n
.
Inv — 5 bnkakuck-

k=
Let, further, A and B be normal matrix methods, G := (gn)-

Lemma 2.1. Let A preserve the absolute convergence and B be regular.
Then for € € (JA|, Bo) the conditions (1.2) and

Ep = O(ann/bnn) (26)
are necessary.

Proof. Let A be in series-to-series form and B in series-to-sequence form.
By applying Theorem of Hahn ([21], p. 29, see also [35], p. 269, [6], p. 30)
for G : £ — m to the transformation (2.4) we obtain

Gny = O( )- . | are n
(2.10

series

Since gnp = bpnal,n = bun&n/any,, condition (2.6) follows from (2.7). Ob-
serve that ), &i, is absolutely convergent for each y, and therefore, it is
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|Al-summable. Setting zy = &, in (2.1) and (2.3) we obtain y, = a,, and
Zn = bpu€y, Tespectively. Putting these in (2.4) we obtain

n n
bnugp. = Zgnuauu = Zgnuauu- (28)
v=0 v==p

Since A preserves absolute convergence, by Theorem of Knopp-Lorentz ([28],
p. 11, [6], p. 34) for A : £ — £ we deduce from (2.8) by (2.7)

|bnu5u| =0(1) Z lavul = 0(1), (2.9)

and since B is regular and consequently
bor =0(1), limb, =1 (2.10)

(see [21], p. 33, [6], p. 20), then (2.9) yields (1.2).

Otherwise, it is possible to prove the necessity of (1.2) in the following way.
Since A preserves absolute convergence, then the conditions for ¢ € (|El, Bo)
are necessary also for ¢ € (|A], Bo). For E we have a}, = &, in (2.2) and
therefore, y, = z, and g, = by.e, in (2.4). Applying right now above-
mentioned Theorem of Hahn we obtain (2.7), from which (1.2) immediately
follows by (2.10). a

Lemma 2.2. If A is in series-to-series form and preserves absolute con-
vergence and B is regular, then for ¢ € (|A}, B) the condition

i arer = 0(1) ’ (2.11)

k=v
is necessary provided the series converges absolutely for every v.

Proof. Let B be in series-to-sequence form. Applying Theorem of Hahn
((21], p. 29, [6], p. 25) for G : £ — c to the transformation (2.4), we obtain
that (2.7) and the existence of

gy = lim gy, (212)
n
are necessary and sufficient for € € (|A|, B). jFrom (2.7), (2.5) and (2.12), by

(2.10) we obtain (2.11), since B is regular and g, is the absolutely convergent
series in (2.11). O
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Lemma 2.3. If A is in series-to-sequence form, A preserves the con-
vergence and B is regular, then for ¢ € (A, B) the conditions (1.2), (2.6)

and
[ e}

ST dherl < o0, (2.13)

v k=v
are necessary provided the series in (2.11) converges absolutely for every v.

P%‘oof. Let B be in series-to-sequence form. Applying Theorem of
Kojima-Schur ([29], p. 297, [41], p. 82, [40], p. 12, [6], p. 13) for G:c— ¢
to the transformation (2.4), we obtain that

> lgarl =0(1) (2.14)

and (2.12) are necessary for ¢ € (A, B). From (2.14) for any k =0, 1,... it
follows that

&
Z lgmxl - 0(])
v=0

which together with (2.12) and (2.10) yields

Zlgui < 00, (2'15)

and this is (2.13), since B is regular and (2.11) converges absolutely. From
(2.14) condition gn, = O(1) follows and hence (2.6) is necessary. Since A
preserves convergence each condition for ¢ € (F, B) is necessary also for
£ € (A, B). Therefore, from (2.13) with A = E' the necessity of

38| < o0 216)

follows, because of a}, = A7%  (see [6], p. 86), and (2.16) implies (1.2). O
Lemma 2.4. If A preserves the boundedness and B is regular, then for

e € (Ao, B) the conditions (1.6) and
£n = 0(dnn/bnn) ‘ (2.17)

are necessary.

Proof. Let B be in series-to-sequence form. Since A preserves bounded-
ness, then the conditions for ¢ € (Ep, B) are necessary also for € € (Ao, B).
Therefore, we can assume ¥y, = ¥, in (2.4), and with this gn, = baoey.
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Hence by Theorem of Nigam ([33], p. 123) we obtain that for ¢ € (4o, B)
the conditions

lim gny =0, lim» |Agn|=0 (2.18)

are necessary. From (2.18) we now obtain by the second condition of (2.10)
lime;, = limlim g, = lim lim lim (gnk — gnm) =
k kE n k n m
m~—1
= h}gn 117r1n h;ln Zk Agn, =0,
and therefore (1.6) is necessary.

Let now also A be in series-to-sequence form. Then by applying Theorem
of Schur ([41], p. 82, [40], p.13, [46], p. 58, [6], p. 22) for G : m — ¢ to the
transformation (2.4), we obtain that (2.12), (2.14) and

lim Y " |gay — gul =0 (2.19)

are necessary and sufficient for € € (Ao, B). From (2.19) we get

lim(gnn — gn) = 0. (2.20)
Since the necessity of g, = o(1) follows from (2.15), applying (2.20) gives
gnn = o(1), and this by (2.5) is (2.17). u

We go on to find necessary conditions for € € (Ao, |B|) and € € (A, |B]).
For this we represent A in the series-to-sequence form and B in the series-
to-series form and associate with the transformation (2.4) the transposed
transformation

n n
Zn = Zg:yyu = Zgunyu) (221)
v=0

v==0

assuming gr, = g,n. Since for any finite subset M C N of nonnegative

integers we have
Z’ Zg;u[ = Z} ZgnuL

n  vER v neM

it follows from Theorems of Zeller-Lorentz ([45], p. 344, [30], p. 244) and
Peyerimhoff ([37], p. 142, [6], p. 38) that the transformations (2.4) and
(2.21) simultaneously transfer all convergent or all bounded sequences into
absolute convergent series. As is obvious from (2.21) for G : m — ¢, the

condition
o0
YD gmml <o V(y)em,

n v==n
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equivalent, in turn, to the condition

an
Z' Zgnuynl <o v(yn) em, (2'22)
v n=v
. . : e Sh
is necessary and sufficient. Since each necessary condition for the transfor-
mation G : m — £ is also necessary for G : ¢ — £ and vice versa, condition
(2.22) is necessary and sufficient for ¢ € (Ao, |B|) and € € (4,|B|). If B is
absolutely regular, then by Theorem of Knopp-Lorentz for B : £ — ¢
Zlbnkl:O 1 s ank:L in
n=k n=k
and if the series in (2.11) converges absolutely, then from (2.5)
Z =30 busehusi = Z choen > b= de v
n=v k=y n=k k=w
34
Now from (2.22) with y, = 1 we a,ga,in obtain condition (2.13). If A preserves
boundedness, then the conditions for ¢ € (Eop,|B|) are necessary also for
e € (Ao, |B|). Therefore, from (2. 13) and (2.22) with A = £ we deduce the
necessity of (2.16), since a},, = Ak , and just as above
oo o0 oQ o0
Z nvln = z A;E,,gk Z brkyn = AI/(EV Z bm/yn)- bo
n=y k=v n=k n=v £ 1
Putting here B = C? in the series-to-series form (see [36], p. 417, [6], p. 84) 53)
with 8> 0 and y,, = AP /AB+ for real p # 0 by Chow’s formula
1 1 . co
Z nAg An-y = W’ (223) red

n=y
valid for Reo > —1, Re(oc—8) >0, v=1,2... (see [18], p. 461, [36],
p. 418, [6], p. 80), we obtain that
th

Zgnan—A EUZV 2o/ (nA) -y

oo

= Alew ) ART/(nATT)

n=y

= Aley/AY),
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and by (2.22) we get the necessary condition

S IA(E/A)] < oo.

Ale,/AY) = e, A(1/AY) + (Ae,) /AP,

tp i i
= 1+ ipé‘,,/Af,"' P+ (As,,)/AV’;_I,

in view of 1/4¥,, = O(1), from (2.16) and (2.24) we derive

> les/AL] < oo

which is equivalent to (1.8), because of |ALFP| ~ (v + 1) /|T(1 + ip)|.
Finally, from (2.5) by Lemma of Chow ([18], p. 462, Lemma 6, [39], p.
34, [6], p. 42) we obtain the necessity of 3 |gn.| < 00, which is the condition

> " Ibanen/ann| < oo (2.25)

Thus we proved

Lemma 2.5. Let A be in the series-to-sequence form and preserve the
boundedness, and let B be absolutely reqular. Then for € € (Ao,|B|) and
€ € (A,|B|) the conditions (2.25) and (2.13) are necessary if the series in
(2.11) converges absolutely. Fore € (Ao, |CP|) and e € (A,|CP|) with 8> 0
condition (1.8) is necessary.

The Cesaro method C* with @ > 0 is regular and preserves the absolute
convergence (see [6], pp. 61, 82 and 85), and hence satisfies the above
requirements on A and B.

3. Proof of Theorem 1.1

For A=C% and B = CP as o, 8 > 0 the condition (2.6) of Lemma 2.1 is
the condition (1.3). We have

14
' o pg—a~—1
Ay = —Au k—v

k

(see [6], p. 86), putting A is in series-to-series form, and (2.11) reduces to

vA;A%(e, [v) = O(1), (3.1)
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since the series (2.11) in Lemma 2.2 converges absolutely by condition (1.2).
Peyerimhoff ([36], Lemmas 3 and 4) and also Bosanquet and Chow ([15],
Theorem X) proved that (1.4) follows from (3.1) and (1.2). According to
Lemmas 2.1 and 2.2, the conditions (1.2), (1.3) and (1.4) are necessary for
£ € (|C?|,CP) and hence also for ¢ € (|C%|,|CP)).

It suffices to prove that these conditions are sufficient for £ € (|C?|, |C#)).
Let A and B be in the series-to-series form, by Theorem of Knopp-Lorentz
for G : £ — £ it remains to prove that (1.2) - (1.4) imply Y., gn.] = O(1),
that is

Z ﬁ AT AL | = O, (32)
k‘- -

In the proof we employ the following lemmas. Here and in what follows we
take into account that for all A > ~1

AY ~ 0 T(A+1).

Lemma 3.1. If ¢ > ~1, @ > 0 and a+ o > 0 (respectively o > 1,
o« >0 and a+ 0 > 0), then condition (1.2) (condition (1.6), respectively)
implies the equation
A%(A%,) = A**7¢e,.

Lemma 3.1 is due to Andersen ([2], p. 20, see also [6], p. 177). Another
proof was given by Bosanquet [12].

Lemma 3.2. For any 0 < o < o the conditions (1.2) and (1.4) yield
A%, =0(n~7).

Lemma 3.2 was proved by Chow ([18], Lemma 13) and for integers a and
o it was proved already by Bosanquet [13].
Let 0 < 8 < . In what follows we employ the notations

a = [a], [5]-
To prove Theorem 1.1, is of importance the following formula
—a—1 ;61 — . a n‘IAaalAH-ﬁ'llAzE. 3.3
ZA APl ey = Z(); aiat. (33)

In order to prove (3.3) we apply successively the partial summation

n

(Au) Vi + tmi1Vim, Vo= Y vk, (3.4)
k=0
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and (1.12) to the left side of (3.3). Then by formula (3.5) stated below we
obtain

ZA a—lAﬁ kek_ZAa a— 1Aa(A/3 kgk)
k=v

_ZAa a~1 ( >(Aa—zAn k—z)Aigk’

i=0
from which (3.3) follows immediately, since for any s and A we have
MAL = Y AR AL, = A7)
v=Fk

by the formula (cf. [24], p. 97, [6], p. 77)

— AxtA41
Z AV k - An—k :

By condition (1.3) we obtain

v+a

Z ﬁIZA"a LA Ler = O(voh).
71 k_.

Therefore, we can apply (3.3) with n in place of n — i. Applying (3.3) and
nAX™! = yAX_| = y(AX — AXT1), (3.6)
to (3.2), we conclude that in order to prove Theorem 3.1, it suffices, instead

of (3.2), to show that (1.2) — (1.4) yield the following relations

lee]

> —geriBil = 06, (3.7)

n=yp 37
where 1 = 0,...,a and
Bi= ) AT lAMA-emIAig
k=v

To prove this statement, we have to consider separately three cases, de-
pending on the behavior of the numbers A%H#-a-1,
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1. The easiest thing is to estimate these terms in (3.7) with ¢ such that (3
3 |AiP=e-1| < oo. Therefore, forall i =0,...,a—b~1,if 3> b (fora=2>
no such i exists), and for all i = 0,...a — b, if § = b, condition (1.3) implies
Z M |Bi| = Z |42 Al |O (kP! Z |AFE=et = o).
n=k
2. For the terms in (3.7), for which 3°|A5FF~971] = oo, we are aided by
the following formula
1 5 T 1
— = 3.8
:L;u A;QA““’ T—6—1 A7V (3:8) an
- th
valid for 7 >0, 7 =8> 1, »=0,1,..., which follows from (2.23) and (3.6) nBu
(see [35], p. 288, [6], p. 81). ¢
By (3.5)
n—-k n—y -3t
B; = A“ aINig, ST AP 2 N AT N AT A W
k=v =0 =0 k=v
Therefore, by (3.5) and Lemma 3.1 condition (1.2) for all z > 0 yields
B;=C; - D;, (3.9)
Es
C A’H—ﬁ a— lAz-Jra aEU’
T Aith-a—l 3 A2 Algy, as a > a,
Di = -20 k:ni—:x—{—l If/
0 as o= a. yie
By (3.5) and (3.8) and Lemma 3.2 we obtain from (1.2) and (1.4) for all
i=a—b,...,a (ie., for i satisfying AL~ > 0)
=21 B+1 e
i+a—a a—1 In
ZAQ“ICl< AT e = O Th

Ifa>a,thenforall i=a—b+1,...,a (i.e, for ¢ satisfying Aitb-a=2 > (;
such i do not exist in the case a = 0) by Lemma 3.2 and formulas (3. 5) and
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(3.8), conditions (1.2) and (1.4) imply

= 1 201 = 0 ,
Z;’lﬁ_ﬂ"lDil < Z AP ZA:W_GQZ Z |AZ T Aty |
n=y N n=y 17 n=0 b —pe 41

1 n—y

it B—a—2 _
AT
A" =0

o0
=0
n=v
1 .
~ 00 Y- At o,
nz=y <N
3. It remains to prove the corresponding estimate for D,_, with o > a
and B > b. These terms have to be estimated separately, because at i = a — b
the numbers AiF#=2-1 = AB~b=1 416 terms of a divergent series and the
numbers A%~*~2 are not of constant sign. It is more suitable to consider
B,y instead of D,_;. By (3.4) and (3.5) we obtain

Be_y=E+F, (3.10)

E= Ag:ﬁ““a‘lAa”b&nH,

n k
F=) A0 % Aszetafzi
k=v =y

Estimates for E are simple. Indeed, if § — b+ a — a < 0, then (1.3) implies

o0 (o]
1 1 —o bt ae—o— .
ZAHI‘EI: Aﬁ+10(”ﬂ ) 21T =00,

If —b+a—a >0, then by Lemma 3.2 and (3.8), conditions (1.2) and (1.4)
yield
i ___1_lEI _ O(Vb—a.) i 1 Aﬁ—-b—!—a—a—l _ O(V—a—l)
APFTIEN= AT Iy = :

n=y n=y

In order to complete the proof of Theorem 1.1 it remains to estimate F.
This needs much technicalies. By Lemma 3.1 from (1.2) it follows that

oo
AHIhe, = Y A4S EA e
s=k
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Inserting this last equation in F, we obtain

F=G+H,

s k

G:Zn:Aa—bgs_z a— a ZZAa a— lAﬁ —b— 17

kz=v =v

[e's) k
H= Y A", ZA" Ty AT AT
s=n-+1 k=v =y

By (3.5) we obtain

T S
G=> A%t > AL AT AT

==y

Applying partial summation and (3.5) in the inner sum and changing the
order of summation afterwards, we discover that

G=Cap+J,

and therefore
F=C,py+J+H,

where ~
J:ZAﬁb2ZAab ZAozalAaal.
=y s=sc-+1

The expression C,_; is estimated in part 2. Now we use the following for-
mula of Bosanquet ([14], p. 487, [6], p. 82) to estimate sums of binomial
coefficients:

ZA"” AN = 0()ANZLA, (3.12)

for 0 < pu<v<n, 0§_%<1, 0< AL
Applying it to the inner sum in .J, we obtain

o0

1
ZZE—HM =0(1 2

:O(l)ZAj‘:;}‘lle‘ bssIZA ZAM |APZE-2

S=u n=3s

Aa—bE.sIAOz a— lAa o

-V

o0

=0(1>Z AﬂHA‘* At .leAi‘_iAfZi“l-

It
an

(1.

anc
suf

Tha
and
hav

(sec

and

whi

of (-
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Use (3.5), taking into account 8 —b+a — o > —1, and (3.8) with the help
of Lemma 3.2. By this (1.2) and (1.4) yield

o0

1 = 1 bl A e
ZW|J|:0(1)ZAWA§_3 Hae—be,| (3.13)

n=v S=Vv

=0,

It is easy to estimate H. Indeed, by Lemma 3.2 and formulas (3.12), (3.5)
and (3.8), it follows from conditions (1.2) and (1.4) that

;>o 1 %) 1 n oo
2 gl =00 ) 3 oAl S e Y Jaz|
n=y In n=y ‘N k=v s=n+1

=0 ).

Thus we have shown that (3.7) for all i < a follow from (1.2), (1.3) and
(1.4), and consequently (3.2) is established for 0 <pg<a.

Let 8> o > 0. As above, (1.2) and (1.4) are sufficient for & € (IC=,1C%)),
and by the inclusion [C%| C |C#| (see [6], p. 89) these conditions are also
sufficient for ¢ € (|C*|,|C#|). This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.2

Let A=C?% and B = CP with a, 8 > 0 be in the series-to-sequence form.
The necessity of (1.2) and (1.3) for ¢ € (C*,CP) follows from Lemma 2.3
and also from Lemma 2.1, since C'* preserves the absolute convergence. We
have

I A pA—a=-2
Qpy = AuAk——u

(see [6], p. 86), and therefore (1.2) implies the existence of (2.12), where

g, = AJA g,
and condition (2.13) reduces to
D AZ|AH e, | < oo, (4.1)
which is equivalent to (1.5) and is necessary by Lemma 2.3. The necessity

of (4.1) also follows immediately from the functional condition (1.11), that
is from

Aep = A™%(ee/AT), D leil < o0,
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whence using (1.2) by Lemma 3.1 and, since A%~} /A% = O(1) for v > k, by I
(3.5) we obtain I
forr
Aa+1€k = AaA_a(Ck/A,Oé) = Ck/A‘]:.
Let us prove the sufficiency of these conditions for ¢ € (C%,C#). Applying
Theorem of Kojima—Schur for G : ¢ — ¢ to the transformation (2.4), we see
that it remains to prove that (1.2), (1.3) and (1.5) imply (2.14), that is By
v n
STAYY ASPAL e =0(nf), (4.2)
v=0 k=v
, whe
since.for Cesaro methods z:zo Gny = €9 sami
In the proof we employ the following lemmas. case
Lemma 4.1. For any 0 < 0 < a+ 1, conditions (1.2) and (1.5) imply }Clond
ave
Z(n +1)7"HA%%,| < co. 3
Lemma 4.2. For any 0 < o < a, conditions (1.2) and (1.5) imply
A%e, =0(n"7).
Lemmas 4.1 and 4.2 are due to Andersen ([2], p. 31, see also [6], p.
179 and 180). Another proof is given by Bosanquet [12]. Lemma 4.1 for
€, = 0(1) and integer o > 1 was already proved by Bromwich ([16], p. 361). Ther
Lemma 4.3. Conditions (1.2) and (1.5) imply the uniform convergence 1.
in n of the series and f
> (AD)TtATIC
v
foralli=ae—-0b4+1,...,a+ 1.
Proof. Sincei+f8—a—1>0and a+1—1> 0, it follows that 2.
all 7=
(AR) AT |Gl =
n+l-v Hpmat v+1 i i+a—a—1] A t+a—-a
=0 (=31 ny1)  EUTTTIAT e Befor
yields

— O(l)(l/ + 1)i+a—a—-llAi+a-—a€V‘,

whence by Lemma 4.1, the claim of the lemma follows from (1.2) and (1.5).
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Now we can go back to the proof of Theorem 1.2.

Let 0 < 8 < a. Similarly to (3.3), we can prove the following important
formula

a1

n 1 n—i ) o -
E A_3;2A§_k€k = E (a jﬁ ) E Aa:lof_lA,:t’g_z lAzé‘k. (4.3)
k=v =0 k=v

By means of (4.3) we can instead of (4.2) prove that (1.3) and (1.5) yield

n
Y _AslBi| = 0(nf), (4.4)
v=0 »
where ¢ = 0,...,a+ 1. In order to obtain (4.4) from (1.3) and (1.5), for the
same reason as in the proof of Theorem 1.1, we will separately consider three
cases. To this end we need to consider only the case # > 0, since for § =0

conditions (1.3) and (1.5) yield (4.4) immediately. Indeed, even if & > 0 we
have

n n n K o3
DATIY A < AT (AT, 43 42 S Ay
v=0 ke=y v=0 v=0 k=n4+1

o0

=0+ Y A2 Y (k-v)"*"2 0k~
v=0 k=n+1

=0(1)+0(1)) (n+1-»)"*1=0(1).

v=0

Therefore assume that o > 0 and B> 0.
1. Forall = 0,...,a—b—~1 with 8 > b (if @ = b such ¢ do not exist)
and for all i = 0,...,a — b with § = b, condition (1.3) immediately yields

n

n k
D ASIBi = IARAT Y ST 0(48) |48 = o).
=0

k=0 v=0
2. By condition (1.2), equation (3.9) also holds here. By Lemma 4.3 for
alli=a~b+1,...,a+1 conditions (1.2) and (1.5) immediately yield

n

Y ASICi = 0(nP).

v=0

Before estimating D; for o > a, observe that by Lemma 3.1 condition (1.2)
yields

Alg =) " AX T A aag, (4.5)
s=k
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for all i > 0. Hence forall i =a—b+1,...,a-+1 with the aid of Lemma 4.1
(used for justifying the rearranging the order of summation), and by (3.5),
we deduce from (1.2) and (1.5)

[ee] oo

E: AaalAi&:k E: aalE:AaalAi+a~a€s
k=n—sx+1 k=n-—3x+1

n—m

i Ai+a~a€s.ZAa - 1Aa a— 1

s=n—zx+1 k=v

whence by Bosanquet’s formula (3.12) we have

o0

Z Aa - lAiSkZO(l)A g xZAa a— 11Ai+a—a55|-

k=n—3+1 s=y

Putting this in D; we obtain by means of (3.5)

}3 AS\Di| = 0(1) - (Ki + Li)

foralli=a—-b+1,...,a+ 1, where

Z‘A1+a aE lZAaAH-,B a— lAa a 1

5==0

L; = i lA1+a agleozAH-ﬁ o— 1Aa a 1
s=n-t1 =0

First we estimate K; and L; for i > a — 8+ 1. In fact, in this case we can
choose a number € > 0 such that £ < 8 and
a+l—-i<€f<a+l—-1

Then -1<i+€é—-a—-1<0andi+&~a—-2> ~—1. Therefore,

G—E
e-p 2+,3—01 -1 ya—a—1 _ n+1l-v Az—{-é o lAa a 1
(n+ DEP AT 4z =001 (]

= o)At

S~V

if s <n,and
Al-h@ a—lAa a-— O(l) 'L+ﬂ —-—a—2
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if s > n. Consequently, by (3.5) and Lemma 4.1, conditions (1.2) and (1.5)
imply

n 5
lim(n +1)~PK; = lim(n 4 1)~¢ S |AHeag,| 37 ga giteest
s=0 v=0

4
=1 O(l s+1 1 i+a—a—1lAi+a-—a =0
imO(1) ) nyi) D &l =0,

and also
lim(n+1)7°L; =limO(1)(n+1)=# Y |A**eog,| 3" AsAFome?
" " s=n-+1 v=0
b - I3
=limO(1) Y (s+ 1) AHFamag | =0,
Ifit=a—-pB+1,wehave 0 < i < asince a+1 > 3 = b > 1. Hence by Lemma
4.2, conditions (1.2) and (1.5) together with (3.5) imply

n o0

ZAnga—ﬁ.i.ll ZAS l Z AZ:g—lAa—-ﬁ+1Ek|
v=0 |

v=0 k=n+1
n
=o(n?77) Y " AZALTS = o(nf).
v=0

Thus we proved that for all i =a—b+1,...,a+1 conditions (1.2) and (1.5)
imply
lim(A2)~1 > " A2|D;| = 0. (4.7)
v=0
3. It remains to prove the corresponding estimate for B,_p, with a > a

and 8 > b. In view of (3.10) we can separately estimate E and F. In fact, if
B—b+a—a<0then (1.3) yields

> ASE| < AZIA T epqy| Y | |ADT IO (4.8)
v=0

v=0

= O(n").

If, however § — b+ a — a > 0, then also a — b > 0. Therefore, by (3.5) and
Lemma 4.2, conditions (1.2) and (1.5) imply

z”: A2|E| = o(nP). (4.9)
v=0
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Now applying Bosanquet’s formula (3.12) and the relation
AOH'I b ZAoz a— lez-*-l——bEs
which arises from (1.2) by Lemma 3.1, as well as (3.5) to F, we obtain

F = O( AﬁblzlAa-Hb l

O(l) (I/ + 1)b‘aA§:g—l Z(S + 1)a—b{Aa+1._b€S

o(1)(v+1)* AT,

Hence, by Lemma 4.1 and formula (3.5), conditions (1.2) and (1.5) imply

> AZ|F| = o(nf). (4.10)
v=0
Thus we proved that (4.4) follows from (1.2), (1.3) and (1.5) for all ¢ <
a+ 1 and hence (4.2) is established for 0 < 3 < a.
Let B > a > 0. As above, (1.2) and (1.5) are sufficient for ¢ € (C'*,C?),
but by the inclusion C* C CP (see [6], p. 87) these conditions are also
sufficient for ¢ € (C*,C®). Therefore Theorem 1.2 is completely proved.

5. Proof of Theorem 1.3
The necessity of (1.5) — (1.7) for ¢ € (C§, CP) follows from Theorem 1.2

and Lemma 2.4, since for the methods of Cesaro, condition (2.17) is just
(1.7).

let us prove the sufficiency of these conditions for ¢ € (C§, C#). Applying
Schur’s Theorem ([40], p. 13, [46], p. 58, [6], p. 22) for G : m — ¢ to the
transformation (2.4) with A = C® and B = C? in series-to-sequence form,

and taking into account the proof of Theorem 1.2, it remains to prove that
(1.5) — (1.7) imply (2.19), that is

hmZA" ZA‘“ 2AP e /AP — ATl | = 0. (5.1)

v=0
Let 0 < 8 < a. By virtue of (1.2), we obtain by (1.12) that

o1 _ & + 1 a+l—1 ito— o
At = Z A 1-A

1=0
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From this and (4.3) we see that instead of proving (5.1) it suffices to show
that (1.5) and (1.7) yield

n
lim > A%|M;| = 0, (5.2)

v==0

where 1 =0,...,a+1 and
M; = (AD, )71B; — A®F1TiL. Atterag

In order to deduce (5.2) from (1.5) and (1.7), we again will consider
separately three cases. As above, we need to consider only the case 8 > 0,

since if 8 = 0, condition (5.1) immediately follows from (1.7). Indeed, even
if & > 0 we have

n n n o2
DAL A e - A, | =3 A2 S A7 e,
v=0 S v=0 k==n-4-1

=o(n™%) ZAﬁ‘(n +1-v)"* 1 =0(1).

Therefore assume that & > 0 and 3 > 0.
1. Yorall t =0,...,a—b—1 when 8 > b (if a = b such ¢ do not exist)
and for all : = 0,...,a — b when § = b, condition (1.7) immediately yields

n

lim )~ AZ|M;| = lim (A5, )70 ) AZ| Byl
v=0 v=0
n

= limO(1) 3 (n+1 ~ k)*~# |Ale, | JAEP 1 = 0.
k=0

2. Observe that (3.9) yields
M;=N; - (A5, )7 D,

where
—1 4i+B—a-1 —1 i+ta—a
N; = {(ASM) lAnJ’_ﬂu — A%t 1}A+ Ep-
By Lemma 4.3, for all i = e — b+ 1,...,a + 1, conditions (1.2) and (1.5)
imply

117rln 2_:0 ASIN;| =0,
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and, in view of (4.7), also (5.2).
3. The remaining estimate for B,_;, with & > @ and B > b, was already
proved when proving Theorem 1.2. Indeed, (1.2) and (1.5) imply (4.9) for

B—b+a—a>0and (4.10), while by (4.8) we see that (1.7) implies (4.9)
also for f—b+a—-a<0.

Thus we proved that (5.2) for all i < a + 1 follows from (1.2), (1.5) and

(1.7), and hence (5.1) holds for 0 <p<a. ¢
Now let 5 > « > 0. As above, (1.6) and (1.5) are sufficient for ¢ ¢
(C&,C*), but by the inclusion C'® C C? these conditions are also sufficient (1

fore € (C§,CP). Since (1.6) implies (1.2), Theorem 1.3 is completely proved.

6. Proof of Theorem 1.4

For ¢ € (C§,|CP|) and € € (C*,|CP)), where «, 3 > 0, conditions (1.8),
(1.9) and (1.5) are necessary by Lemma 2.5, while (2.25) and (2.13) are just
(1.9) and (1.5), respectively. :

To prove that these conditions are also sufficient, denote by o2 and 72 the

C*-means of the series (1.1) and of the sequence (nu,), respectively. Since :
C* C C**l for @ > —1, formula (see [6], p. 204) v
ot = (et )(of ~ o) (w
yields that the C*-summability of the series (1.1) implies the C**l-summa-
bility of the sequence (nuy,). Therefore, to prove Theorem 1.4 it suffices to )
prove that assuming (1.5), (1.8) and (1.9), we have that (2.22) with y, = sin
7 t1 follows from the convergence of (79+1). Here by (2.5) with C2*1 in the ver
sequence-to-sequence form and B = C# in the series-to-series form we have
n
Gry = (MAD)TATH Y AT AL e (2 1),
_ p
’ foll
since ¢t =0 and
aky = ATTIALEE,
where |boogoug| = |eoug| is taken into account. Now we are going to prove if o
the stronger condition A
o0 oo
D gnl < oo (6.1) !

v=1n=yp

instead of (2.22). For this proof we need the following lemma of Bosanquet-
Chow ([15], p. 79, [6], p- 198).
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Lemma 6.1. If a > 0, then for each s = o0~ 1,...,& — a conditions
(1.5) and (1.8) imply

Do+ 1A% =0(1) Y n¥AHe,| < o

and A% %, = o(1).

Lemma 6.2. Ifoc > -1, @ > 1 and a+0 > 1, then conditions (1.5) and
(1.8) imply the equation

A% (A%,) = A%He,

Proof. Denoting p, = Ac,, we first prove that prn = o(1). In fact, by
(1.8) and Andersen’s formula ([2], p. 22, [6], p. 79)

5" IAZ A = O(D(n T~ R) 4+ (1 1=K+ (a1 - ()41 (6.2)
v=k

(which is valid for any real s and ) we have
Aa—-a+1(Aa—a8n) = fin,

since the double series, arising from the definition of these differences, con-
verges absolutely. Hence by Lemma 6.1, from (1.5) and (1.8), the estimate

un-—ZA"‘ a=2 A9, = o(1) LZ! ~972 = o(1)

follows. Therefore by Lemma 3.1 we obtain
A° (Aa_llln) —_ Aa-}-o‘—-lun

ifo>~-1,a~1>0and a+0—1> 0. Now by (1.8) and (6.2) we obtain
Ay, = A%, and AoFl-oy = Aatog a

First let 0 < 8 < a + 1. Because of (4.3) we get

+1 i

ZA—-Q 2Aﬁ kgk—az a’+1 ZAa o— lAz-}-_L:_a 2A1 (63)

i=0
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Since by (1.9) we have T
i

co v+a+l v+a+l
DR IAMSELIE) DPCES DR oPCRIRY |
v=1 n=v n=v )
o0 v+a+tl i

=0(1)) AT N e k7P
v=1 k=v
oo vta+tl

0> Z k2 Pleg) < oo, If
v=1 k= al
L
we can apply (6.3) with substitute n—¢ by n. Thus in view of (6.3) it suffices w:

to show that (1.5) and (1.9) imply

o [e5s)
ZA,‘}“ Z nP~Y Bj| < oo, Ve
v=1 n=v

where 1 =0,1,...,a+ 1 and

B/ ZACL a— 1A2+ﬁ a— ZAigk.

i
k=v

Consider three cases for 1.
Foralli=0,...,a—b+1if f=band forall i =0,...,a-bif 5> b,
it follows from (1.9) (since i + 8 —a — 2 < —1) that

iAfj“f:n"ﬁ“HBg]:O( )ZA“‘”ZlA“ a1l | Afgy | kP!

y=1 n=v v=1 COl
=0(1) Yk P|A%ey] < co.
k=1
wh

2. Foralli=1,...,a+ 1 we have as for (3.9) by (3.5) and Lemma 6.2,
that (1.5) and (1.8) yield

Cl I

where 5
1 aitB—a-2 pita—a
i = A'n.——l/ A Ey

n—v oo . .
) , » Az’jﬂw—?» ST ALTDT L Atey, if a> a,
Di = »x=0 k=n—sx+1

0,
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Therefore by (3.8) and Lemma, 6.1, we obtain from (1.5) and (1.8) for all
i=a-b+1,...,a+1

00 00 st >
2_ AT Y nTPCH = 0(1) Y At attee, | 30 AKETe 4t
v=1 n=v v=1 n=v

=0(1) Y (v +1)*e-e-laiteeg | ¢ oo,

v=1

If oo > a, then to estimate D! observe that by Lemma 6.2 conditions (1.5)
and (1.8) yield (4.5) and hence also (4.6) if i > 1. Putting (4.6) in D! by
Lemma 6.1 with the help of (3.5) and (3.8)foranyi=a—-b+2,...,a+1
we obtain that (1.5) and (1.8) imply

oo oo
D AT Y n D) =
v=1 n=vy
0 0o n—v 00
A ODDE D DL DV bV e ) S i St
ool = z. 0 - v
=0() ) AT Y TP lARE et N gomat pttanag
v=1 n=vy s=v

=0y |atee,| 3 Azme At
s=1

v=0

= 0O(1) Z(s 4 1)itese-tpitamag | oo,

8§

3. It remains to estimate D¢,1-~b+l for « > a and B > b. It is more
convenient to consider B]_, .. By (3.10)

B, =E+F,

where

E’ = Ag:g+aua—1Aa_b+l€n+1,

n k
F = Z Aa+2—b€k . ZAZ:ﬁ-lAg:Z_l-
k=uv pu=v

Now if 3~ b+ a — a <0, then by (1.9)

2 AT YT E = 001) Y on + 1) A e < o
v=1 n=y n

15
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Even for # —b+4a — o > 0, by Lemma 6.1 and (3.5) conditions (1.5) and

(1.8) yield
DA " PE = 0(1) ) (n+ 1) AT ey < oo
=1 n=y n

Further, by Lemma 6.2 the conditions (1.5) and (1.8) imply

- I
Aa+2_b€k~ - ZA::E—-ZAQ-Fl—b&.s’
s=k
and hence from (3.11) we obtain
F': ;——b+1+‘],+Hlv
n—1 n »
~b~2 a+1l-b a—a—1 ga—a—1
J'= AT N A e Ny AT AT
==y s=ax+1 p=v
oo n k
H'= Y Aot N et N ArsT AT
s=n+1 k= =y
Since, in view of (3.13), we have gj
=1 =1 b
— B=b—1} A a+1-=b
> W'JI| =03, Aﬁ+1As—V |A &l,
n=p N sz==p 418 1
then by (3.5) and Lemma 6.1 conditions (1.5) and (1.8) imply §
o —3— a+1—b —b— a1
Do AT Y a1 =0() Y s AT e D AT A
v=1 n=y 70 s=1 v=0 5
O(I)Zs"_blA“+1’bss| < o0. 6.
s=1
7.
Further, let 0 < 7 < min{a — a, 8 — b}. Then .

o—a— - a—a—n—1
AT = O A AT
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since ~1<np~-1, a—gq- n—1< 0. Now by formulas (3.12) and (3.5)

(e o] T
H'=0@A5Z™ 37 A1, 37 |qmp-2 gama
s=n+41 k=v

(o]
=O()AZZ N AT a1t

By (3.5) and Lemma 6.1 conditions (1.5) and (1.8) imply

iA;H—l i n—ﬁ—llHll
v=1 n=y

[eo] oo n
=0(1)Y o1 D AITH At D Agtigfbon-t
n=1 s=n v=1]

[e] (=5

=0(1) ) Aati=b=n-p 3 AITE Axt—bg
n=1 s=n
[5S)

=0(1)) "|Axti=bg D ATTEAgbn
n=1

s=1

=0(1) Y (s +1)2 bjacti=be | ¢ oo

5

Thus Theorem 1.4 is proved for # < a+ 1. For 8 > a + 1, Theorem 1.4
follows from the inclusion ICP| > |C*+1, since (1.5) and (1.8) are sufficient
for e € (Cg, |Ct1)).
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