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Counterexamples concerning topologization
of spaces of strongly almost convergent sequences

Enno KoLk

ABSTRACT. Let X be a sequence space, f a modulus function, and F = (fi) a
sequence of moduli. We characterize the F-normability of the sequence space
A(F) for A C £eo. In the special case if X is the space sacp of strongly almost
convergent to zero sequences, we give two counterexamples concerning the
topologization of various extensions of saco(F) and sacg(f) considered by
Nanda and others. We also correct a similar inaccuracy in a previous paper
of the author.

1. Introduction

First, let us fix some terminology. By the term sequence space, we shall
mean, as usual, any linear subspace of the vector space w of all (real or
complex) sequences z = (v) = (¢k)ken, where N={1,2,---}.

A function f : [0, 00) — [0, 00) is called a modulus function (or simply a
modulus) if

(i) f(t) =0if and only if t =0,
(i) f(t+u) <)+ f(u),

(iif)  f is increasing,

(iv) fis continuous from the right at 0.

Provided a modulus f and a sequence space A, Ruckle {13}, Maddox [10],
and some other authors define a new sequence space A(f) by

M) =A{(zx) = (f(lex])) € A}-
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As an extension of the space A(f), the author [5, 7] considers, for a sequence
of moduli F = (fi), the set

MF)=A{z = (i) : F(lz]) € A},

where F(|z|) = (fx(lzxl)). Tt is not difficult to see that A(F) is a solid
sequence space whenever the sequence space A is solid (i.e. (zx) € A and
lyk] < lzil (k€ N) yield (y) € A).

Recall that an F-seminorm g on a vector space X is a functional g : X —+ R
satisfying, for all z,y € X, the axioms

(N1) ¢(0) =0,

(N2) g(z+y) < g(e) +9(y),

(N3) g(az) < g(z) for all scalars o with |a| <1,

(N4) lim, g(anz) = 0 for every scalar sequence () with lim, a, = 0.

An F-seminorm g is called an F-norm if
(N5) g(z) =0 = z=0.
A paranorm on X is a functional g : X — R satisfying (N1), (N2) and
(N6) g(—z) = g(z),
(N7) lim, g(@n2, — ax) = 0 for every scalar sequence (a,) with lim, a;, =
o and every sequence (z,) with lim, g(z, —2) =0 (zn,2 € X).

An F-seminorm (paranorm) g on a solid sequence space A is said to be
absolutely monotone if g(z) < g(y) for all z = (z4),y = (yx) € A with
lzx] < |lyx] (k € N). An F-seminormed solid sequence space (}, g) is called
an AK-space if 2 = lim,, 3_;_, zxe” for all z = (1) € A (here e’ = (8ix)iem
where 8;x = 1 if ¢ = k and §;; = 0 otherwise).

If the sequence space ) is topologized by an F-seminorm (or paranorm) g,
then, for the topologization of A(F), it is natural to consider the functional
gr defined by

gr(x) =g(F(zl)) (= €M)

It is known (cf. [10], Theorem 8) that, in general, g may fail to be an
F-seminorm on A(F). The author ([8], Theorem 2) proved

Theorem 1. Let F = (fi) be a sequence of moduli and let g be an
absolutely monotone F-seminorm on a solid sequence space A. If (A, g) is an
AK-space, then the functional gr is an absolutely monotone F-seminorm on
MF). Moreover, (A(F), gr) is an AK-space.

In Section 2, the F-normability of the space A(F) is characterized in the
case A C £, with some restrictions on A and F = (fi) (Theorem 2). If
A is the space saco of strongly almost convergent to zero sequences, we
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give, in Section 3, two counterexamples (Corollaries 1 and 2) concerning
the topologization of various extensions of the spaces saco(f) and sacy(F),
which have been considered by Nanda [11], Nuray and Savas [12], Esi [3, 4],
and Bilgin [2]. We also correct a similar inaccuracy in the paper [8] of the
author.

2. On the topologization of A(f) and A(F)

Our main theorem deals with the topologization of A(F) if A is a subspace
of the Banach space £, of all bounded sequences equipped with the norm
||z]|co = supy lzx]. For g =|| - ||co, We shall write g% instead of g, i.e.

97 (z) = sup Fel(lee]) (2 € A(F))-

Theorem 2. Let A be a solid subspace of the Banach space £, and let
F = (fx) be a sequence of moduli.
(a) If M(F) C £ and

dim, sup fe(t) =0, (1)

then g is an F-norm on A(F).
(b) If A\(F) ¢ £ and

Bt =inf fu(H) >0 (2> 0), @

then g% is not an F-norm on A(F).

Proof. (a). Suppose A(F) C £e and f satisfies (1). It is straightforward
to verify that the functional g§° satisfies the axioms (N1)~(N3) and (N5).
To prove the axiom (N4), let z = (zx) € A(F) and lim, @, = 0. The
inclusion A\(F) C £, yields the existence of a natural number N such that
|zx| < N (k € N). Thus, for all n € N,

9% (anz) = sup Fe(lanzi]) < Nsip fe(leal)s

and from (1) it follows that lim, g® (a,z) =0 .
(b). Let F satisfy (2) and let A(F) contain an unbounded sequence
y = (yx). We can choose an index sequence (7;) so that lim; |yn,| = oo.
Defining
{ |yn;|~! if n=mn; for some i €N

0 otherwise,
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we have lim,, o, = 0. But since
sup fellanykl) > (1) >0 (i €N),

we get that lim,, g3 (@,y) # 0. Thus g fails the axiom (N4). O

Remark 1. It is easy to see (cf. [7], Theorem 3) that £ (F) C £eo (and
thus also A\(F) C £ for any solid subspace A C £o,) whenever

lim inf fj(t) = oo. (3)

t—oo k

A simple argument shows (cf. [6], Lemma 1)’ that (3) also implies (2).

Let f be a modulus function and let p = (px) be a sequence with
0 < pr < 1. For a solid sequence space A, denote

AP(f) = {z = (ax) : (f(l2l))™) € A}-
The function ff defined by
) = (F)P
is clearly a modulus for every k € N. Denoting FP = (f}), we may write
AP(f) = A(FP).

Thus, provided an F-seminorm g on }, it is natural to consider the functional
gr» for the topologization of AP(f). If A is a subspace of £, and g = || - |0,
then gre reduces to the functional g%7, where

97p(@) =sup(f(lzx))™ (2 €AP(f)).
In the sequel, we shall use the following characteristic for A:

(C) Every infinite sequence of indices (k;) has a subsequence (I;) such
that A contains the sequence (hy) where ‘

(4)

{1 ifk=1[ forsomeie N
hr =

0 otherwise.
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Lemma 1. Let f be a modulus, p = (pi) a sequence with 0 < p < 1,
and A a solid sequence space with property (C). Then AP(f) ¢ {o, whenever
(a) f is bounded

or

(b) infy pr = 0.

Proof. (a). Suppose f is bounded. Then there exists a constant M > 1
such that f(t) < M (¢ > 0). By property (C), there exists an index se-
quence (I;) such that A contains the sequence (hy) defined as in (4). Defining
_'{i if k=1; forsomei € N 5)
k= 0 otherwise,

we obtain an unbounded sequence (yi) € AP(f) since

(f(lye))™ < MRy (k€N)

and A is solid.

(b). Suppose infi pr = 0. Then there exists an index sequence (k;) such
that (pk,) is decreasing and

(f(@)™ < 2.

By property (C), there exists a subsequence (I;) of (k;) such that A contains
the sequence (k) defined as in (4). The unbounded sequence y = (yi)
defined by (5) belongs to AP(f) because

(f(lyeD))™ <2hx (K €N)
and A is solid, 0
Applying Theorem 2 to AP(f), we get

Proposition 1. Let f be a modulus, p = (px) a sequence with 0 < py <
1, and X a solid subspace of £, with the property (C). Then the functional
95 s an F-norm on AP(f) if and only if f is unbounded and infy py > 0.

Proof. Necessity. Note that the sequence FP of moduli satisfies (2) for
any p = (px) with 0 < pr < 1 because

(F@)* 2 min{L, f(t)}  (t>0).

Thus, Theorem 2(b) together with Lemma 1 yield that 975 is not an F-norm
on AP(f) whenever f is bounded or infy px = 0.

Sufficiency. Suppose that f is unbounded and infy py > 0. It is straight-
forward to verify that the sequence FP of moduli satisfies (1) and (3).
Theorem 2(a) with an appeal to Remark 1 now yield that 9% is an F-norm
on AP(f). .o
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3. Consequences and counterexamples

Let ¢y be the space of all convergent to zero sequences. In the sequel,
we shall consider the space of strongly almost convergent to zero sequences

(cf. 9, 14])

i+n-—1
sach = {z = (zx) : lim —~ Z |z%|” =0 uniformly in 1},
k=1

where p > 0. We shall write sacy instead of sac].

It is essential to note that, for p > 1, the natural norm

1 i+n—1
ol =sup(= >~ laxl?)'/?
™t k=i

on sach coincides with the supremum-norm || - || since

li+n——1
o <sup(= S |eil?)? <suplel (i€ N).
n T k=1 k

Thus, for p > 1, we may consider sach as a solid subspace of the Banach

space £o. Since g is the largest AK-subspace of (e, || - ||oo) and
co G sacf,
then we have that (sacl,|| - ||c) is not an AK-space in case p > 1. Hence

Theorem 1 is inapplicable in the case A = sacy.

Our approach to the study of sacy(f) and also of the more general space

i+n—1
sacg (f) = {z = (zx) : 117131% Z (f(|z&]))?* = 0 uniformly in i}
k=1

is grounded on Proposition 1 since sacf has property (C). Indeed, if (k(2)) is
an index sequence, then sac) contains, for example, the sequence (hn) where
hy = 1if n = k(2%) for some i € N, and h, = 0 otherwise.

If, in the definition of sach(f), we allow the sequence p = (px) to be
an arbitrary bounded sequence of positive numbers, then, denoting
r = max{1, sup, px} and q = (pi/r), we may write

sac(f) = sach(F9),

where F9 is the sequence of moduli f defined by fl(t) = (f(t))P+/". Thus
from Proposition 1, for A = sacjj, we get the following two corollaries.
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Corollary 1. Let f be a modulus and let p = (py) be a bounded sequence
of positive numbers. Then the functional 95 defined by

9ral®) = s‘ip(f(lxkl))”"/” (z € sacg (f))

is an F-norm on sacf (f) if and only if f is unbounded and inf, pr > 0.

Corollary 2. The functional g% is an F-norm on saco(f) if and only if
f is unbounded.

Subsequently, we shall interpret Corollaries 1 and 2 as counterexamples
concerning the topologization of the various extensions of the spaces saco(f)
and sacg (f) considered in [2, 3, 4, 8, 11, 12]. Several of these extensions are
spaces of the type (cf. [2])

wo(B, f,p) = {z = (24 : lim > " bai(i) (f(z&]))P* = 0 uniformly in i},
k

where p = (pi) is a bounded sequence of positive numbers and B is a se-
quence of infinite non-negative matrices B; = (b, (¢)). The space wo(B, f, p)
reduces to sacg (f) if B = By where B; = (b1, (3)) with
bik(i)z{ 1/n ifigk.<i+n
0 otherwise.

Let A = (a,4) be an infinite non-negative matrix. Proposition 3 of Nanda
[11] asserts that, for every bounded sequence p = (pk) of positive numbers,
the space wo (B, f, p) with

n

, 1
bak () = D ik

n+1j=0

can be paranormed by the functional gg s Where
98.1(®) = sup(Y_ bar () (f(lwel))P*)"/".
ndé

Since, for A being the unit m;itrix, this space is exactly the space sach(f)
with g%, = gg’ ;5 Corollary 1 shows that Proposition 3 of [11] is not true

for every p = (px) and every f. The same inaccuracy is contained in
Theorem 2 of Bilgin [2].

A generalization of the space sacy(f) is related to invariant means (or
o-means). Consider a one-to-one mapping o of N into itself such that

18
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o®(n) # n for all n,k € N, where o*(n) denotes the iterate of order k
of the mapping o at n. Nuray and Savas [12] introduced the space

wo(As, f) = {z = (z4) : lim Zankf(la;,k(i)]) = 0 uniformly in ¢}.
k

Theorem 3 of [12] claims that wo(A,, f) can be topologized by the paranorm
9(x) =sup Y ank f(|204(s)))
nyi T

for an arbitrary modulus function f. But our Corollary 2 shows that this
is not true for all modulus functions, since wy(A,, f) reduces to saco(f) if
o(n) = n+1and A = C) is the matrix of arithmetical means. A similar
correction is needed in some results of Esi [3, 4].

It should be noted that an inaccuracy of the same type is contained also
in Proposition 6 of the author [8] that deals with the F-seminormability of
the more general space

wh(B, F) = {z = (21)  Iim 3 bas (i) (filles]))? = 0 uniformly in i},
k

where p > 1. This proposition asserts that the space wl (B, F) is a complete
F-seminormed AK-space with the F-seminorm

95 7(z) =sup(D _ bui(5) (fr(lzx]))?) /7
ni

for an arbitrary sequence of modulus functions F = (fi). But this is not
true in general. For example, if a bounded sequence p = (pi) of positive
numbers is such that infy py = 0, then, in view of the equality

wy (B, F) = sach (f),

the functional gj x, is not an F-seminorm on wg (B1, F9) by Corollary 1.
The mentioned inaccuracy arises from Proposition 2 of [8] which asserts
that, for an arbitrary matrix sequence B, the space

wi(B) = {z = (z¢) : limank(i)lzklp = 0 uniformly in 7}
n
k
with p > 1is a complete seminormed AK-space with respect to the seminorm

g5 (z) = sup(D>_ bur (i) a7,
nd T




SPACES OF STRONGLY ALMOST CONVERGENT SEQUENCES 71

In fact, (w)(B),g%) is not an AK-space in general, since it reduces to
(sach, || lleo) if B = Bi. A simple argument shows that (w}(B), %) is a
seminormed AK-space whenever

limsup >~ bu(i)lzel? =0 (2 € wi(B)). (6)
n,i k=m-+1

Thus, in [8], Propositions 2 and 6 must be reworded, respectively, in the
following way.

Proposition 2. Let B be a sequence of non-negative matrices. Then
(w8 (B), g%) is a complete seminormed space, it is a BK-space if B is column-
positive. If (6) holds then (w§(B), gk) is an AK-space.

Proposition 3. Let F = (fi) be a sequence of modulus functions. Then
(wh (B, f),gg’}-) is a complete F-seminormed space, where gg’f is abso-
lutely monotone and has the property (K). If B is column-positive then
(w5 (B, F), g5 5) is an FK-space. It is an AK-space if (6) is satisfied.

Analogous corrections are needed in Corollaries 3 and 8 of [8].

Finally, using that condition (6) holds for any constant sequence B = (A4),
from Proposition 3 we immediately get

Corollary 3. Letp > 1, A= (a,;) a non-negative matriz, and F = (fi)
a sequence of modulus functions. Then the space

(4, F) = {o = (1) : lim Y ane(fi(lan]))? = 0}
k

is a complete F-seminormed AK-space with respect to the absolutely mono-
tone F-seminorm

9,7 (2) = sup(Q_ ans(filloxl))P)'/7.
"ok
Corollary 3 partially extends Theorem 1 of Bilgin [1].
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