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Sequence spaces defined by a sequence of
modulus functions and A-nearly convergence

VIRGE SOOMER

ABSTRACT. Let E be a sequence space and let F = (fx) be a sequence of
modulus functions. For z = (§x) € E define F(z) = (fr(|¢x])). The purpose
of this paper is to investigate relations between the inclusion F(z) € E and
the X-nearly convergence of the sequences & and F(z).

1. Introduction

The notions of zero-classes and X-nearly convergence were introduced by
Freedman and Sember [3].

Let N denote the set of positive integers. A class X of the subsets of N is
called a zero-class if the following conditions hold:

(1) A finite = A € X,

(2) AABeX=>AUBeAX,
(3) ACB, BeX=>AeX,
(4) Ng X.

Definition. Let X be a zero-class. A number sequence z = (£;) is called
A-nearly convergent to [ if there exists a set Z € X such that

i = [.
ngH\IZ &

The sets of all bounded real A-nearly convergent and A-nearly convergent
to zero sequences are denoted respectively by wy and w%. Let ¢, co and £
be respectively the spaces of convergent, convergent to zero and bounded
real sequences. Then ¢ Cwy, ¢ C w?Y and wy, w?v are linear subspaces of

Lo (cf. [3]).
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Definition. A function f :[0,00) — [0, 00) is called a modulus function
if f is strictly increasing and continuous on [0,00), f(t+u) < f(t) + f(u)
and f(0) = 0.

Let E be a sequence space of real sequences and F = (fi) be a sequence
of modulus functions. The space E(F) is defined as follows:

E(F)={z= (&) F(e) = (fe(l&])) € E}.

The spaces of this kind were introduced by Ruckle [12] and Maddox [10] for
F = (f), this definition was extended by Kolk [5] to non-constant sequences

F = (fr)-

In this paper we investigate relations between E(F) N o and w$ for
certain zero-classes X.

2. Some preliminary results

Let E be a sequence space such that
(5) co CE,
(6) Fis solid, i.e. £oo - E C F,
(7) e ¢ E, where e = (1,1,...).
We denote the characteristic sequence of a set Z C N by ¢z = (¢2), i.e.

7 {1 ifkeZ,
Pr = g
0 ifkgZ.

It is easy to check that if a sequence space E satisfies conditions (5)—(7),
then the system
Xp={ZCN: oz € FE}

is a zero-class. For X = Xp we further denote wy, = wg and w%,E = wOE.

Proposition 1. Let E be a sequence space which satisfies conditions
(5)-(7). Then
Wk C ENty Cuwh,
where the closure is taken with respect to the norm on £
Proof. 1) Let z = (&) € wY, i.e. there exits a set Z C N such that

li =0 and . Wi it
kel{{]r\lzg and pz € E. We may write

T=pPnzT + pzT.

Then ¢z € co C E. Since E is solid, z € w% C £y and pz € E, we also
have pzz € EN{,,. Therefore z € EN{y for each z € wOE.
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2) Let now z = (k) € FN{y. Define
Zn={k eN: || >n""}
and take y = (7)) such that

{ 1/&; for k € Z,,
Mk =

0, otherwise.

Then y € £y, for each fixed n and so ¢z, = y-z € E, because FE is solid.
Now define y, = () by

&, fork < m,
=14 & fork>nandkeZ,,

0, otherwise.

Then it follows from the representation of y, that y, € w% for each n € N.
Since |np — €] < 1/n for each k € N, the sequence y, converges to z in £,
and therefore z € wY,. |

3. The space E(F) N £ and A-nearly convergence

Further we use the following characteristics for a sequence F = (fi) of
modulus functions:

(8) supy fx(t) < oo for each ¢t > 0,
(9) lim¢oq4 supy fi(t) =0,
(10) infy fr(t) > 0 for each t > 0.
Kolk (cf. [6] and [7]) proved that (8) & £o C £oo(F), (9) < co C co(F)
and (10) < ¢o(F) C co.

Proposition 2. If a sequence space E satisfies conditions (5)~(7) and a
sequence F = (fi) of modulus functions satisfies conditions (8)—(10), then

Wl = wH(F) N L.

Proof. Let z € w9, then omz T € co and pz € E for a certain set
Z C N. Then it follows from (9) that also ¢y z - F(z) € co, Le. F(z) is
Xg-nearly convergent to zero. As w% C £, we have z € £, and by (8) we
have F(z) € Loo. Therefore, F(z) € w% and z € w%(F) N €. In the same
manner we can show that if (10) holds, then w%(F) N4y C wY. O
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Lemma 1. Let B C €., be a solid sequence space and let F = (fi) be a
sequence of modulus functions. If

(11) for each interval I, = [0,b], b > 0, there exists H > 0 so that for all
wy,u2 € Iy and k € N

| fit(ue) = f (u1) < H fug —ug |

then B(F) C B.

Proof. Take z = (&) € B(F), i.e. F(z) = (fe(l€])) € B. Then there
exists a sequence y, = (n2) € B, n? > 0 so that y, converges to F(z) in £o.
It means that for arbitrary € > 0 there exists N. > 0 such that

Ink — fr(l&)| <eH™! (3-1)

forall n > N, and k € N.
Let z, = (£F), £} > 0, be the sequence such that f.(£7) = ni. Take

= { Ex(sgnér)™! if & #0,
T lo if &) = 0.

Then we have by assumption (11) and by (3.1) that the following estimations
are true (on a certain finite interval):

€ — &) = €7 — I&kl|
= f (€D - F U UED]
< Hlpp — fe(lé)l < e

for all n > N., k € N. Hence the sequence z, = (E;}) converges to ¢ = (&)
in £5.

We show now that Z, € B, n € N. Take in (11) up = 5} and u; = 0. We
have 0 < &7 = fk—l(n}:) < Hn? and, as B is solid, z, € B and also &, € B.L

Corollary 1. If a sequence space E satisfies conditions (5)~(7) and a
sequence F = (fi) of modulus functions satisfies condition (11), then

WI(F) C wl.

Proof. Take B = wY, in Lemma 1.



SEQUENCE SPACES DEFINED BY MODULI 77

Example 1. If the functions fi! are differentiable on [0,00) and the
sequence of derivatives of f;! is uniformly bounded on each interval [0, 8],
then applying Lagrangian theorem it is easy to show that condition (11)
holds. In the particular case when fj (t) =tP*, 0 < py < 1, we have that

d . _ 1 1/pr—1
I = S
and condition (11) holds if and only if infj p > 0.

Example 2. Let F = (f), where f is an unbounded modulus function.
Then condition (11) is the Lipschitz condition for the inverse function L
As the inverse function f~' of an unbounded modulus function f is convex
in each interval (0,b), b > 0, it satisfies Lipschitz condition (cf. [8], Lemma
1.3) and (11) is fulfilled.

Lemma 2. If condition (11) holds, then Loo(F) C Lo and cp(F) C ¢
(i.e. (10) is fulfilled).
Proof. Let (fi(|€x])) = (nk) € oo, then 0 < ny, < b for a certain b > 0.
Take uy = ng, u; = 0 in (11), then we have:
|§k| S Hb:
In the same manner we can show that co(F) C cp. 0

Proposition 3. Let a sequence space E satisfy conditions (5)=(7) and a

sequence F = (f}.) of modulus functions satisfy conditions (8), (9) and (11).
Then

wp C E(F)N Ly C 0. (3.2)
Proof. 1t follows immediately from Proposition 1 that
Wi (F) C (BN ) (F) C W (F).
Then, applying Lemma 2 and (8), it is not difficult to show that
(ENLo)(F)=E(F)Niy

and (3.2) follows immediately from Proposition 2 (by Lemma 2, (10) is
satisfied) and Corollary 1. O

Proposition 4. Let a sequence space E satisfy conditions (5)-(7) and

ENty =W, If a sequence F = (fx) of modulus functions satisfies condi-
tions (8)-(10), then

E(F)Nle = Ent,,.
Proof. Tt follows immediately from E N £y, = wd that E(F)NLy(F) =

wi(F). Since Loy C £oo(F) by (8), we may write E(F) Nl = W% (F)NLly.
Applying also Proposition 2 we have E(F )Nl =wd = ENt,,. O

Remark. If 7 = (f), then conditions (8)—(10) are fulfilled.

20
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4. Some sequence spaces related to A-nearly convergence

4.1. The space [calo(F). Let A = (a,x) be a regular matrix method
with a,; > 0 and

[calo = {2z = (&) : im > ankléel =03,
k

i.e. [calo is the set of strongly A-summable to zero sequences.
Take E = [c4lo, then it is easy to check that conditions (5)-(7) are ful-
filled. By results of Hill and Sledd [4] and Sember and Freedman [3] we

have

ENly = wh =wl. (4.1)

Therefore, by Proposition 4, we can state that
[CA]O (‘7:) N L/OO = {CA]O N goo (42)

for each sequence F = (fi) of modulus functions which satisfies conditions
(8)-(10).

Example 3. Let E = [calo and fx(t) = tP*, 0 < pp < 1. In this case
[calo(F) = [ca(p)lo, the space of sequences that are strongly A summable
to zero with exponent p = (pi). Then conditions (8) and (9) are fulfilled
and condition (10) is fulfilled if and only if infpx > 0 (cf. [7]). Hence for
0 <infpr <pp <1

fea(®]o Nloe = [calo N leo-

This result is well known if A= (C,1) and p = p, 0 <p < 1 (cf. [9]).

Further (cf. Proposition 5) we show that a stronger result than (4.2),
namely the equality [calo(F) = [calo is not true in general.

Let f(t) = supy, fx(t), then condition (9) guarantees that f is also a mo-
dulus function (cf. [5]). Let '

n

wo = {z = (&) : lim(n+1)7" Y |&] =0},

k=0

ie. wo = [calo for A = (C,1). It is clear that E(f) C E(F) for each solid
space E and thus applying also (4.2) for f we have

wo N £oo = Wwo(f) Nheo C wo(F) N Lo (4.3)
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Proposition 5. If the sequence F = (f) of modulus functions satisfies

condition (9) and tl-i+m f(t)/t = 0, then there exists an unbounded sequence
zZ € wy (]—')\wo

Proof. By the version of Kuttner’s theorem proved by Maddox [11] the
condition tli)m f(t)/t = 0 implies that for each locally convex F K-space X

X D wo(f)= X Do (4.4)

(for an arbitrary modulus function f). Let us take X = wy, then £, ¢ wg

and by (4.4) we have that wo 2 wo(f). Therefore, by (4.3), there exists an
unbounded sequence z € wo(f)\wo and also z € wg(F)\wp. O

Remark. The condition tlim f(t)/t = 0 is fulfilled if the modulus func-
300
tion f is the inverse function of any Orlicz function (cf. [8]).

Remark. Proposition 5 has an extension if we consider the strong
summability field determined by a lacunary sequence (cf. [14], Theorem
9) instead of wyg.

4.2. The space [coJo(F). Let o = (A;) be a sequence of matrices
A; = (anik) with apgp > 0. Define

[calo = {z = (&) : lim Zanik[§k| = 0 uniformly in i},
k

i.e. [calo is the set of sequences which are strongly summable to zero by a
sequential method a.

Take F = [cqlo. Then it is clear that E is solid, i.e. condition (6)
holds. Let the sequential method « be regular, i.e. lim, Yok Cnikby = limy &
(uniformly in ¢) for each = = (&) € c. It is not difficult to show that in this
case ¢ C ¥ and e ¢ E. Therefore conditions (5) and (7) also hold.

Let now fi(t) =¢, k € N. Then E(F) = F and by Proposition 1 we have

Wl CENLy, C Y.

If « is regular, then A; are regular matrix methods. Then, by Section 4.1,
the sets [e4,]o N 4o are closed in £4,. Moreover (cf. [13))

E = 0revlerlo,

where U is the family of matrices T = (t,x) such that £, = an; for some 1.
Therefore the set E N £, is also closed and

ENty =wl,. (4.5)

The following example shows that there exists a sequential method « so
that wh G EN Lo (cf. (4.1)).
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Example 4. Take

(DT i<k <4,
Gnik = 0 otherwise.

Then [cqo = sacg, the space of strongly almost convergent to zero sequences,

and (cf. [3])

wl G sacy = w,.
4.3. A-nearly convergence and statistical convergence. Let w de-
note the space of all real sequences. For any ¢ = (£) € w and € > 0

define A
‘ Ne(z) ={y=(m) cw: sup 1€k — | < e}

Then the class {N.(z) : z € w, ¢ > 0} forms a base for the topology Teo
of uniform convergence on w. On the space £, this is the usual ”sup-norm”
topology.

For an arbitrary zero class X Chun and Freedman [1] defined

Vi={z= (&) €w:Va>0, Z,={k:|&| >a}e X}

and proved that V{ is the closure (with respect to the topology Teo) Of the
space of A-nearly convergent to zero sequences.
If A= (ank) is a regular matrix method with a,; > 0 and

X={ZCN:¢z€lcalo},

then V§ = st%, where st% denotes the set of A-statistically convergent to
zero sequences. About A-statistically convergence see, for example, [2] and
[7]. If E = [cao, then w% = st4 N £y, and therefore (4.1) and (4.5) also
follow from Theorem 4.4 of [7].
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