Sequence spaces defined by a sequence of modulus functions and \mathcal{X} -nearly convergence

VIRGE SOOMER

ABSTRACT. Let E be a sequence space and let $\mathcal{F}=(f_k)$ be a sequence of modulus functions. For $x=(\xi_k)\in E$ define $\mathcal{F}(x)=(f_k(|\xi_k|))$. The purpose of this paper is to investigate relations between the inclusion $\mathcal{F}(x)\in E$ and the \mathcal{X} -nearly convergence of the sequences x and $\mathcal{F}(x)$.

1. Introduction

The notions of zero-classes and \mathcal{X} -nearly convergence were introduced by Freedman and Sember [3].

Let $\mathbb N$ denote the set of positive integers. A class $\mathcal X$ of the subsets of $\mathbb N$ is called a *zero-class* if the following conditions hold:

- (1) A finite $\Rightarrow A \in \mathcal{X}$,
- $(2) A, B \in \mathcal{X} \Rightarrow A \cup B \in \mathcal{X},$
- $(3) \ A \subset B, \ B \in \mathcal{X} \Rightarrow A \in \mathcal{X},$
- (4) $\mathbb{N} \notin \mathcal{X}$.

Definition. Let \mathcal{X} be a zero-class. A number sequence $x = (\xi_k)$ is called \mathcal{X} -nearly convergent to l if there exists a set $Z \in \mathcal{X}$ such that

$$\lim_{k\in\mathbb{N}\backslash Z}\xi_k=l.$$

The sets of all bounded real \mathcal{X} -nearly convergent and \mathcal{X} -nearly convergent to zero sequences are denoted respectively by $\omega_{\mathcal{X}}$ and $\omega_{\mathcal{X}}^0$. Let c, c_0 and ℓ_{∞} be respectively the spaces of convergent, convergent to zero and bounded real sequences. Then $c \subset \omega_{\mathcal{X}}$, $c_0 \subset \omega_{\mathcal{X}}^0$ and $\omega_{\mathcal{X}}$, $\omega_{\mathcal{X}}^0$ are linear subspaces of ℓ_{∞} (cf. [3]).

Received November 12, 1999; revised December 23, 1999.

1991 Mathematics Subject Classification. 40F05, 46A45.

Key words and phrases. Modulus function, \mathcal{X} -nearly convergence, strong summability. This research was supported by Estonian Scientific Foundation Grant 3991.

Definition. A function $f:[0,\infty)\to [0,\infty)$ is called a modulus function if f is strictly increasing and continuous on $[0,\infty)$, $f(t+u)\leq f(t)+f(u)$ and f(0)=0.

Let E be a sequence space of real sequences and $\mathcal{F} = (f_k)$ be a sequence of modulus functions. The space $E(\mathcal{F})$ is defined as follows:

$$E(\mathcal{F}) = \{x = (\xi_k) : \mathcal{F}(x) = (f_k(|\xi_k|)) \in E\}.$$

The spaces of this kind were introduced by Ruckle [12] and Maddox [10] for $\mathcal{F} = (f)$, this definition was extended by Kolk [5] to non-constant sequences $\mathcal{F} = (f_k)$.

In this paper we investigate relations between $E(\mathcal{F}) \cap \ell_{\infty}$ and $\omega_{\mathcal{X}}^{0}$ for certain zero-classes \mathcal{X} .

2. Some preliminary results

Let E be a sequence space such that

(5) $c_0 \subset E$,

(6) E is solid, i.e. $\ell_{\infty} \cdot E \subset E$,

(7) $e \notin E$, where e = (1, 1, ...).

We denote the characteristic sequence of a set $Z \subset \mathbb{N}$ by $\varphi_Z = (\varphi_k^Z)$, i.e.

$$\varphi_k^Z = \left\{ \begin{array}{ll} 1 & \text{if } k \in Z, \\ 0 & \text{if } k \not \in Z. \end{array} \right.$$

It is easy to check that if a sequence space E satisfies conditions (5)–(7), then the system

 $\mathcal{X}_E = \{ Z \subset \mathbb{N} : \ \varphi_Z \in E \}$

is a zero-class. For $\mathcal{X}=\mathcal{X}_E$ we further denote $\omega_{\mathcal{X}_E}=\omega_E$ and $\omega_{\mathcal{X}_E}^0=\omega_E^0$.

Proposition 1. Let E be a sequence space which satisfies conditions (5)–(7). Then

 $\omega_E^0 \subset E \cap \ell_\infty \subset \overline{\omega_E^0},$

where the closure is taken with respect to the norm on ℓ_{∞} .

Proof. 1) Let $x=(\xi_k)\in\omega_E^0$, i.e. there exits a set $Z\subset\mathbb{N}$ such that $\lim_{k\in\mathbb{N}\setminus Z}\xi_k=0$ and $\varphi_Z\in E$. We may write

$$x = \varphi_{\mathbb{N}\backslash Z} x + \varphi_Z x.$$

Then $\varphi_{\mathbb{N}\backslash Z}x \in c_0 \subset E$. Since E is solid, $x \in \omega_E^0 \subset \ell_\infty$ and $\varphi_Z \in E$, we also have $\varphi_Z x \in E \cap \ell_\infty$. Therefore $x \in E \cap \ell_\infty$ for each $x \in \omega_E^0$.

2) Let now $x = (\xi_k) \in E \cap \ell_{\infty}$. Define

$$Z_n = \{k \in \mathbb{N} : |\xi_k| > n^{-1}\}$$

and take $y = (\eta_k)$ such that

$$\eta_k = \begin{cases} 1/\xi_k & \text{for } k \in Z_n, \\ 0, & \text{otherwise.} \end{cases}$$

Then $y \in \ell_{\infty}$ for each fixed n and so $\varphi_{Z_n} = y \cdot x \in E$, because E is solid. Now define $y_n = (\eta_k^n)$ by

$$\eta_k^n = \begin{cases}
\xi_k & \text{for } k < n, \\
\xi_k & \text{for } k > n \text{ and } k \in Z_n, \\
0, & \text{otherwise.}
\end{cases}$$

Then it follows from the representation of y_n that $y_n \in \omega_E^0$ for each $n \in \mathbb{N}$. Since $|\eta_k^n - \xi_k| < 1/n$ for each $k \in \mathbb{N}$, the sequence y_n converges to x in ℓ_{∞} and therefore $x \in \overline{\omega_E^0}$.

3. The space $E(\mathcal{F}) \cap \ell_{\infty}$ and \mathcal{X} -nearly convergence

Further we use the following characteristics for a sequence $\mathcal{F}=(f_k)$ of modulus functions:

- (8) $\sup_k f_k(t) < \infty$ for each t > 0,
- (9) $\lim_{t\to 0+} \sup_k f_k(t) = 0$,
- (10) $\inf_{k} f_{k}(t) > 0$ for each t > 0.

Kolk (cf. [6] and [7]) proved that (8) $\Leftrightarrow \ell_{\infty} \subset \ell_{\infty}(\mathcal{F})$, (9) $\Leftrightarrow c_0 \subset c_0(\mathcal{F})$ and (10) $\Leftrightarrow c_0(\mathcal{F}) \subset c_0$.

Proposition 2. If a sequence space E satisfies conditions (5)-(7) and a sequence $\mathcal{F} = (f_k)$ of modulus functions satisfies conditions (8)-(10), then

$$\omega_E^0 = \omega_E^0(\mathcal{F}) \cap \ell_\infty.$$

Proof. Let $x \in \omega_E^0$, then $\varphi_{\mathbb{N} \setminus Z} \cdot x \in c_0$ and $\varphi_Z \in E$ for a certain set $Z \subset \mathbb{N}$. Then it follows from (9) that also $\varphi_{\mathbb{N} \setminus Z} \cdot \mathcal{F}(x) \in c_0$, i.e. $\mathcal{F}(x)$ is \mathcal{X}_E -nearly convergent to zero. As $\omega_E^0 \subset \ell_\infty$, we have $x \in \ell_\infty$ and by (8) we have $\mathcal{F}(x) \in \ell_\infty$. Therefore, $\mathcal{F}(x) \in \omega_E^0$ and $x \in \omega_E^0(\mathcal{F}) \cap \ell_\infty$. In the same manner we can show that if (10) holds, then $\omega_E^0(\mathcal{F}) \cap \ell_\infty \subset \omega_E^0$.

Lemma 1. Let $B \subset \ell_{\infty}$ be a solid sequence space and let $\mathcal{F} = (f_k)$ be a sequence of modulus functions. If

(11) for each interval $I_b = [0, b]$, b > 0, there exists H > 0 so that for all $u_1, u_2 \in I_b$ and $k \in \mathbb{N}$

$$|f_k^{-1}(u_2) - f_k^{-1}(u_1)| \le H |u_2 - u_1|,$$

then $\overline{B}(\mathcal{F}) \subset \overline{B}$.

Proof. Take $x=(\xi_k)\in \overline{B}(\mathcal{F})$, i.e. $\mathcal{F}(x)=(f_k(|\xi_k|))\in \overline{B}$. Then there exists a sequence $y_n=(\eta_k^n)\in B$, $\eta_k^n\geq 0$ so that y_n converges to $\mathcal{F}(x)$ in ℓ_∞ . It means that for arbitrary $\varepsilon>0$ there exists $N_\varepsilon>0$ such that

$$|\eta_k^n - f_k(|\xi_k|)| < \varepsilon H^{-1} \tag{3.1}$$

for all $n > N_{\varepsilon}$ and $k \in \mathbb{N}$.

Let $x_n = (\xi_k^n), \ \xi_k^n \ge 0$, be the sequence such that $f_k(\xi_k^n) = \eta_k^n$. Take

$$\widetilde{\xi}_k^n = \begin{cases} \xi_k^n (sgn\xi_k)^{-1} & \text{if } \xi_k \neq 0, \\ 0 & \text{if } \xi_k = 0. \end{cases}$$

Then we have by assumption (11) and by (3.1) that the following estimations are true (on a certain finite interval):

$$\begin{aligned} |\widetilde{\xi}_{k}^{n} - \xi_{k}| &= |\xi_{k}^{n} - |\xi_{k}|| \\ &= |f_{k}^{-1}[f_{k}(\xi_{k}^{n})] - f_{k}^{-1}[f_{k}(|\xi_{k}|)]| \\ &\leq H|\eta_{k}^{n} - f_{k}(|\xi_{k}|)| < \varepsilon \end{aligned}$$

for all $n > N_{\varepsilon}$, $k \in \mathbb{N}$. Hence the sequence $\widetilde{x}_n = (\widetilde{\xi}_k^n)$ converges to $x = (\xi_k)$ in ℓ_{∞} .

We show now that $\widetilde{x}_n \in B$, $n \in \mathbb{N}$. Take in (11) $u_2 = \eta_k^n$ and $u_1 = 0$. We have $0 \le \xi_k^n = f_k^{-1}(\eta_k^n) < H\eta_k^n$ and, as B is solid, $x_n \in B$ and also $\widetilde{x}_n \in B$.

Corollary 1. If a sequence space E satisfies conditions (5)–(7) and a sequence $\mathcal{F} = (f_k)$ of modulus functions satisfies condition (11), then

$$\overline{\omega_E^0}(\mathcal{F}) \subset \overline{\omega_E^0}.$$

Proof. Take $B = \omega_E^0$ in Lemma 1.

Example 1. If the functions f_k^{-1} are differentiable on $[0,\infty)$ and the sequence of derivatives of f_k^{-1} is uniformly bounded on each interval [0,b], then applying Lagrangian theorem it is easy to show that condition (11) holds. In the particular case when $f_k(t) = t^{p_k}$, $0 < p_k \le 1$, we have that

$$\frac{d}{du}f_k^{-1}(u) = \frac{1}{p_k}u^{1/p_k - 1}$$

and condition (11) holds if and only if $\inf_k p_k > 0$.

Example 2. Let $\mathcal{F} = (f)$, where f is an unbounded modulus function. Then condition (11) is the Lipschitz condition for the inverse function f^{-1} . As the inverse function f^{-1} of an unbounded modulus function f is convex in each interval (0,b), b>0, it satisfies Lipschitz condition (cf. [8], Lemma 1.3) and (11) is fulfilled.

Lemma 2. If condition (11) holds, then $\ell_{\infty}(\mathcal{F}) \subset \ell_{\infty}$ and $c_0(\mathcal{F}) \subset c_0$ (i.e. (10) is fulfilled).

Proof. Let $(f_k(|\xi_k|)) = (\eta_k) \in \ell_{\infty}$, then $0 \le \eta_k \le b$ for a certain b > 0. Take $u_2 = \eta_k$, $u_1 = 0$ in (11), then we have:

$$|\xi_k| \leq Hb$$
,

i.e. $x = (\xi_k) \in \ell_{\infty}$.

In the same manner we can show that $c_0(\mathcal{F}) \subset c_0$.

Proposition 3. Let a sequence space E satisfy conditions (5)–(7) and a sequence $\mathcal{F} = (f_k)$ of modulus functions satisfy conditions (8), (9) and (11). Then

$$\omega_E^0 \subset E(\mathcal{F}) \cap \ell_\infty \subset \overline{\omega_E^0}.$$
 (3.2)

Proof. It follows immediately from Proposition 1 that

$$\omega_E^0(\mathcal{F}) \subset (E \cap \ell_\infty)(\mathcal{F}) \subset \overline{\omega_E^0}(\mathcal{F}).$$

Then, applying Lemma 2 and (8), it is not difficult to show that

$$(E \cap \ell_{\infty})(\mathcal{F}) = E(\mathcal{F}) \cap \ell_{\infty}$$

and (3.2) follows immediately from Proposition 2 (by Lemma 2, (10) is satisfied) and Corollary 1. $\hfill\Box$

Proposition 4. Let a sequence space E satisfy conditions (5)–(7) and $E \cap \ell_{\infty} = \omega_E^0$. If a sequence $\mathcal{F} = (f_k)$ of modulus functions satisfies conditions (8)–(10), then

$$E(\mathcal{F}) \cap \ell_{\infty} = E \cap \ell_{\infty}.$$

Proof. It follows immediately from $E \cap \ell_{\infty} = \omega_E^0$ that $E(\mathcal{F}) \cap \ell_{\infty}(\mathcal{F}) = \omega_E^0(\mathcal{F})$. Since $\ell_{\infty} \subset \ell_{\infty}(\mathcal{F})$ by (8), we may write $E(\mathcal{F}) \cap \ell_{\infty} = \omega_E^0(\mathcal{F}) \cap \ell_{\infty}$. Applying also Proposition 2 we have $E(\mathcal{F}) \cap \ell_{\infty} = \omega_E^0 = E \cap \ell_{\infty}$.

Remark. If $\mathcal{F} = (f)$, then conditions (8)-(10) are fulfilled.

4. Some sequence spaces related to \mathcal{X} -nearly convergence

4.1. The space $[c_A]_0(\mathcal{F})$. Let $A=(a_{nk})$ be a regular matrix method with $a_{nk}\geq 0$ and

$$[c_A]_0 = \{x = (\xi_k) : \lim_n \sum_k a_{nk} |\xi_k| = 0\},$$

i.e. $[c_A]_0$ is the set of strongly A-summable to zero sequences.

Take $E = [c_A]_0$, then it is easy to check that conditions (5)–(7) are fulfilled. By results of Hill and Sledd [4] and Sember and Freedman [3] we have

$$E \cap \ell_{\infty} = \omega_E^0 = \overline{\omega_E^0}. \tag{4.1}$$

Therefore, by Proposition 4, we can state that

$$[c_A]_0(\mathcal{F}) \cap \ell_\infty = [c_A]_0 \cap \ell_\infty \tag{4.2}$$

for each sequence $\mathcal{F} = (f_k)$ of modulus functions which satisfies conditions (8)–(10).

Example 3. Let $E = [c_A]_0$ and $f_k(t) = t^{p_k}$, $0 < p_k \le 1$. In this case $[c_A]_0(\mathcal{F}) = [c_A(p)]_0$, the space of sequences that are strongly A summable to zero with exponent $p = (p_k)$. Then conditions (8) and (9) are fulfilled and condition (10) is fulfilled if and only if $p_k > 0$ (cf. [7]). Hence for $0 < \inf p_k \le p_k \le 1$

$$[c_A(p)]_0 \cap \ell_{\infty} = [c_A]_0 \cap \ell_{\infty}.$$

This result is well known if A = (C, 1) and $p_k = \tilde{p}$, $0 < \tilde{p} < 1$ (cf. [9]).

Further (cf. Proposition 5) we show that a stronger result than (4.2), namely the equality $[c_A]_0(\mathcal{F}) = [c_A]_0$ is not true in general.

Let $\widetilde{f}(t) = \sup_k f_k(t)$, then condition (9) guarantees that \widetilde{f} is also a modulus function (cf. [5]). Let

$$w_0 = \{x = (\xi_k) : \lim_{n} (n+1)^{-1} \sum_{k=0}^{n} |\xi_k| = 0\},$$

i.e. $w_0 = [c_A]_0$ for A = (C, 1). It is clear that $E(\tilde{f}) \subset E(\mathcal{F})$ for each solid space E and thus applying also (4.2) for \tilde{f} we have

$$w_0 \cap \ell_\infty = w_0(\widetilde{f}) \cap \ell_\infty \subset w_0(\mathcal{F}) \cap \ell_\infty.$$
 (4.3)

Proposition 5. If the sequence $\mathcal{F} = (f_k)$ of modulus functions satisfies condition (9) and $\lim_{t\to\infty} \widetilde{f}(t)/t = 0$, then there exists an unbounded sequence $z \in w_0(\mathcal{F}) \setminus w_0$.

Proof. By the version of Kuttner's theorem proved by Maddox [11] the condition $\lim_{t\to\infty} \widetilde{f}(t)/t = 0$ implies that for each locally convex FK-space X

$$X \supset w_0(\widetilde{f}) \Rightarrow X \supset \ell_\infty$$
 (4.4)

(for an arbitrary modulus function \widetilde{f}). Let us take $X = w_0$, then $\ell_{\infty} \not\subset w_0$ and by (4.4) we have that $w_0 \not\supset w_0(\widetilde{f})$. Therefore, by (4.3), there exists an unbounded sequence $z \in w_0(\widetilde{f}) \setminus w_0$ and also $z \in w_0(\mathcal{F}) \setminus w_0$.

Remark. The condition $\lim_{t\to\infty} f(t)/t = 0$ is fulfilled if the modulus function f is the inverse function of any Orlicz function (cf. [8]).

Remark. Proposition 5 has an extension if we consider the strong summability field determined by a lacunary sequence (cf. [14], Theorem 9) instead of w_0 .

4.2. The space $[c_{\alpha}]_0(\mathcal{F})$. Let $\alpha = (A_i)$ be a sequence of matrices $A_i = (a_{nik})$ with $a_{nik} \geq 0$. Define

$$[c_{\alpha}]_0 = \{x = (\xi_k) : \lim_{n} \sum_{k} a_{nik} |\xi_k| = 0 \text{ uniformly in } i\},$$

i.e. $[c_{\alpha}]_0$ is the set of sequences which are strongly summable to zero by a sequential method α .

Take $E = [c_{\alpha}]_0$. Then it is clear that E is solid, i.e. condition (6) holds. Let the sequential method α be regular, i.e. $\lim_n \sum_k a_{nik} \xi_k = \lim_k \xi_k$ (uniformly in i) for each $x = (\xi_k) \in c$. It is not difficult to show that in this case $c_0 \subset E$ and $e \notin E$. Therefore conditions (5) and (7) also hold.

Let now $f_k(t) = t$, $k \in \mathbb{N}$. Then $E(\mathcal{F}) = E$ and by Proposition 1 we have

$$\omega_E^0 \subset E \cap \ell_\infty \subset \overline{\omega_E^0}.$$

If α is regular, then A_i are regular matrix methods. Then, by Section 4.1, the sets $[c_{A_i}]_0 \cap \ell_{\infty}$ are closed in ℓ_{∞} . Moreover (cf. [13])

$$E = \cap_{T \in U} [c_T]_0,$$

where U is the family of matrices $T=(t_{nk})$ such that $t_{nk}=a_{nik}$ for some i. Therefore the set $E\cap \ell_{\infty}$ is also closed and

$$E \cap \ell_{\infty} = \overline{\omega_E^0}. \tag{4.5}$$

The following example shows that there exists a sequential method α so that $\omega_E^0 \subseteq E \cap \ell_\infty$ (cf. (4.1)).

Example 4. Take

$$a_{nik} = \begin{cases} (n+1)^{-1} & \text{if } i \le k \le i+n, \\ 0 & \text{otherwise.} \end{cases}$$

Then $[c_{\alpha}]_0 = sac_0$, the space of strongly almost convergent to zero sequences, and (cf. [3])

$$\omega_E^0 \subseteq sac_0 = \overline{\omega_E^0}.$$

4.3. X-nearly convergence and statistical convergence. Let ω denote the space of all real sequences. For any $x=(\xi_k)\in\omega$ and $\varepsilon>0$ define

$$N_{\varepsilon}(x) = \{ y = (\eta_k) \in \omega : \sup_{k} |\xi_k - \eta_k| < \varepsilon \}.$$

Then the class $\{N_{\varepsilon}(x): x \in \omega, \varepsilon > 0\}$ forms a base for the topology τ_{∞} of uniform convergence on ω . On the space ℓ_{∞} this is the usual "sup-norm" topology.

For an arbitrary zero class $\mathcal X$ Chun and Freedman [1] defined

$$V_{\mathcal{X}}^{0} = \{ x = (\xi_k) \in \omega : \forall \alpha > 0, \ Z_{\alpha} = \{ k : |\xi_k| > \alpha \} \in \mathcal{X} \}$$

and proved that $V_{\mathcal{X}}^0$ is the closure (with respect to the topology τ_{∞}) of the space of \mathcal{X} -nearly convergent to zero sequences.

If $A = (a_{nk})$ is a regular matrix method with $a_{nk} \geq 0$ and

$$\mathcal{X} = \{ Z \subset \mathbb{N} : \varphi_Z \in [c_A]_0 \},\$$

then $V_{\mathcal{X}}^0 = st_A^0$, where st_A^0 denotes the set of A-statistically convergent to zero sequences. About A-statistically convergence see, for example, [2] and [7]. If $E = [c_A]_0$, then $\overline{\omega_E^0} = st_A \cap \ell_{\infty}$ and therefore (4.1) and (4.5) also follow from Theorem 4.4 of [7].

References

- 1. C. S. Chun and A. R. Freedman, A bounded consistency theorem for strong summabilities, Internat. J. Math. and Math. Sci. 24 (1989), 39-46.
- 2. J. Connor, On strong matrix summability with respect to modulus and statistical convergence, Canad. Math. Bull 32 (1989), 194-198.
- 3. A. R. Freedman and J. J. Sember, Densities and summability, Pacific J. Math. 95 (1981), 293-305.
- J. D. Hill and W. T. Sledd, Approximation in bounded summability fields, Canad. J. Math. 20 (1968), 410-415.
- E. Kolk, Sequence spaces defined by a sequence of moduli, Problems of Pure and Applied Mathematics. Abstracts of conference (Tartu, September 21-22, 1990), Tartu, 1990, pp. 131-134.

- 6. E. Kolk, Inclusion theorems for some sequence spaces defined by a sequence of moduli, Tartu Ül. Toimetised 970 (1994), 65-72.
- 7. E. Kolk, Inclusion relations between the statistical convergence and strong summability, Acta et Comment. Univ. Tartuensis Math. 2 (1998), 39-54.
- 8. M. A. Krasnoselskii and Ya. B. Rutickii, Convex functions and Orlicz spaces, Groningen, Netherland, 1961.
- 9. I. J. Maddox, Steinhaus type theorems for summability matrices, Proc. Amer. Math, Soc. 45 (1974), 209-213.
- 10. I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc. 100 (1986), 161-166.
- 11. I. J. Maddox, Inclusions between FK spaces and Kuttner's theorem, Math. Proc. Cambridge Philos. Soc. 101 (1987), 523-527.
- 12. W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1973), 973-978.
- 13. V. Soomer, Sequential methods for strong summability and convergence with respect to the zero class, Tartu Ül. Toimetised 770 (1987), 122-128. (Russian)
- 14. V. Soomer, On sequence spaces defined by a sequence of moduli and an extension of Kuttner's theorem, Acta et Comment. Univ. Tartuensis Math. 2 (1998), 30-38.

Institute of Pure mathematics, University of Tartu, 50090 Tartu, Estonia E-mail address: soomer@math.ut.ee