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An alternative way to derive the geodesic
deviation equation for rapidly diverging geodesics

TANEL MULLARI AND RIsTO TAMMELO

ABSTRACT. We present a derivation of the equation of geodesic deviation
under the assumption that the geodesics are adjacent in some neigbourhood,
but their rate of separation is arbitrary. The resulting modified equation
of geodesic deviation is nonlinear, it reduces to the ordinary linear geodesic
deviation equation when the changes of position of corresponding points on
the two geodesics as well as the changes of directions of the corresponding
tangents are small. Our derivation is straightforward but shorter and more
lucid than the earlier ones. Some of the consequences of the modified equation
are also discussed.

1. Introduction

Let us consider two geodesics L and L on a Riemannian manifold and
denote their unit tangent vectors as # and 4, respectively. In the tangent
vector space Tp to the manifold, where P is a point on the geodesic L, we
define a vector 7 so that the exponential image of its endpoint is a point P
on the second geodesic L. This vector is called the geodesic deviation vector.
Its components with respect to the coordinate basis at the point P are,
in the first approximation, the differences of the corresponding curvilinear
coordinates z® and Z* of the two points P and P:

7]K=(EK—$K+02,

where Landau’s symbol Oy := O(|n*|?) denotes the second order small quan-
tities with respect to |n”|.
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The evolution of the deviation vector i can be calculated from the ge-
odesic deviation equation, which relates the second absolute derivatives of
its components with respect to the parameter s of the fiducial geodesic to
the Riemann curvature tensor. In the case of parallel geodesics, when the
rate of separation of geodesics %7 is of the same order of smallness than
the deviation vector 7, we can use the ordinary geodesic deviation equation,

derived by Levi-Civita and Synge in 1926 (see [4, 7]), which has the form

D2 s
dSZ = —Riwu’\n“u”. (1)
Here u* and R% v denote, respectively, the components of the tangent vector
i to the first geodesic line and of the Riemann curvature tensor at the point
P. A generalized equation, derived by Hodgkinson in 1974 (see [3] and also
[1, 5]), holds in the case of non-parallel geodesics whose rate of separation is
arbitrary, and has the form

D'Z,r]rc
ds?

K

—_— — . 2
dsnu 3A“"dsnds (2)

Dn)‘ 4 l,—_2 Dn? an”

— K A,V K
= —R5, v 'n"u - 2R3,

If the rate of separation of the geodesics is small, this equation reduces,
naturally, to the ordinary geodesic deviation equation (1). The ordinary
and Hodgkinson deviation equations of the forms (1) and (2) describe the
behavior of the deviation vector in the case of the so-called natural corre-
spondence, when the vector 7 connects a pair of corresponding points on the
geodesics L and L with the same value of the affine parameters sp = § B
Because the derivation of the formula (2), as given by Hodgkinson, is
rather capacious and mathematically complicated, the aim of the present
paper is to give an alternative, more "transparent” and shorter derivation.
Surprisingly enough, the present straightforward derivation turns out to be
not only more lucid but also shorter than the original one by Hodgkinson.

2. Deviation of rapidly diverging geodesics

Let us consider on a Riemannian manifold two geodesic lines, the first,
fiducial geodesic L : & = ¢*(s) with an affine parameter s and the second,
displaced geodesic L : @ = ¢*(5) with an affine parameter &. It is assumed
that the geodesics L and L are adjacent some time in their history, namely in
the vicinity of the points corresponding to the zero values of their parameters

= 8§ = 0. Let A be a mapping from the geodesic line L to the geodesic line

i

A: L - L.

Assume that the pairs of corresponding points of these two geodesics are
connected by a family of geodesic lines I' : 2 = %"*(p), where p is the
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natural parameter along the connecting geodesics, and that each geodesic
from the family I is uniquely determined by a given pair of points P and P.
Thus A is a bijection. Let us consider a pair of corresponding points P and
P under the bijection A. At the point P of the intersection of geodesics I'
and L we have

$"(0) = ¢"(sp)-

Denote the geodesic arc length of I' between the points P and P by Ap, then
V™ (Ap) = ¢"(3p)

are the coordinates of the point of intersection of geodesics I' and L. We

also define the unit tangent vector to the connecting geodesic I' at the point
P with components

n' = Ll
dp
Then the components of the deviation vector are
P dy*
n*=n"Ap= — (3)
p

At the next stage our aim is to express, using Taylor’s expansion, the
coordinates of the second point ¢*(3) in terms of the coordinates of the
first point ¢”(s), and the components of the deviation vector. Because the
components of the deviation vector are supposed to be infinitely small, but
their derivatives with respect to & are not, and the second derivatives of the
coordinates are needed, we have to write the series including the third order
terms. Thus we have

r P dp*(p) 1d 11) P (p) 2
FE) =¢"(s)+ 8 Apy o Ap
1d%¢"(p) 3
g__dps o Ap + 04 =
. ldn® , 1d*n%
The differential equation of the connecting geodesic I
Cep) _ o 49 (o) (o)
dp? P=g, dp dp
can be written with the help of relation (3) as
dn”®
o _ “
o -TI5 n n
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Taking into account the last formula and replacing the quantities n*Ap with
the components 7* from relation (3), we obtain for the coordinates of the
point P on the displaced geodesic the following expression (cf. [2]):

TR (= K K 1 I 1 K v 1 7!' 14
9°(8) = ¢"(s) + " = T30 0" ~ EFM,mAn"n + gFﬁyFAw"n“n + O4.

Taking now the first ordinary derivative of the last expression with respect
to the parameter 5, the affine parameter of the second geodesic, we obtain

d(/-sﬂ(g) d’? 1 K A b, v K dTI)‘
&5 s T e = TR o

1 N dn”
_gFiu,VT) ds 77 ——EP)\MYDTI IILT

ydnt dn¥\ ds
k 71' A1 e
+3Fm T a7 +3F W ds) 8+03-

Differentiating the last equation and taking into account that L and L are
geodesic lines, we obtain the following equation:

d?n* d d*n?

dnz +2F u CZS -T5, rl’ n +I‘>\/“,u utn”

. dn? o . dn? by 2 dn? dn"
“2F)\p,u_és_77 u +2F)\u,u ds % + RA;w dS ds (4)

dn”® dn? d*s d§)2
u” -T5 e O, = 0.
+ (u ds M ds ) ds \ds + &

As the next step we substitute the first and second ordinary derivatives
of the deviation vector by the corresponding covariant derivatives from the
following definitions:

dn* _ Dn” )
ds _ ds ——Fi,ﬂ“n“,
dznn Dznn du}‘ d77
ds2 = ds? - iu,uuAnMuu_ §;f£77 _2F§u A d +F1ru )\y,u 77

After substitution of these expressions into the equation (4) and some sim-
plification we obtain

D?TIK. N Dn)\
T2 T —wau nHu” — 2R§W——[E~n“u

2, Dp* Dpv . D |
3w T T s T g

K DTIK K A K DTIA d2 ds
(u + ds — DRuw'n® =I5, ds | ) 43 \ds +02'
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D K
Thus far we have assumed 7" to be a first order small quantity and U

. . . . D2~

to be finite, while no assumption about the order of magnitude of 127
s

has been made. Next we will consider the following two particular cases:

: Dipe . . D~ :
(i)when R finite and (i) when T2 s a small quantity of the same
order as |n*|.

2K
7 to be finite and collecting the
ds?

zeroth-order terms (these do not contain the components n"), we obtain the

equation
D*pe (ds\? < . Dne\ d*s
ds? (?Zg) + (u + ds ) PEl O1=0,

which can be written as

D [ds( , Dy _
'ﬁ[zs;(u + ds )]‘f‘Ol—O.

The expression in parentheses is the tangent vector of the displaced geodesic

. o N . Du”

in zeroth approximation. So we get in this case the equation —— = 0
3

which is the differential equation of the second geodesic in the zeroth-order

approximation. This produces little of interest and we proceed to consider

the second particular case.

(i) Assuming now for the time being

D?.T,KL
ds?

(ii) Assuming the second derivative to be an infinitesimal of the

d?s |
same order as 1%, it follows now from the equation (5) that @ s first

order small quantity, and the equation (5) takes the final form

DZ,OK

Dp* .. 2, Dnp* Dy
ds?

ds T 3T s U ds (6)
- + DW“ d*s ii_g 2+(9
ds ) ds? \ds >

This equation describes the behavior of the geodesic deviation vector in
case of rapidly diverging geodesics in a neighbourhood where the separation
of the geodesics is infinitesimal but the magnitude of the rate of separation
is arbitrary. If the‘rate of separation of the geodesics is small, the derived
equation reduces to the ordinary geodesic deviation equation (1).

— K A g, v K
= ——RAm,u n*u -2R,\W
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3. Discussion

In this concluding section we consider some particular ways of establish-
ing a correspondence between the points of two geodesics in the (n + 1)-
dimensional pseudo-Riemannian spacetime, and present some general re-
marks.

At first one should mention the case of so called natural correspondence,
when the deviating geodesics are parametrized by their natural parameters,
and the connecting geodesics T join such pairs of points on these geodesics
whose values of natural parameters are equal. (In physical terms the natu-
ral correspondence corresponds to the case when the initially synchronized

clocks, comoving with the freely falling point masses, show the same read-
2

. N S . .
ings.) Now the second derivative 73 18 zero and we obtain, from (6), the
§

Hodgkinson equation in its mathematically simplest and shortest form (2).

Next let us consider the case of so called orthogonal correspondence. Then
the corresponding points on the neighbouring geodesics are chosen so that
I" and L are orthogonal at every point of L. Construct an orthonormal basis
(€3, €1, ...,€7) at a certain point of L. The zeroth basis vector €5 =  is
supposed to be the tangent vector # to the fiducial geodesic. Propagate
the basis parallelly along the fiducial geodesic. In the comoving coordinate
system, where «® = 1 and w* = 0 for all i = 1, ..., n, the deviation vector
77 has only spatial components, i.e. 71° = 0, and the deviation equation (6)
takes the form

Dzni ‘ ‘ _ Dnj 2 . Dni . Dpt Dnid’s [d3\>
i iopi DWW, 2. Dyi Dy Dy B\ 7
T e A P L P (ds) - ()

s

45\ 2
To determine the quantity ( Ef) , we return to the formula (6) and
s

ds?
contract it with the covector g, u™:
D2 T DUA
g,g,ru’“—;ls% = —u“Ran,uAn“u” — 2u"“R,g>‘,w—E;~n“u"
N\ 2
2 . Dp? wDn” c xR Dn" d?s (ds
Bl el (E U 8 el b I

The first term on the right hand side vanishes, because the components
of the curvature tensor are antisymmetric. The zeroth component of the
deviation vector is zero at every point on L in the constructed moving basis
in the case of orthogonal correspondence. This means that its covariant
Drp and D

derivatives
ds ds?

must also be zero. Consequently, the left hand
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side of the last equation and the last term in parentheses vanish. The first
term in parentheses equals unity, so we can write:

d?s (ds\? Dnp? 2 Dn* Dy
=1 == — —oyk il YT Y T ez
ds? (ds) W R as " T3 Riexuw ds | ds

In the orthonormal moving basis we get

10 gs T T 3k g T ds

d?s (ds\* o Dyt . 2 . Dy .Dn"
E(d_s) :—2R —_— J—*—-R ]—.

As the last step we substitute this result into equation (7). Then we will
obtain the geodesic deviation equation for the case of orthonormal corre-
spondence in the moving tetrad in the following form:

Dyt i g i Dy 2. Dy Dy
A A s [ ey

Dn* . 1 Dn' . Dn*\ Dni
0 0 74 20 J
+2 (R’W" as T TR T s ) s

3

The last equation, depending cubically on the rate of separation vector,
is mathematically even more complicated than the deviaton equation (6)
which is also a non-linear differential equation with respect to the devia-
tion vector and its covariant derivative. However, from the physical point
of view the last equation is conceptually more simple than the deviation
equation (6), as it gives in physical terminology for an observer co-moving
with the first point mass the components of the relative spatial acceleration
of two instantaneously neighbouring, freely falling point masses which are
departing with a relativistic relative velocity. One should emphasize that
due to its non-linearity the geodesic deviation equation for rapidly diverging
geodesics differs considerably from geodesic deviation equation for almost
parallel geodesics as the displacements in the orthogonal directions are no
longer independent. The non-linearity causes the absence of the principle
of superposition of displacements valid, and makes this generalized geodesic
deviation equation (6) mathematically very complicated to solve.

Some applications of the modified geodesic deviation equation (6) are
tackled in our paper [6].
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